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Tutorial outline (2)

» Ant colony optimization:
* How does it work?

* Application example: Travelling Salesman Problem

* Closer lock at algorithmic components

» Ant colony optimization hybrids

* Hybridization with problem relaxation, bounding information, etc.

» Ant colony optimization for continuous search spaces

Swarm Intelligence

Short introduction and examples
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What is swarm intelligence

In a nutshell: | Al discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools

Examples of social insects: I

» Ants
» Termites

» Some wasps and bees
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Swarm intelligence

» Consist of a set of simple entities

» Distributedness: No global control

» Self-organization by:
* Direct communication: visual, or chemical contact

* Indirect communication: Stigmergy (Grassé, 1959)

Complex tasks/behaviors can be accomplished/exhibited in cooperation
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Swarm intelligence: examples

» Self-synchronized sleep-wake periods (ants)

» Cemetery formation (ants)

» Division of Labour / Task allocation (ants + bees)
» Self-synchronization (fireflies)

» Flocking (birds + fish)
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Self-synchronized sleep-wake periods (1)

|Biologist discovered: I

» Colonies of ants show synchronized activity patterns

» Synchronization is achieved in a self-organized way: self-synchronization
» Synchronized activity ...
1. ... provides a mechanism for information propagation

2. ... facilitates the sampling of information from other individuals

Model of self-synchronization: I

J. Delgado and R.V. Solé. Self-synchronization and task fulfilment in ant
colonies, Journal of Theoretical Biology, 205, 433-441 (2000)
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Self-synchronized sleep-wake periods (2)

» Each ant is modelled as an automaton

» The state of an automaton ¢ is described by a continuous state variable:
Si(t) € R where ¢ is the time step
» Each automaton ¢ can move on a Lz L grid with periodic boundary conditions
» At time step ¢, each automaton i is either active or inactive :
ai(t) = ©(Si(t)

— Oact) , where

% Baee: activation threshold

* ®(z)=1if ¢ > 0, and ®(x) = 0 otherwise
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Self-synchronized sleep-wake periods (3)

At each iteration ¢

1. Activity calculation:
» Calculate a;(t)
» If a;(t) = 0: Spontaniously activate ¢ with probability p, (activity level S,)

2. Move: Each active automaton ¢ moves (if possible) to one of the free places in
its 8-neighborhood

3. State variable update:

Si(t+1) = tanh(g- (Si(t) + > 8;(1)))

JEN;

where N; is the 8-neighborhood of the position of ¢
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Self-synchronized sleep-wake periods (4)

|What do we measure? I Mean activity of the system at time ¢:

N

AW = 5 Y al)

i=1

where N is the number of automata

T T T T T T T
a700 3800 3900 4000 4100 4200 4300

time steps
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Self-synchronized sleep-wake periods (5)

Some references:

» H. Herndndez, C. Blum, M. Middendorf, K. Ramsch and A. Scheidler.
Self-synchronized duty-cycling for mobile sensor networks with
energy harvesting capabilities: A swarm intelligence study.
Proceedings of SIS 2009, pages 153-159, IEEE press, 2009.

» H. Herndndez and C. Blum. Foundations of ANTCYCLE:
Self-synchronized duty-cycling in mobile sensor networks. The

Computer Journal, 2011. In press.
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Swarm intelligence: examples Cemetery formation (1)
Models for cemetery formation (and brood tending) are used for
clustering
» Self-synchronized sleep-wake periods (ants)
; » E. D. Lumer and B. Faieta. Diversity and adaptation in populations of
» Cemetery formation (ants) clustering ants. In Proceedings of the 3rd International Conference on
» Division of Labour / Task allocation (ants + bees) Simulation of Adaptive Behaviour: From Animals to Animats 3 (SAB 94),
L o pages 501-508. MIT Press (1994)
» Self-synchronization (fireflies)
> Flocki birds + fish » D. Merkle, M. Middendorf, A. Scheidler. Decentralized packet clustering
“KINg feh S.
ocking (birds 1sh) in router-based networks. Int. J. Found. Comput. Sci., Vol. 16, No. 2,
321-341 (2005)
» J. Handl, J. Knowles and M. Dorigo. Ant-Based Clustering and
Topographic Mapping. Artificial Life, Vol. 12, No. 1, Pages 35-62 (2006)
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Swarm intelligence: examples

» Self-synchronized sleep-wake periods (ants)
» Cemetery formation (ants)
>

Division of Labour / Task allocation (ants + bees)

v

Self-synchronization (fireflies)

v

Flocking (birds + fish)
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Division of Labour / Task Allocation (1)

» Problem: in any colony (ants, bees, etc) are a number of tasks to fulfill

» Examples: brood tending, foraging for resources, maintaining the nest
» Requires: dyanamic allocation of individuals to tasks
» Depends on: state of the environment, needs of the colony

» Requires: global assessment of the colonies current state

Individuals are unable (as individuals) to make a global assessment

Response threshold models
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Division of Labour / Task Allocation (2) Division of Labour / Task Allocation (3)
Assume that: |This means (continued): I
» We have m tasks to fulfill
If s; =9di: pi; =0.
» We have n individuals in the colony > 85 = 0yt Pig =05
An individual 7 with a i; 1s likel 5 al stimulus s,
» Each individual ¢ has a response threshold §;; for each task j > An individual i with a low d;; is likely to respond to a lower stimulus s;
> Let s; > 0 be the stimulus of task j Additional feature: I response thresholds are dynamic
» An individual engages in task j with probability » Let At be a duration of time.
2
Ppij = Sj » Let x;;At be the fraction of time spent by ¢ on task j within At
s » Then: (1 — x;;)At is the time spent by ¢ on other tasks
Response threshold update: I
» If s; << &t pijis close to 0
» If s; >> d;;: pij; is close to 1 8ij — 0ij — &y At + p(1 — zi5) At
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Division of Labour / Task Allocation (4)

where:

» ¢ is a reinforcement coefficient

» p is a forgetting coefficient

Effects:

» The more an individual engages in a task j, the lower becomes its threshold

» The less an individual engages in a task j, the higher becomes its threshold

Division of Labour / Task Allocation (5)

Response threshold models are used in

» M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic
scheduling and division of labor in social insects. Adaptive Behavior,
Vol. 8, No. 3, 83-96 (2000)

» D. Merkle, M. Middendorf and A. Scheidler. Self-Organized Task
Allocation for Service Tasks in Computing Systems with
Reconfigurable Components, Journal of Mathematical Modelling and
Algorithms, 7(2):237-254 (2008)

» H. Goldingay and J. van Mourik. Evolution of Competing Strategies in a
Threshold Model for Task Allocation, In: Proceedings of SNDP 2010,

Studies in Computational Intelligence Series, Springer Verlag, pages 85-98,
2010.
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Swarm intelligence: examples Self-synchronization of fireflies (1)
- . . . » A. Rowe, R. Mangharam and R. Rajkumar. FireFly: A Time
» Self-synchronized sleep-wake periods (ants) . K . )
Synchronized Real-Time Sensor Networking Platform, Wireless Ad
» Cemetery formation (ants) Hoc Networking: Personal-Area, Local-Area, and the Sensory-Area Networks,
» Division of Labour / Task allocation (ants + bees) CRC Press Book Chapter (2006)
» Self-synchronization (fireflies) » O. Babaoglu, T. Binci, M. Jelasity and A. Montresor. Firefly-inspired
) Heartbeat Synchronization in Overlay Networks, In the Proceedings of
» Flocking (birds + fish) the First International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2007), pp. 77-86 (2007)
» A. L. Christensen, R. O’Grady and M. Dorigo. From Fireflies to
Fault-Tolerant Swarms of Robots, IEEE Transactions on Evolutionary
Computation, 13(4):754-766, 2009
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Swarm intelligence: examples

Self-synchronized sleep-wake periods (ants)

Cemetery formation (ants)

| 4
| 4
» Division of Labour / Task allocation (ants + bees)
» Self-synchronization (fireflies)

>

Flocking (birds + fish)

Flocking (1)

The collective motion of a large number of self-propolled entities

» Commonly used as a demonstration of emergence and self-organization

» Modelled /simulated for the first time by Craig Reynolds (Boids, 1986)

Basic rules

1. Separation: avoid crowding neighbours (short range repulsion)
2. Alignment: steer towards average heading of neighbours

3. Cohesion: steer towards average position of neighbours (long range attraction)
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Flocking (2)

| Further references: I

» G. Folino, A. Forestiero and G. Spezzano. An adaptive flocking algorithm
for performing approximate clustering, Information Sciences,
179(18):3059-3078, 2009

» X. Cui, J. Gao, and E. Potok. A Flocking based algorithm for document
clustering analysis, Journal of Systems Architecture, 52, 505-515 (2006)

» L. Spector, J. Klein, C. Perry, and M. Feinstein. Emergence of Collective
Behavior in Evolving Populations of Flying Agents, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), LNCS,
Springer-Verlag (2003)
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Ant Colony Optimization

A metaheuristics for optimization

© C. Blum
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Inspiration of ACO (1)

| Communication strategies: I

» Direct communication: For example, recruitment

» Indirect communication: via chemical pheromone trails

7
=

© Christian Blum
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Inspiration of ACO (2)

| Communication strategies: I

» Direct communication: For example, recruitment

» Indirect communication: via chemical pheromone trails
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© C. Blum
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Inspiration of ACO: double-bridge experiment (1) Inspiration of ACO: double-bridge experiment (2)

Nest 3 Food

Nest === e & 6 Food
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The ant colony optimization
metaheuristic

» Simulation of the foraging behaviour
» The ACO metaheuristic
» Example: traveling salesman problem (TSP)

» A closer look at algorithm components

Simulation of the foraging behaviour (1)

|chhnica1 simulation: I

Nest, er, h =1 Food
ez, lo =2

1. We introduce artificial pheromone parameters:
T, for e; and 75 for ey
2. W initialize the phermomone values:

TT=Ta=c>0
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Simulation of the foraging behaviour (2) Simulation of the foraging behaviour (3)
Algorithm: | Simulation results: I
Iterate: , R . H
1. Place n, ants in node a. :‘f os bl ! ;‘ osh
2. Each of the n, ants traverses from a to b either § 06 LL* ® 06
o N : H s oF
» via e; with probability p; = ﬁ, E 0 E o
» or via e with probability po =1 — p;. s s
S o2 S o2
3. Evaporate the artificial pheromone: i = 1,2 . .
0 50 100 150 0 50 100 150
Ti < (1 - p)Tl s P S (07 1] iteration iteration
4. Each ant leaves pheromone on its traversed edge e;: Colony size: 10 ants Colony size 100 ants
T < Ti + T Optimization capability is due to co-operation
k2
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Simulation of the foraging behaviour (4)

|Main differences between model and reality: I

Real ants Simulated ants

Ants’ movement asynchronous synchronized

Pheromone laying while moving after the trip

Solution evaluation

implicitly explicit quality measure

In combinatorial optimization we want to find good solutions

The ant colony optimization
metaheuristic

» Simulation of the foraging behaviour
» The ACO metaheuristic
» Example: traveling salesman problem (TSP)

» A closer look at algorithm components
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The ACO framework The ACO pseudocode
input: An instance P of a combinatorial problem P.
InitializePheromoneValues(7)
[ ACO \ while termination conditions not met do
. Siter — @
solution : .
: for j=1,...,n, do
components| > _: / \ .

~ s «— ConstructSolution(7)

N ~

: [~ «Jprobabilistic] pheromone s « LocalSearch(s) — optional —

@ : solution value Siter < Siter U {5}
:_}7|construction update end for
i ApplyPheromoneUpdate(7)
pheromone | .~ \ = .
del : end while
mode r— _
sniiialiEifon output: The best solution found
of pheromone]
k values j
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Metaheuristics: Timeline of their introduction

Metaheuristics:

» Simulated Annealing (SA)
» Tabu Search (TS)

» Genetic and Evolutionary Computation (EC)

» Ant Colony Optimization (ACO) [Dorigo, 1992]

» Greedy Randomized Adaptive Search Procedure (GRASP)

» Particle Swarm Optimization (PSO)
» Guided Local Search (GLS)

» Iterated Local Search (ILS)

» Variable Neighborhood Search (VNS)

[Kirkpatrick, 1983]

[Glover, 1986]
[Goldberg, 1989]

[Resende, 1995]
[Kennedy, 1995]
[Voudouris, 1997]
[Stiitzle, 1999]
[Mladenovié, 1999]

The ant colony optimization
metaheuristic

» Simulation of the foraging behaviour
» The ACO metaheuristic

» Example: traveling salesman problem (TSP)

» A closer look at algorithm components

972




Ant Colony Optimization, July 12, 2011, GECCO 2%l | Dublin, Ireland © C. Blum

TSP: definition (1)

Traveling salesman problem (TSP) . Given a completely connected,
undirected graph G = (V, E) with edge-weights.

Goal:
Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.
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TSP definition (2)

|TSP in terms of a combinatorial optimization problem P = (S, f): I

» S consists of all possible Hamiltonian cycles in G.

» Objetive function f : S +— IRT: s € S is defined as the sum of the edge-weights
of the edges that are in s.

v2 B O—0 @ O—O
1 5
2 2 2 2 2 2

99 OO

obj. function value: 8 obj. function value: 10
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Applying ACO to the TSP

Preliminary step: I Definition of the

» solution components

» pheromone model

example instance solution components pheromone model
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TSP: solution construction

| Tour construction: I

Finished

_ Ti,j
T2+ 71,3+ T1,4 T2,3 + T2.4

- AN NG J
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TSP: pheromone update (1) TSP: pheromone update (2)
|Pher0m0ne update: I For example with the Ant System (AS) update rule |Pher0m0ne update: I For example with the Ant System (AS) update rule
Pheromone evaporation R e e— start evaporation solution s; solution so
Tij — (1=p) Tij Tij < Tig P F(s)
{s€Siter|ci,jEs}

where

» evaporation rate p € (0, 1] o e

» Siter is the set of solutions generated in the current iteration v

» quality function F : S +— RT. We use F(-) = Sio) e ‘e
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The ant colony optimization
metaheuristic

» Simulation of the foraging behaviour
» The ACO metaheuristic

» Example: traveling salesman problem (TSP)

» A closer look at algorithm components

Solution construction (1)

| Solution construction: I A closer look

ACO

solution

components

probabilistic pheromone

solution value

CO problem

pheromone

model initialization

of pheromone]

\ values
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Solution construction (2) Solution construction (3)
|A general constructive heuristic: I |P()bblblllt165 for implementing ChooseFrom(N (sP)): I
> P =) » Greedy algorithms:
» Determine N (sP) ¢ = argmax n(¢i;)
» while N(sP) # 0 i, jEN(sP)I\Cis5) >
* ¢ <« ChooseFrom(N(s?)) where n: C — IR" is a Greedy function
* sP «— extend sP by adding solution component ¢
* Determine N (sP) = ST ——
amples for Greedy functions:
» end while xomp J I
» TSP: Inverse distance between nodes (i.e., cities)
How to implement function ChooseFrom(N (s7))?
» SALB: t;/C
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Solution construction (4)

|Possibilities for implementing ChooseFrom(N (s?)): I

» Ant colony optimization:

(751 - (i)’
> [l )’

cr, 1 EN(sP)

p(ci; | ) = Ye; € N(sP) ,

where a and [ are positive values

« and (8 balance between pheromone information and Greedy function

Observations:

» ACO can be applied if a constructive heuristic exists!

» ACO can be seen as an iterative, adaptive Greedy algorithm

Pheromone update (1)

|Pheromone update: I A closer look

solution

components

probabilistic|

CO problem solution

construction|

pheromone

model

initialization
of pheromone]

\ values

ACO

pheromone

value
update
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Pheromone update (2) Pheromone update (3)
|A general update rule: I |ACO update variants: I
AS-update Supd — Si
Tig—(L=p)-Tij+p: Y. wF(s) v e
(5E€Supales.; €5} weights: w, =1V s € Sypa
where elitist AS-update Supd — Siter U{sps} (sps is best found solution)
weights: wy =1V s € Sjper, ws,. =€ >1
» evaporation rate p € (0,1] il S tery b
rank-based AS-update | Sypq < best m — 1 solutions of Sjte, U {sps} (ranked)
» Supd is the set of solutions used for the update . .
weights: ws = m — r for solutions from Site,, ws,, = m
~ ion F : + )= L —
» quality function F': S — R™. We use F(-) ) - Supd — argmax{F(s) | s € Sizer}
» w; is the weight of solution s weight 1
BS-update: Supd < {Sbs}
Which solutions should be used for updating? .
weight 1
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Successful ACO variants

» Ant Colony System(ACS) [Dorigo, Gambardella, 1997]

M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach to

the traveling salesman problem. [EEE Trans. Evolutionary Computation, 1(1), 53-66, 1997

» MAX-MIN Ant System(MMAS) [Stiitzle, Hoos, 2000]

T. Stiitzle and H. H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems,
16(8), 889-914, 2000

» The hyper-cube framework (HCF) for ACO [Blum, Dorigo, 2004]

C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization. IEEFE

Transactions on Systems, Man, and Cybernetics, Part B, 34(2), 1161-1172, 2004
» Population-based ACO (P-ACO) [Guntsch, Middendorf, 2002]

M. Guntsch and M. Middendorf. A population based approach for ACO. In: Proceedings of
EvoWorkshops 2002, Springer LNCS, pages 71-80, 2002

Ant Colony Optimization

Hybridization with Other Techniques for Optimization
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Ant colony optimization hybrids Guiding ACO by problem relaxation (1)
|Hybridizations of ACO algorithms: I
» M. Reimann. Guiding ACO by Problem Relaxation: A Case Study on
» Example 1: Guiding ACO by problem relaxation the Symmetric TSP, In: Proceedings of HM 2007, volume 4771, Springer
LNCS, 45-56, 2007
» [ixample 2: Using large-scale neighborhood search in ACO C85, pages 45-56, 200
» [xample 3: Using bounding information in ACO
» Example 4: ACO hybridized with constraint programming » On some benchmark instances an optimal minimum-spanning-tree (MST)
solution has about 70 — 80% of the edges in common with an optimal TSP
solution
Use the MST-information to influence the solution construction
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Guiding ACO by problem relaxation (2)

| Solution construction mode: I like nearest-neighbor heuristic

Tij - Mij

Pij =
Zkeﬂ Tik - Nik

where 7 is the current city, and €2 is the set of unvisited cities.

Heuristic information: I

Standard Hybrid
_ 1 _ 149ty
Nij = a; Nij = TJ

where d;; is the distance between ¢ and j, and ¢;; = 1 if edge (¢, j) is part of the
MST-solution, and t;; = 0 otherwise.

Guiding ACO by problem relaxation (3)

» Small instances: no significant difference between standard and hybrid

» Large instances:
1. Hybrid algorithm finds best solutions faster

2. Hybrid algorithm has a better average and worst case behaviour

(statistically significant)

» Application serves to introduce the idea

» In general: High potential
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Guiding ACO by problem relaxation (4) Ant colony optimization hybrids
|Further references: I |Hybridizations of ACO algorithms: I
> M..Bavafa7 N Navidi a{ld N. Monsef.. A new ap.proach fo.r proﬁf,-based > Fxample - Guiding ACO by problem relaxation
unit commitment using Lagrangian relaxation combined with ant
colony search algorithm, In: Proceedings of UPEC 2008, IEEE press, 2008 » Example 2: Using large-scale neighborhood search in ACO
» C.-H. Chen and C. J. Ting. Combining Lagrangian heuristic and ant » Example 3: Using bounding information in ACO
colony system to solve the single source capacitated facility location - le 4: ACO hvbridized with traint )
problem, Transportation Research Part E, 44:1099-1122, 2008 > bxample & YDICLZEE WIth Constraiiit programining
» 7. Ren and Z. Feng. An ant colony optimization approach to the
multi-choice multi-dimensional knapsack problem, In: Proceedings of
GECCO 2010, pages 281-288, ACM press, 2010
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Large-scale neighborhood search (1)

| General references: I

» R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very
large-scale neighborhood search techniques, Discrete Applied
Mathematics, 123(1-3):75-102, 2002

» M. Chiarandini, I. Dumitrescu, and T. Stiitzle. Very Large-Scale
Neighborhood Search: Overview and Case Studies on Coloring
Problems, In: Hybrid Metaheuristics—An Emerging Approach to
Optimization, volume 114 of Studies in Computational Intelligence, pages
117-150, Springer Verlag, Berlin, Germany, 2008

Key issues in local search: I

» Defining an appropriate neighborhood structure

» Choosing a way of examining the neighborhood of a solution

Large-scale neighborhood search (2)

General tradeoff:

» Small neighborhoods:
1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantag: The average quality of the local minima is low

» Large-scale neighborhoods:
1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be N P-hard
due to the size of the neigbhorhood

Ways of examining large neighborhoods: I

» Heuristically

» In some cases an efficient exact technique may exist
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Using large-scale neighborhood search in ACO (1) Using large-scale neighborhood search in ACO (2)
Let 7; be the set of all trees in G with exactly k edges
| Specific reference: I
» C. Blum and M. J. Blesa. Combining ant colony optimization with | Optimization goal: I Find a k-cardinality tree Tj € 7), which minimizes
dynamic programming for solving the k-cardinality tree problem, In:
Proceedings of IWANN 2005, volume 3512 of Springer LNCS, pages 25-33, f(Ty) = Sowe | + S w,
2005 e€E(Tx) veV(Tk)
The k-cardinality tree problem A 3-cardinality tree
Given:
» An undirected graph G = (V, E),
» Edge-weights w,, V e € E, and node-weights w,,, Vv € V.
» A cardinality k < |V|
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Using large-scale neighborhood search in ACO (3)

| Working of a standard ACO: I

» Trees are constructed step-by-step, adding one edge at a time
» To each tree is applied a 1-exchange local search algorithm

» To the iteration-best solution is applied a short run of tabu search

Main idea of the hybrid ACO: I

» Instead of k-cardinality trees, construct l-cardinality trees, k <1 < |V|—1

» To each [-cardinality tree: Apply an efficient dynamic programming
algorithm to find the best k-cardinality tree contained in the [-cardinality tree

Using large-scale neighborhood search in ACO (4)

» The hybrid ACO approach outperforms consistently the standard approach

» For small problems: the hybrid algorithm is faster

» For large problems: the hybrid algorithm is better

Concerning the parameter (: I

T T 1
l=k+2s I=k+3s |=|V]-1

S §

']
L]
1 l=k+s
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Using large-scale neighborhood search in ACO (5) Using large-scale neighborhood search in ACO (6)

|Exemplary results: I 20x20 grid graphs, k£ = 120

» Quite specific for KCT: Therefore, rather limited potential

3400

» However: Might be useful for other subset problems

3200
L

» General idea:

3000
L

- T T 1. Construct subsets larger than necessary

2. Find the best subsets contained in the larger subsets

SOLUTION QUALITY

2800
L

2600
L

2400
L

T T T T
=k Iekts I=k+25 I=k+3s 1=|V|-1
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Ant colony optimization hybrids Using bounding information in ACO (1)

|Hybridizations of ACO algorithms: I Use bounding information during the solution construction for
» ... defining/influencing the heuristic information

» [xample 1: Guiding ACO by problem relaxation

» Example 2: Using large-scale neighborhood search in ACO > - [ElGE partial solutions from further examination

» Example 3: Using bounding information in ACO ANTS

> Example 4: ACO hybridized with constraint programming » V. Maniezzo. Exact and approximate nondeterministic tree-search

procedures for the quadratic assignment problem, INFORMS Journal
on Computing, 11(4):358-369, 1999

» V. Maniezzo and A. Carbonaro. An ANTS heuristic for the frequency
assignment problem, Future Generation Computer Systems, 16:927-935,
2000
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Using bounding information in ACO (2)

» C. Blum. Beam-ACO-hybridizing ant colony optimization with beam
search: an application to open shop scheduling, Computers and
Operations Research, 32:1565-1591, 2005

» J. Caldeira, R. Azevedo, C. A. Silva, and J. M. C. Sousa. Beam-ACO
Distributed Optimization Applied to Supply-Chain Management, In:
Proceedings of IFSA 2007, volume 4529 of Springer LNCS, pages 799-809, 2007

» C. Blum. Beam-ACO for simple assembly line balancing, INFORMS
Journal on Computing, (20)4:618-627, 2008.

» M. Modarres and M. Ghandehari. Generalized cyclic open shop
scheduling and a hybrid algorithm, Journal of Industrial Systems
Enigneering, 1(4):345-359, 2008.

Ant Colony Optimization, July 12, 2011, GECCO 2%l | Dublin, Ireland

Ant colony optimization hybrids: Beam-ACO

|ACO as a tree search algorithm: I 1st construction step

T1,2 " 71(0172) T1,4 ° 77(01.4)

71,3 " 7](01.,3)

© C. Blum
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Ant colony optimization hybrids: Beam-ACO

|ACO as a tree search algorithm: I 2nd construction step

Ant Colony Optimization, July 12, 2011, GECCO 2%l | Dublin, Ireland

Ant colony optimization hybrids: Beam-ACO

|ACO as a tree search algorithm: I 3rd construction step

© C. Blum
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Ant colony optimization hybrids: Beam-ACO Ant colony optimization hybrids: Beam-ACO
Beam search: || 1st construction step Beam search: | 2nd construction step
kPiIf =2 ke:l:f, =2
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Ant colony optimization hybrids: Beam-ACO

after 2nd construction step — use of lower bound

Ant colony optimization hybrids: Beam-ACO

3rd construction step
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Ant colony optimization hybrids: Beam-ACO Ant colony optimization hybrids: Beam-ACO

[1dea of Beam-ACO: | Use probabilistic beam search instead of single solution | Intuitive example: I ideal case

constructions

Hypothesis
It is most often beneficial to use probabilistic beam search instead of
probabilistic single solution construction in construction-based metaheristics such
as GRASP or ant colony optimization (ACO)
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Ant colony optimization hybrids: Beam-ACO

Attention:

» We need black nodes close to the root node of the search tree
» We need a bound that is fast to compute

» We need a bound that does not mislead the algorithm

High potential for ...

» ... problems where constructive algorithms are successful

» ... local search is not especially successful

Ant colony optimization hybrids

|Hybridizations of ACO algorithms: I

» [xample 1: Guiding ACO by problem relaxation
» LExample 2: Using large-scale neighborhood search in ACO
» Example 3: Using bounding information in ACO

» Example 4: ACO hybridized with constraint programming
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ACO hybridized with constraint programming (1)

References:

» B. Meyer and A. Ernst. Integrating ACO and Constraint Propagation,
In: Proceedings of ANTS 2004, Springer LNCS, pages 166-177, 2004

» D. R. Thiruvady, C. Blum, B. Meyer and A. T. Ernst. Hybridizing
Beam-ACO with Constraint Programming for Single Machine Job
Scheduling, In: Proceedings of HM 2009, Springer LNCS, pages 30—44, 2009.

» M. Khichane, P. Albert and C. Solnon Strong Combination of Ant
Colony Optimization with Constraint Programming Optimization,
In: Proceedings of CPAIOR 2010, Springer LNCS, 232-245, 2010.

» Successively reduce the variable domains by contraint propagation

» Let ACO search the reduced search tree

Ant Colony Optimization, July 12, 2011, GECCO 28] | Dublin, Ireland ® C. Blum

ACO hybridized with constraint programming (2)

| Constraint programming (CP): I Study of computational systems based on

constraints

|H0w does it work? I

» Phase 1:
* Express CO problem in terms of a discrete problem (variables+domains)
* Define (“post”) constraints among the variables

* The constraint solver reduces the variable domains

» Phase 2: Labelling
* Search through the remaining search tree

* Possibly “post” additional constraints

Ant Colony Optimization, July 12, 2011, GECCO 28] | Dublin, Ireland @© C. Blum

ACO hybridized with constraint programming (3)

Simple example: | minimize f(X,Y,Z) — R

subject to

Xef{1,...,8}
Y, Ze{1,...,10}
X 47, Z+#2
X-Z=3Y

Constraint propagation: I

» Step 1: Use X # 7 and Z # 2
1. X e{1,...,6,8}
2. Y €{1,3,...,10}

Ant Colony Optimization, July 12, 2011, GECCO 2881 | Dublin, Ireland ®© C. Blum

ACO hybridized with constraint programming (4)

» Step 2: Use X —Z =3Y
1. Because of the domains of X and Y: X — Z < 8
2. = 3Y <8
3.=Y<2
4. = Y e{1,2}
» Step 3: Use again X — Z =3Y
1. Because of the reduced domain of Y: 3Y > 3
2.=X-Z2>3
3. = X €{4,5,6,8} and Z € {1,3,4,5}
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ACO hybridized with constraint programming (5) ACO hybridized with constraint programming (6)
[ \ » Advantage of ACO:
ACO-CP Good in finding high quality solutions for moderately constrained problems.
» Advantage of CP:
Good in finding feasible solutions for highly constrained problems.
probabilistic pheromone
solution value
construction update = . . . . . .
Promising for constrained problems with still a high number of feasible solutions.
initialization CP additional
of pheromone]
k values constraints j
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Other recent ACO hybrids

| Some other papers on hybrids: I

» P. Rocca, L. Manica and A. Massa. Ant colony based hybrid approach for optimal
compromise sum-difference patterns synthesis, Microwave and Optical Technology Letters,
52(1):128-132, 2009.

» X. Hu, Q. Ding and Y. Wang. A Hybrid Ant Colony Optimization and Its Application to
Vehicle Routing Problem with Time Windows, Life System Modeling and Intelligent
Computing, 97(1):70-76, 2010.

» Y. Mingxin, W. Sun’an, W. Canyang and L. Kunpeng. Hybrid ant colony and immune
network algorithm based on improved APF for optimal motion planning, Robotica,
28(6):833-846, 2010.

» P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni. Particle swarm and ant colony
algorithms hybridized for improved continuous optimization, Applied Mathematics and
Computation, 188(1):129-142, 2007

Ant colony optimization for
continuous optimization
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Ant colony optimization for continuous optimization Ant colony optimization for continuous optimization
| Continuous optimization I
| Different approaches: I
» K. Socha and M. Dorigo. Ant colony optimization for continuous
1. Function f: R" — IR domains, European Journal of Operational Research, 185(3):1155-1173, 2008.
2. Constrains such as, for example, z; € [l;, u] » N. Monmarché, G. Venturini and M. Slimane. On how Pachycondyla
Apicalis ants suggest a new search algorithm, Future Generation
Find Computer Systems, 16:937-946, 2000.
» P. Korosec, J. Silc and B. Filipic. The differential ant-stigmergy
X* = (IT ey x;) e R" algorithm, Information Sciences, 2011. In press.

such that » X. M. Hu, J. Zhang and Y. Li. Orthogonal methods based ant colony

» X* fulfills all constraints search for solving continuous optimization problems, Journal of

> f(i*) < f(?)N Ve R Computer Science & Technology, 23:2-18, 2008).
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Dicrete ant colony optimization

-

solution :
components| ~_:

ACO

~

"\ ~

b probabilistic pheromone
@ solution value

:_}7|construction update

7

K

pheromone | .

model

N——

\_

initialization
of pheromone]

values

Continuous ant colony optimization

population

Continuous problem

of solutions

| Main conceptual difference: I

Population instead of pheromone model

( ACO

probabilistic|

population
solution update

construction|

initialization
of the
population
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Continuous ACQO: Probabilistic solution construction Continuous ACQO: Probabilistic solution construction
| A solution construction: I Choose a value x; € IR for each variable X;, i =1,...,n | A Gaussian kernel PDF: I
— n solution construction steps
|HOW to choose a value for variable X;? I
—— Gaussian kernels
— individual Gausian functions
— by sampling the following Gaussian kernel probability density function (PDF):
k 1 _ (JD*MJ')2
Gi(z) = E w; e 2’
J
=1 Jj vV 2w T T T T T
-4 -2 0 2 4
where k is the cardinality of the population P. z
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Continuous ACO: Probabilistic solution construction
It is quite difficult to sample a Gaussian kernel PDF
Instead, at the start of each solution construction

1. choose probabilistically one of the Gaussian kernels, denoted by j*

2. and sample—for all decision variables—the j*-th Gaussian kernel

Methods for sampling: I For example, the Box-Muller method

Continuous ACO: Probabilistic solution construction

| Choice of a Gaussian kernel: I

By
— J s
p; = & ,Vj—l,...,k
D1 Wi
Definition of w;’s: I
1 _(T_7—1)2
wj = — . ¢ 2q2k7

qkV/2m

» r; is the rank of solution j in population P

» ¢ is a parameter of the algorithm: A small ¢ favours high-ranked solutions
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Continuous ACO: Probabilistic solution construction Continuous ACO: Probabilistic solution construction
Gaussian kernel j* is chosen for sampling Definition of yi;-: I
: _ 0"
. (o= g )? My =T
2
j*-th Gaussian kernel = ————¢ > %
Jj* vV 27'(' i . .. . . g
where 27 is the value of the i-th decision variable of solution j*.
Definition of Definition of o«:
1. the mean p- . l =Y
L > (xz - )
2. and the standard deviation o;- O =p
/ k
where p is a parameter of the algorithm: high p means slow convergence speed
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Continuous ACO

|Different methods for constraint handling: I

1. Repair function: Each unfeasible solution is transformed into a feasible one

2. Penalty function: Unfeasible solutions are penalized by high objective

function values

Continuous ACO

f(x) = 22, population size 5, 3 ants, rho = 2.0

0.8

0.6

0.4

X

Iteration 1
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Continuous ACO Continuous ACO
f(x) = 22, population size 5, 3 ants, rho = 2.0 f(x) = 22, population size 5, 3 ants, rho = 2.0
1 1
08 08
0.6 0.6
0.4 0.4
f(X) e f(X) e
9(x) 9(x)
0.2 . i 02 i
Srienn at B
. o gy X X
ok H - p 0 Bl P
10-9-8-7-6-5-4-32-1012345678910 10-9-8-7-6-5-4-32-1012345678910
X X
Iteration 2 Iteration 3
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Continuous ACO

f(x) = 22, population size 5, 3 ants, rho = 2.0

0.8

0.6

0.4

0.2

0
-10-9-8-76-5-4-3-2-1 01234567 8910
X

Iteration 4

Continuous ACO

f(x) = 22, population size 5, 3 ants, rho = 2.0

0.8

0.6

0.4

0.2

0 . i
-109-8-76-5-4-3-2-1 01234567 8910
X

Iteration 5
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Summary and conclusions (1) Summary and conclusions (2)
|NOT presented topics: I
» Origins of ACO: Swarm intelligence
» ACO algorithms for multi-objective optimization
» How to transfer the biological inspiration into an algorithm
* See GECCO 2010 tutorial on ACO (by M. Lépez-Ibafiez)
» Example application of ACO: TSP ) ~ . . . o
* M. Lépez-Ibdnez and T. Stiitzle. The automatic design of multi-objective ant colony
> Hybridizations of ACO algorithms with more classical techniques opllsufuz'atlon algorithms, Technical Report TR/IRIDIA/2011-003, 2011. Under
submission.
» Ant colony optimization for continuous optimization
» ACO algorithms for dynamic/stochastic problems
| Is ACO better than other metaheuristics? I No! (problem dependant) * M. Mavrovouniotis and S. Yang. Ant colony optimization with immigrants schemes in
dynamic environments, In: Proceedings of PPSN 2010, Springer LNCS, 2010
* L. Bianchi, M. Dorigo, L. M. Gambardella and W. J. Gutjahr. A survey on metaheuristics
. . f tochasti binatorial timizati Natural 11 2):239-287, 2
Rule of thumb: | ACO works well for problems for which well-working or stochastic combinatorial optimization, Natural Computing, 8(2):239-287, 2009
constructive heuristics exist
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Further Information

Ant Colony
Optimization

Hybrid
Metaheuristics

&) Springer

» M. Dorigo and T. Stiitzle. Ant colony optimization: Overview and Recent Advances, In:
Handbook of Metaheuristics, 227-264, Springer Verlag, 2010.

» C. Blum, J. Puchinger, G. Raidl and A. Roli. Hybrid Metaheuristics in Combinatorial
Optimization: A Survey, Applied Soft Computing, 2011. In press.
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