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Tutorial outline (1)

Topics:

� Swarm intelligence: Short intro and examples

� Self-synchronized sleep-wake periods (ants)

� Clustering and Sorting (ants)

� Division of Labour / Task allocation (ants + bees)

� Self-synchronization (fireflies)

� Flocking (birds + fish)
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Tutorial outline (2)

Topics:

� Ant colony optimization:

� How does it work?

� Application example: Travelling Salesman Problem

� Closer lock at algorithmic components

� Ant colony optimization hybrids

� Hybridization with problem relaxation, bounding information, etc.

� Ant colony optimization for continuous search spaces
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Swarm intelligence

Swarm Intelligence

Short introduction and examples
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What is swarm intelligence

In a nutshell: AI discipline whose goal is designing intelligent multi-agent

systems by taking inspiration from the collective behaviour of animal societies

such as ant colonies, flocks of birds, or fish schools

Examples of social insects:

� Ants

� Termites

� Some wasps and bees
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Swarm intelligence

Properties:

� Consist of a set of simple entities

� Distributedness: No global control

� Self-organization by:

� Direct communication: visual, or chemical contact

� Indirect communication: Stigmergy (Grassé, 1959)

E1 E2 En−1 En

R1 R2 Rn−1

Result: Complex tasks/behaviors can be accomplished/exhibited in cooperation
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Swarm intelligence: examples

Examples:

� Self-synchronized sleep-wake periods (ants)

� Cemetery formation (ants)

� Division of Labour / Task allocation (ants + bees)

� Self-synchronization (fireflies)

� Flocking (birds + fish)
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Self-synchronized sleep-wake periods (1)

Biologist discovered:

� Colonies of ants show synchronized activity patterns

� Synchronization is achieved in a self-organized way: self-synchronization

� Synchronized activity ...

1. ... provides a mechanism for information propagation

2. ... facilitates the sampling of information from other individuals

Model of self-synchronization:

J. Delgado and R.V. Solé. Self-synchronization and task fulfilment in ant
colonies, Journal of Theoretical Biology, 205, 433–441 (2000)
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Self-synchronized sleep-wake periods (2)

� Each ant is modelled as an automaton

� The state of an automaton i is described by a continuous state variable:

Si(t) ∈ R where t is the time step

� Each automaton i can move on a LxL grid with periodic boundary conditions

� At time step t, each automaton i is either active or inactive :

ai(t) = Φ(Si(t) − θact) , where

� θact: activation threshold

� Φ(x) = 1 if x ≥ 0, and Φ(x) = 0 otherwise
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Self-synchronized sleep-wake periods (3)

Simulation: At each iteration t

1. Activity calculation:

� Calculate ai(t)

� If ai(t) = 0: Spontaniously activate i with probability pa (activity level Sa)

2. Move: Each active automaton i moves (if possible) to one of the free places in
its 8-neighborhood

3. State variable update:

Si(t + 1) = tanh(g · (Si(t) +
∑
j∈Ni

Sj(t)))

where Ni is the 8-neighborhood of the position of i
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Self-synchronized sleep-wake periods (4)

What do we measure? Mean activity of the system at time t:

A(t) =
1
N

N∑
i=1

ai(t)

where N is the number of automata
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Self-synchronized sleep-wake periods (5)

Some references:

� H. Hernández, C. Blum, M. Middendorf, K. Ramsch and A. Scheidler.
Self-synchronized duty-cycling for mobile sensor networks with
energy harvesting capabilities: A swarm intelligence study.
Proceedings of SIS 2009, pages 153–159, IEEE press, 2009.

� H. Hernández and C. Blum. Foundations of ANTCYCLE:
Self-synchronized duty-cycling in mobile sensor networks. The
Computer Journal, 2011. In press.
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Swarm intelligence: examples

Examples:

� Self-synchronized sleep-wake periods (ants)

� Cemetery formation (ants)

� Division of Labour / Task allocation (ants + bees)

� Self-synchronization (fireflies)

� Flocking (birds + fish)
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Cemetery formation (1)

Note: Models for cemetery formation (and brood tending) are used for

clustering

� E. D. Lumer and B. Faieta. Diversity and adaptation in populations of
clustering ants. In Proceedings of the 3rd International Conference on
Simulation of Adaptive Behaviour: From Animals to Animats 3 (SAB 94),
pages 501-508. MIT Press (1994)

� D. Merkle, M. Middendorf, A. Scheidler. Decentralized packet clustering
in router-based networks. Int. J. Found. Comput. Sci., Vol. 16, No. 2,
321-341 (2005)

� J. Handl, J. Knowles and M. Dorigo. Ant-Based Clustering and
Topographic Mapping. Artificial Life, Vol. 12, No. 1, Pages 35-62 (2006)
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Swarm intelligence: examples

Examples:

� Self-synchronized sleep-wake periods (ants)

� Cemetery formation (ants)

� Division of Labour / Task allocation (ants + bees)

� Self-synchronization (fireflies)

� Flocking (birds + fish)
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Division of Labour / Task Allocation (1)

� Problem: in any colony (ants, bees, etc) are a number of tasks to fulfill

� Examples: brood tending, foraging for resources, maintaining the nest

� Requires: dyanamic allocation of individuals to tasks

� Depends on: state of the environment, needs of the colony

� Requires: global assessment of the colonies current state

However: Individuals are unable (as individuals) to make a global assessment

Solution: Response threshold models

966



Ant Colony Optimization, July 12, 2011, GECCO , Dublin, Ireland c© C. Blum

Division of Labour / Task Allocation (2)

Assume that:

� We have m tasks to fulfill

� We have n individuals in the colony

� Each individual i has a response threshold δij for each task j

� Let sj ≥ 0 be the stimulus of task j

� An individual engages in task j with probability

pij =
s2

j

s2
j + δ2

ij

This means:

� If sj << δij : pij is close to 0

� If sj >> δij : pij is close to 1
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Division of Labour / Task Allocation (3)

This means (continued):

� If sj = δij : pij = 0.5

� An individual i with a low δij is likely to respond to a lower stimulus sj

Additional feature: response thresholds are dynamic

� Let Δt be a duration of time.

� Let xijΔt be the fraction of time spent by i on task j within Δt

� Then: (1 − xij)Δt is the time spent by i on other tasks

Response threshold update:

δij → δij − ξxijΔt + ρ(1 − xij)Δt
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Division of Labour / Task Allocation (4)

where:

� ξ is a reinforcement coefficient

� ρ is a forgetting coefficient

Effects:

� The more an individual engages in a task j, the lower becomes its threshold

� The less an individual engages in a task j, the higher becomes its threshold
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Division of Labour / Task Allocation (5)

Note: Response threshold models are used in

� M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic
scheduling and division of labor in social insects. Adaptive Behavior,
Vol. 8, No. 3, 83-96 (2000)

� D. Merkle, M. Middendorf and A. Scheidler. Self-Organized Task
Allocation for Service Tasks in Computing Systems with
Reconfigurable Components, Journal of Mathematical Modelling and
Algorithms, 7(2):237–254 (2008)

� H. Goldingay and J. van Mourik. Evolution of Competing Strategies in a
Threshold Model for Task Allocation, In: Proceedings of SNDP 2010,
Studies in Computational Intelligence Series, Springer Verlag, pages 85–98,
2010.
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Swarm intelligence: examples

Examples:

� Self-synchronized sleep-wake periods (ants)

� Cemetery formation (ants)

� Division of Labour / Task allocation (ants + bees)

� Self-synchronization (fireflies)

� Flocking (birds + fish)
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Self-synchronization of fireflies (1)

Used in:

� A. Rowe, R. Mangharam and R. Rajkumar. FireFly: A Time
Synchronized Real-Time Sensor Networking Platform, Wireless Ad
Hoc Networking: Personal-Area, Local-Area, and the Sensory-Area Networks,
CRC Press Book Chapter (2006)

� O. Babaoglu, T. Binci, M. Jelasity and A. Montresor. Firefly-inspired
Heartbeat Synchronization in Overlay Networks, In the Proceedings of
the First International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2007), pp. 77–86 (2007)

� A. L. Christensen, R. O’Grady and M. Dorigo. From Fireflies to
Fault-Tolerant Swarms of Robots, IEEE Transactions on Evolutionary
Computation, 13(4):754–766, 2009
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Swarm intelligence: examples

Examples:

� Self-synchronized sleep-wake periods (ants)

� Cemetery formation (ants)

� Division of Labour / Task allocation (ants + bees)

� Self-synchronization (fireflies)

� Flocking (birds + fish)
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Flocking (1)

Definition: The collective motion of a large number of self-propolled entities

Note:

� Commonly used as a demonstration of emergence and self-organization

� Modelled/simulated for the first time by Craig Reynolds (Boids, 1986)

Model: Basic rules

1. Separation: avoid crowding neighbours (short range repulsion)

2. Alignment: steer towards average heading of neighbours

3. Cohesion: steer towards average position of neighbours (long range attraction)
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Flocking (2)

Further references:

� G. Folino, A. Forestiero and G. Spezzano. An adaptive flocking algorithm
for performing approximate clustering, Information Sciences,
179(18):3059–3078, 2009

� X. Cui, J. Gao, and E. Potok. A Flocking based algorithm for document
clustering analysis, Journal of Systems Architecture, 52, 505–515 (2006)

� L. Spector, J. Klein, C. Perry, and M. Feinstein. Emergence of Collective
Behavior in Evolving Populations of Flying Agents, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), LNCS,
Springer-Verlag (2003)
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Swarm intelligence

Ant Colony Optimization

A metaheuristics for optimization
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Inspiration of ACO (1)

Communication strategies:

� Direct communication: For example, recruitment

� Indirect communication: via chemical pheromone trails

c© Christian Blum
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Inspiration of ACO (2)

Communication strategies:

� Direct communication: For example, recruitment

� Indirect communication: via chemical pheromone trails

Basic behaviour:
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Inspiration of ACO: double-bridge experiment (1)

Nest Food

Nest Food
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Inspiration of ACO: double-bridge experiment (2)

Nest Food

Nest Food
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

� Simulation of the foraging behaviour

� The ACO metaheuristic

� Example: traveling salesman problem (TSP)

� A closer look at algorithm components
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Simulation of the foraging behaviour (1)

Technical simulation:

a b
Nest Foode1, l1 = 1

e2, l2 = 2

1. We introduce artificial pheromone parameters:

T1 for e1 and T2 for e2

2. W initialize the phermomone values:

τ1 = τ2 = c > 0
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Simulation of the foraging behaviour (2)

Algorithm:

Iterate:

1. Place na ants in node a.

2. Each of the na ants traverses from a to b either

� via e1 with probability p1 = τ1
τ1+τ2

,

� or via e2 with probability p2 = 1 − p1.

3. Evaporate the artificial pheromone: i = 1, 2

τi ← (1 − ρ)τi , ρ ∈ (0, 1]

4. Each ant leaves pheromone on its traversed edge ei:

τi ← τi +
1
li
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Simulation of the foraging behaviour (3)

Simulation results:
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Colony size: 10 ants Colony size 100 ants

Observation: Optimization capability is due to co-operation
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Simulation of the foraging behaviour (4)

Main differences between model and reality:

Real ants Simulated ants

Ants’ movement asynchronous synchronized

Pheromone laying while moving after the trip

Solution evaluation implicitly explicit quality measure

Problem: In combinatorial optimization we want to find good solutions
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

� Simulation of the foraging behaviour

� The ACO metaheuristic

� Example: traveling salesman problem (TSP)

� A closer look at algorithm components
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The ACO framework

CO problem

solution
components

pheromone
model

ACO

probabilistic
solution

construction

pheromone
value

update

initialization

of pheromone
values
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The ACO pseudocode

input: An instance P of a combinatorial problem P.
InitializePheromoneValues(T )

while termination conditions not met do
Siter ← ∅
for j = 1, . . . , na do

s ← ConstructSolution(T )

s ← LocalSearch(s) — optional —
Siter ← Siter ∪ {s}

end for
ApplyPheromoneUpdate(T )

end while
output: The best solution found
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Metaheuristics: Timeline of their introduction

Metaheuristics:

� Simulated Annealing (SA) [Kirkpatrick, 1983]

� Tabu Search (TS) [Glover, 1986]

� Genetic and Evolutionary Computation (EC) [Goldberg, 1989]

� Ant Colony Optimization (ACO) [Dorigo, 1992]

� Greedy Randomized Adaptive Search Procedure (GRASP) [Resende, 1995]

� Particle Swarm Optimization (PSO) [Kennedy, 1995]

� Guided Local Search (GLS) [Voudouris, 1997]

� Iterated Local Search (ILS) [Stützle, 1999]

� Variable Neighborhood Search (VNS) [Mladenović, 1999]
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

� Simulation of the foraging behaviour

� The ACO metaheuristic

� Example: traveling salesman problem (TSP)

� A closer look at algorithm components
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TSP: definition (1)

Example: Traveling salesman problem (TSP) . Given a completely connected,

undirected graph G = (V, E) with edge-weights.

3 4

1 2
2

2

2 2
1 5

Goal:
Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.
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TSP definition (2)

TSP in terms of a combinatorial optimization problem P = (S, f):

� S consists of all possible Hamiltonian cycles in G.

� Objetive function f : S �→ IR+: s ∈ S is defined as the sum of the edge-weights
of the edges that are in s.

3 4

1 2
2

2

2 2
1 5

obj. function value: 8

3 4

1 2
2

2

2 2
1 5

obj. function value: 10

3 4

1 2
2

2

2 2
1 5

obj. function value: 10
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Applying ACO to the TSP

Preliminary step: Definition of the

� solution components

� pheromone model

example instance solution components pheromone model

3 4

1 2
2

2

2

2 51

3 4

1 2
c1,2

c2,4

c3,4

c1,3
c2,3c1,4

3 4

1 2
T1,2

T2,4

T3,4

T1,3
T2,3T1,4
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TSP: solution construction

Tour construction:

Step 1 Step 2 Finished

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ2,3τ1,4

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ1,4 τ2,3

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ1,4 τ2,3

p(ci,j) =
τi,j

τ1,2 + τ1,3 + τ1,4
p(ci,j) =

τi,j

τ2,3 + τ2,4
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TSP: pheromone update (1)

Pheromone update: For example with the Ant System (AS) update rule

Pheromone evaporation Reinforcement

τi,j ← (1 − ρ) · τi,j τi,j ← τi,j + ρ · ∑
{s∈Siter|ci,j∈s}

F (s)

where

� evaporation rate ρ ∈ (0, 1]

� Siter is the set of solutions generated in the current iteration

� quality function F : S �→ IR+. We use F (·) = 1
f(·)
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TSP: pheromone update (2)

Pheromone update: For example with the Ant System (AS) update rule

start p evaporation solution s1 solution s2

3 4

1 2
2

2

2

2
1 5

3 4

1 2
2

2

2

2
1 5

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2
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The ant colony optimization metaheuristic

The ant colony optimization
metaheuristic

� Simulation of the foraging behaviour

� The ACO metaheuristic

� Example: traveling salesman problem (TSP)

� A closer look at algorithm components
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Solution construction (1)

Solution construction: A closer look

CO problem

solution
components

pheromone
model

ACO

probabilistic
solution

construction

pheromone
value

update

initialization

of pheromone
values
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Solution construction (2)

A general constructive heuristic:

� sp = 〈〉
� Determine N(sp)
� while N(sp) �= ∅

� c ← ChooseFrom(N(sp))

� sp ← extend sp by adding solution component c

� Determine N(sp)
� end while

Problem: How to implement function ChooseFrom(N(sp))?
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Solution construction (3)

Possibilities for implementing ChooseFrom(N(sp)):

� Greedy algorithms:

c∗ = argmaxci,j∈N(sp)η(ci,j) ,

where η : C �→ IR+ is a Greedy function

Examples for Greedy functions:

� TSP: Inverse distance between nodes (i.e., cities)

� SALB: ti/C
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Solution construction (4)

Possibilities for implementing ChooseFrom(N(sp)):

� Ant colony optimization:

p(ci,j | sp) =
[τi,j ]

α · [η(ci,j)]
β∑

ck,l∈N(sp)

[τk,l]
α · [η(ck,l)]

β
, ∀ ci,j ∈ N(sp) ,

where α and β are positive values

Note: α and β balance between pheromone information and Greedy function

Observations:

� ACO can be applied if a constructive heuristic exists!

� ACO can be seen as an iterative, adaptive Greedy algorithm
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Pheromone update (1)

Pheromone update: A closer look

CO problem

solution
components

pheromone
model

ACO

probabilistic
solution

construction

pheromone
value

update

initialization

of pheromone
values
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Pheromone update (2)

A general update rule:

τi,j ← (1 − ρ) · τi,j + ρ ·
∑

{s∈Supd|ci,j∈s}
ws · F (s) ,

where

� evaporation rate ρ ∈ (0, 1]

� Supd is the set of solutions used for the update

� quality function F : S �→ IR+. We use F (·) = 1
f(·)

� ws is the weight of solution s

Question: Which solutions should be used for updating?
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Pheromone update (3)

ACO update variants:

AS-update Supd ← Siter

weights: ws = 1 ∀ s ∈ Supd

elitist AS-update Supd ← Siter ∪ {sbs} (sbs is best found solution)

weights: ws = 1 ∀ s ∈ Siter, wsbs
= e ≥ 1

rank-based AS-update Supd ← best m − 1 solutions of Siter ∪ {sbs} (ranked)

weights: ws = m − r for solutions from Siter, wsbs
= m

IB-update: Supd ← argmax{F (s) | s ∈ Siter}
weight 1

BS-update: Supd ← {sbs}
weight 1
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Successful ACO variants

� Ant Colony System(ACS) [Dorigo, Gambardella, 1997]

M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach to

the traveling salesman problem. IEEE Trans. Evolutionary Computation, 1(1), 53–66, 1997

� MAX–MIN Ant System(MMAS) [Stützle, Hoos, 2000]

T. Stützle and H. H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems,

16(8), 889–914, 2000

� The hyper-cube framework (HCF) for ACO [Blum, Dorigo, 2004]

C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization. IEEE

Transactions on Systems, Man, and Cybernetics, Part B, 34(2), 1161–1172, 2004

� Population-based ACO (P-ACO) [Guntsch, Middendorf, 2002]

M. Guntsch and M. Middendorf. A population based approach for ACO. In: Proceedings of

EvoWorkshops 2002, Springer LNCS, pages 71–80, 2002
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Hy

Ant Colony Optimization

Hybridization with Other Techniques for Optimization
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Ant colony optimization hybrids

Hybridizations of ACO algorithms:

� Example 1: Guiding ACO by problem relaxation

� Example 2: Using large-scale neighborhood search in ACO

� Example 3: Using bounding information in ACO

� Example 4: ACO hybridized with constraint programming
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Guiding ACO by problem relaxation (1)

Reference:

� M. Reimann. Guiding ACO by Problem Relaxation: A Case Study on
the Symmetric TSP, In: Proceedings of HM 2007, volume 4771, Springer
LNCS, pages 45–56, 2007

Observation:

� On some benchmark instances an optimal minimum-spanning-tree (MST)
solution has about 70 − 80% of the edges in common with an optimal TSP
solution

Main idea: Use the MST-information to influence the solution construction
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Guiding ACO by problem relaxation (2)

Solution construction mode: like nearest-neighbor heuristic

pij =
τij · ηij∑

k∈Ω τik · ηik

where i is the current city, and Ω is the set of unvisited cities.

Heuristic information:

Standard Hybrid

ηij = 1
dij

ηij = 1+γtij

dij

where dij is the distance between i and j, and tij = 1 if edge (i, j) is part of the
MST-solution, and tij = 0 otherwise.
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Guiding ACO by problem relaxation (3)

Findings:

� Small instances: no significant difference between standard and hybrid

� Large instances:

1. Hybrid algorithm finds best solutions faster

2. Hybrid algorithm has a better average and worst case behaviour
(statistically significant)

Evaluation:

� Application serves to introduce the idea

� In general: High potential
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Guiding ACO by problem relaxation (4)

Further references:

� M. Bavafa, N. Navidi and N. Monsef. A new approach for profit-based
unit commitment using Lagrangian relaxation combined with ant
colony search algorithm, In: Proceedings of UPEC 2008, IEEE press, 2008

� C.-H. Chen and C. J. Ting. Combining Lagrangian heuristic and ant
colony system to solve the single source capacitated facility location
problem, Transportation Research Part E, 44:1099–1122, 2008

� Z. Ren and Z. Feng. An ant colony optimization approach to the
multi-choice multi-dimensional knapsack problem, In: Proceedings of
GECCO 2010, pages 281–288, ACM press, 2010
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Ant colony optimization hybrids

Hybridizations of ACO algorithms:

� Example 1: Guiding ACO by problem relaxation

� Example 2: Using large-scale neighborhood search in ACO

� Example 3: Using bounding information in ACO

� Example 4: ACO hybridized with constraint programming
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Large-scale neighborhood search (1)

General references:

� R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very
large-scale neighborhood search techniques, Discrete Applied
Mathematics, 123(1-3):75–102, 2002

� M. Chiarandini, I. Dumitrescu, and T. Stützle. Very Large-Scale
Neighborhood Search: Overview and Case Studies on Coloring
Problems, In: Hybrid Metaheuristics–An Emerging Approach to
Optimization, volume 114 of Studies in Computational Intelligence, pages
117–150, Springer Verlag, Berlin, Germany, 2008

Key issues in local search:

� Defining an appropriate neighborhood structure

� Choosing a way of examining the neighborhood of a solution
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Large-scale neighborhood search (2)

General tradeoff:

� Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantag: The average quality of the local minima is low

� Large-scale neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard
due to the size of the neigbhorhood

Ways of examining large neighborhoods:

� Heuristically

� In some cases an efficient exact technique may exist
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Using large-scale neighborhood search in ACO (1)

Specific reference:

� C. Blum and M. J. Blesa. Combining ant colony optimization with
dynamic programming for solving the k-cardinality tree problem, In:
Proceedings of IWANN 2005, volume 3512 of Springer LNCS, pages 25–33,
2005

Definition: The k-cardinality tree problem

Given:

� An undirected graph G = (V, E),

� Edge-weights we, ∀ e ∈ E, and node-weights wv, ∀ v ∈ V .

� A cardinality k < |V |
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Using large-scale neighborhood search in ACO (2)

Let Tk be the set of all trees in G with exactly k edges

Optimization goal: Find a k-cardinality tree Tk ∈ Tk which minimizes

f(Tk) =

( ∑
e∈E(Tk)

we

)
+

( ∑
v∈V (Tk)

wv

)

Example: A 3-cardinality tree
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Using large-scale neighborhood search in ACO (3)

Working of a standard ACO:

� Trees are constructed step-by-step, adding one edge at a time

� To each tree is applied a 1-exchange local search algorithm

� To the iteration-best solution is applied a short run of tabu search

Main idea of the hybrid ACO:

� Instead of k-cardinality trees, construct l-cardinality trees, k < l ≤ |V | − 1

� To each l-cardinality tree: Apply an efficient dynamic programming
algorithm to find the best k-cardinality tree contained in the l-cardinality tree
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Using large-scale neighborhood search in ACO (4)

Findings:

� The hybrid ACO approach outperforms consistently the standard approach

� For small problems: the hybrid algorithm is faster

� For large problems: the hybrid algorithm is better

Concerning the parameter l:

1 l = |V | − 1k l = k + s l = k + 2s l = k + 3s
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Using large-scale neighborhood search in ACO (5)

Exemplary results: 20x20 grid graphs, k = 120

l=k l=k+s l=k+2s l=k+3s l=|V|−1
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Using large-scale neighborhood search in ACO (6)

Evaluation:

� Quite specific for KCT: Therefore, rather limited potential

� However: Might be useful for other subset problems

� General idea:

1. Construct subsets larger than necessary

2. Find the best subsets contained in the larger subsets
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Ant colony optimization hybrids

Hybridizations of ACO algorithms:

� Example 1: Guiding ACO by problem relaxation

� Example 2: Using large-scale neighborhood search in ACO

� Example 3: Using bounding information in ACO

� Example 4: ACO hybridized with constraint programming
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Using bounding information in ACO (1)

General idea: Use bounding information during the solution construction for

� ... defining/influencing the heuristic information

� ... excluding partial solutions from further examination

References: ANTS

� V. Maniezzo. Exact and approximate nondeterministic tree-search
procedures for the quadratic assignment problem, INFORMS Journal
on Computing, 11(4):358–369, 1999

� V. Maniezzo and A. Carbonaro. An ANTS heuristic for the frequency
assignment problem, Future Generation Computer Systems, 16:927–935,
2000
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Using bounding information in ACO (2)

References: Beam-ACO

� C. Blum. Beam-ACO–hybridizing ant colony optimization with beam
search: an application to open shop scheduling, Computers and
Operations Research, 32:1565–1591, 2005

� J. Caldeira, R. Azevedo, C. A. Silva, and J. M. C. Sousa. Beam-ACO
Distributed Optimization Applied to Supply-Chain Management, In:
Proceedings of IFSA 2007, volume 4529 of Springer LNCS, pages 799–809, 2007

� C. Blum. Beam-ACO for simple assembly line balancing, INFORMS
Journal on Computing, (20)4:618–627, 2008.

� M. Modarres and M. Ghandehari. Generalized cyclic open shop
scheduling and a hybrid algorithm, Journal of Industrial Systems
Enigneering, 1(4):345–359, 2008.
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Ant colony optimization hybrids: Beam-ACO

ACO as a tree search algorithm: 1st construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

τ1,2 · η(c1,2) τ1,3 · η(c1,3)
τ1,4 · η(c1,4)
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Ant colony optimization hybrids: Beam-ACO

ACO as a tree search algorithm: 2nd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

τ4,2 · η(c4,2) τ4,3 · η(c4,3)
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Ant colony optimization hybrids: Beam-ACO

ACO as a tree search algorithm: 3rd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

981



Ant Colony Optimization, July 12, 2011, GECCO , Dublin, Ireland c© C. Blum

Ant colony optimization hybrids: Beam-ACO

Beam search: 1st construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

η(c1,2) η(c1,3)
η(c1,4)

kext = 2
kbw = 3
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Ant colony optimization hybrids: Beam-ACO

Beam search: 2nd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

η(c2,3) η(c2,4) η(c4,2) η(c4,3)

kext = 2
kbw = 3
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Ant colony optimization hybrids: Beam-ACO

Beam search: after 2nd construction step → use of lower bound

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

kext = 2
kbw = 3
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Ant colony optimization hybrids: Beam-ACO

Beam search: 3rd construction step

〈〉

c1,2 c1,3 c1,4

c2,3 c2,4 c3,2 c3,4 c4,2 c4,3

c3,4 c4,3 c2,4 c4,2 c2,3 c3,2

kext = 2
kbw = 3
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Ant colony optimization hybrids: Beam-ACO

Idea of Beam-ACO: Use probabilistic beam search instead of single solution
constructions

Hypothesis

It is most often beneficial to use probabilistic beam search instead of

probabilistic single solution construction in construction-based metaheristics such
as GRASP or ant colony optimization (ACO)
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Ant colony optimization hybrids: Beam-ACO

Intuitive example: ideal case

v0

v1

v2

v3

v4

v5
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Ant colony optimization hybrids: Beam-ACO

Attention:

� We need black nodes close to the root node of the search tree

� We need a bound that is fast to compute

� We need a bound that does not mislead the algorithm

Evaluation: High potential for ...

� ... problems where constructive algorithms are successful

� ... local search is not especially successful
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Ant colony optimization hybrids

Hybridizations of ACO algorithms:

� Example 1: Guiding ACO by problem relaxation

� Example 2: Using large-scale neighborhood search in ACO

� Example 3: Using bounding information in ACO

� Example 4: ACO hybridized with constraint programming
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ACO hybridized with constraint programming (1)

References:

� B. Meyer and A. Ernst. Integrating ACO and Constraint Propagation,
In: Proceedings of ANTS 2004, Springer LNCS, pages 166–177, 2004

� D. R. Thiruvady, C. Blum, B. Meyer and A. T. Ernst. Hybridizing
Beam-ACO with Constraint Programming for Single Machine Job
Scheduling, In: Proceedings of HM 2009, Springer LNCS, pages 30–44, 2009.

� M. Khichane, P. Albert and C. Solnon Strong Combination of Ant
Colony Optimization with Constraint Programming Optimization,
In: Proceedings of CPAIOR 2010, Springer LNCS, 232–245, 2010.

General idea:

� Successively reduce the variable domains by contraint propagation

� Let ACO search the reduced search tree
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ACO hybridized with constraint programming (2)

Constraint programming (CP): Study of computational systems based on

constraints

How does it work?

� Phase 1:

� Express CO problem in terms of a discrete problem (variables+domains)

� Define (“post”) constraints among the variables

� The constraint solver reduces the variable domains

� Phase 2: Labelling

� Search through the remaining search tree

� Possibly “post” additional constraints
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ACO hybridized with constraint programming (3)

Simple example: minimize f(X, Y, Z) �→ R

subject to

X ∈ {1, . . . , 8}
Y, Z ∈ {1, . . . , 10}

X �= 7, Z �= 2
X − Z = 3Y

Constraint propagation:

� Step 1: Use X �= 7 and Z �= 2

1. X ∈ {1, . . . , 6, 8}
2. Y ∈ {1, 3, . . . , 10}
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ACO hybridized with constraint programming (4)

� Step 2: Use X − Z = 3Y

1. Because of the domains of X and Y : X − Z < 8

2. ⇒ 3Y < 8

3. ⇒ Y ≤ 2

4. ⇒ Y ∈ {1, 2}

� Step 3: Use again X − Z = 3Y

1. Because of the reduced domain of Y : 3Y ≥ 3

2. ⇒ X − Z ≥ 3

3. ⇒ X ∈ {4, 5, 6, 8} and Z ∈ {1, 3, 4, 5}
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ACO hybridized with constraint programming (5)

ACO-CP hybrid:

ACO-CP

probabilistic
solution

construction

pheromone
value

update

CP additional

constraints

initialization

of pheromone
values

2) 3)

1)
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ACO hybridized with constraint programming (6)

Evaluation:

� Advantage of ACO:
Good in finding high quality solutions for moderately constrained problems.

� Advantage of CP:
Good in finding feasible solutions for highly constrained problems.

ACO-CP:
Promising for constrained problems with still a high number of feasible solutions.
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Other recent ACO hybrids

Some other papers on hybrids:

� P. Rocca, L. Manica and A. Massa. Ant colony based hybrid approach for optimal

compromise sum-difference patterns synthesis, Microwave and Optical Technology Letters,

52(1):128–132, 2009.

� X. Hu, Q. Ding and Y. Wang. A Hybrid Ant Colony Optimization and Its Application to

Vehicle Routing Problem with Time Windows, Life System Modeling and Intelligent

Computing, 97(1):70–76, 2010.

� Y. Mingxin, W. Sun’an, W. Canyang and L. Kunpeng. Hybrid ant colony and immune

network algorithm based on improved APF for optimal motion planning, Robotica,

28(6):833–846, 2010.

� P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni. Particle swarm and ant colony

algorithms hybridized for improved continuous optimization, Applied Mathematics and

Computation, 188(1):129–142, 2007
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Bla

Ant colony optimization for
continuous optimization
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Ant colony optimization for continuous optimization

Continuous optimization

Given:

1. Function f : IRn �→ IR

2. Constrains such as, for example, xi ∈ [li, ui]

Goal: Find

�X∗ = (x∗
1, . . . , x

∗
n) ∈ IRn

such that

� �X∗ fulfills all constraints

� f( �X∗) ≤ f(�Y ), ∀ �Y ∈ IRn
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Ant colony optimization for continuous optimization

Different approaches:

� K. Socha and M. Dorigo. Ant colony optimization for continuous
domains, European Journal of Operational Research, 185(3):1155–1173, 2008.

� N. Monmarché, G. Venturini and M. Slimane. On how Pachycondyla
Apicalis ants suggest a new search algorithm, Future Generation
Computer Systems, 16:937–946, 2000.

� P. Korosec, J. Silc and B. Filipic. The differential ant-stigmergy
algorithm, Information Sciences, 2011. In press.

� X. M. Hu, J. Zhang and Y. Li. Orthogonal methods based ant colony
search for solving continuous optimization problems, Journal of
Computer Science & Technology, 23:2–18, 2008).
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Dicrete ant colony optimization

CO problem

solution
components

pheromone
model

ACO

probabilistic
solution

construction

pheromone
value

update

initialization

of pheromone
values
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Continuous ant colony optimization

Continuous problem
population
of solutions

ACO

probabilistic
solution

construction

population
update

initialization

of the
population

Main conceptual difference:

Population instead of pheromone model
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Continuous ACO: Probabilistic solution construction

A solution construction: Choose a value xi ∈ IR for each variable Xi, i = 1, . . . , n

→ n solution construction steps

How to choose a value for variable Xi?

→ by sampling the following Gaussian kernel probability density function (PDF):

Gi(x) =
k∑

j=1

ωj

(
1

σj

√
2π

e
− (x−μj)2

2σj
2

)

where k is the cardinality of the population P .
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Continuous ACO: Probabilistic solution construction

A Gaussian kernel PDF:

−4 −2 0 2 4

z

Gaussian kernels
individual Gausian functions
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Continuous ACO: Probabilistic solution construction

Problem: It is quite difficult to sample a Gaussian kernel PDF

Solution: Instead, at the start of each solution construction

1. choose probabilistically one of the Gaussian kernels, denoted by j∗

2. and sample—for all decision variables—the j∗-th Gaussian kernel

Methods for sampling: For example, the Box-Muller method

Ant Colony Optimization, July 12, 2011, GECCO , Dublin, Ireland c© C. Blum

Continuous ACO: Probabilistic solution construction

Choice of a Gaussian kernel:

pj =
ωj∑k
l=1 ωl

,∀ j = 1, . . . , k

Definition of ωj ’s:

ωj =
1

qk
√

2π
· e−

(rj−1)2

2q2k2

Hereby:

� rj is the rank of solution j in population P

� q is a parameter of the algorithm: A small q favours high-ranked solutions
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Continuous ACO: Probabilistic solution construction

Assumption: Gaussian kernel j∗ is chosen for sampling

j∗-th Gaussian kernel =
1

σj∗
√

2π
e
−

(x− μj∗ )2

2 σj∗
2

What remains? Definition of

1. the mean μj∗

2. and the standard deviation σj∗
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Continuous ACO: Probabilistic solution construction

Definition of μj∗ :

μj∗ = xj∗
i ,

where xj∗
i is the value of the i-th decision variable of solution j∗.

Definition of σj∗ :

σj∗ = ρ

⎛
⎝∑k

l=1

√(
xl

i − xj∗
i

)2

k

⎞
⎠

where ρ is a parameter of the algorithm: high ρ means slow convergence speed

Ant Colony Optimization, July 12, 2011, GECCO , Dublin, Ireland c© C. Blum

Continuous ACO

Different methods for constraint handling:

1. Repair function: Each unfeasible solution is transformed into a feasible one

2. Penalty function: Unfeasible solutions are penalized by high objective
function values
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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q(x)
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Iteration 1
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Continuous ACO

Example: f(x) = x2, population size 5, 3 ants, rho = 2.0
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Summary and conclusions (1)

Presented topics:

� Origins of ACO: Swarm intelligence

� How to transfer the biological inspiration into an algorithm

� Example application of ACO: TSP

� Hybridizations of ACO algorithms with more classical techniques

� Ant colony optimization for continuous optimization

Is ACO better than other metaheuristics? No! (problem dependant)

Rule of thumb: ACO works well for problems for which well-working
constructive heuristics exist
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Summary and conclusions (2)

NOT presented topics:

� ACO algorithms for multi-objective optimization

� See GECCO 2010 tutorial on ACO (by M. López-Ibáñez)

� M. López-Ibáñez and T. Stützle. The automatic design of multi-objective ant colony

optimization algorithms, Technical Report TR/IRIDIA/2011-003, 2011. Under

submission.

� ACO algorithms for dynamic/stochastic problems

� M. Mavrovouniotis and S. Yang. Ant colony optimization with immigrants schemes in

dynamic environments, In: Proceedings of PPSN 2010, Springer LNCS, 2010

� L. Bianchi, M. Dorigo, L. M. Gambardella and W. J. Gutjahr. A survey on metaheuristics

for stochastic combinatorial optimization, Natural Computing, 8(2):239–287, 2009
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Further Information

Books:

Papers:

� M. Dorigo and T. Stützle. Ant colony optimization: Overview and Recent Advances, In:

Handbook of Metaheuristics, 227–264, Springer Verlag, 2010.

� C. Blum, J. Puchinger, G. Raidl and A. Roli. Hybrid Metaheuristics in Combinatorial

Optimization: A Survey, Applied Soft Computing, 2011. In press.
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