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ABSTRACT
Performance out of sample is a clear determinant of the use-
fulness of any prediction model regardless of the application.
Fuzzy knowledge base systems are also useful due to inter-
pretability; this factor is often cited as an advantage over
“black box” systems which make model verification by ex-
pert users more difficult. Here we examine additional advan-
tages of interpretability for promoting general performance
out side training data.

Categories and Subject Descriptors
I.5.m [Computing Methodologies]: Pattern Recognition-
Miscellaneous

General Terms
Experimentation
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1. INTRODUCTION AND BACKGROUND
Genetic Fuzzy Systems (GFS), or Genetics-Based Ma-

chine Learning Algorithms, are a category of techniques for
learning fuzzy knowledge base systems, or parts of them, us-
ing genetic algorithms, evolutionary computation, and natu-
ral computing techniques. They are part of recent trends to-
ward hybrids of neueral networks, fuzzy systems and a range
of heuristic techniques to form fields of knowledge such as
Computational Intelligence and Soft Computing. Recently
this fushion has further developed and led to many novel and
powerful GFS approaches as novel techniques and improved
computation power are applied to learning fuzzy knowledge
based systems. Multiobjective evolutionary algorithms have
also led in useful new directions in obtaining solutions that
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balance the, often conflcting, objectives of accuracy and hu-
man interpretability. We test a range of multiobjective evo-
lutionary algorithms for learning fuzzy rules, including: NS-
GAII, a steady state version of NSGAII (SSNSGAII) [?],
SPEA2 [?] MOCell [?] FastPGA (Fast Pareto Genetic Al-
gorithm) [?].

2. DESCRIPTION OF THE PROBLEM AND
APPROACH

A classifier is a mapping D : �n → Ω from a vector of
observations x = x1, . . . , xn ∈ �n to a set of c class labels
ω1, . . . , ωc ∈ Ω. To obtain classification, we use fuzzy rules
that have an if-then structure involving a series of conjunc-
tions in the consequent if part and a vector in the consequent
then part[?]. The output is interpreted as a degree of cer-
tainty an observation is a member in each class given the
pattern of features specified in the antecedent. A single rule
rk of M has the following form

Rk : if x1 is A1 ∧ . . . ∧ xn is An; then (zk,1, . . . , zk,c)

where x1 . . . xn are feature observations that are described
by linguistic labels A1 . . . An, these are common in the differ-
ent rules and specified in the “database” part of the knowl-
edge base. Examples of possible descriptions are low, high,
medium etc. A rulebase is a set of rules r1, r2, . . . , rk. The
classification is taken to be the most supported class. Rule-
bases provide the mapping using the well known fuzzy clas-
sifier designs TSKI, II, II and IV.

For optimization, we consider three objectives relating to
solution interpretability and solution accuracy. Accuracy is
measured as classification error and interpretability is di-
vided into the number of rules and the number of inputs per
rule. Solutions are encoded as integer arrays with problem
specific mutation and crossover.

3. EXPERIMENTATION
We apply the fuzzy rulebase learning methods to the iris

data from the UCI Machine Learning repository 1. The table

1http://archive.ics.uci.edu/ml/
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Figure 1: Iris type 1 fuzzy system found by
SSNSGA, fastPGA and MoCell algorithms, with
best in and out sample results marked.

Figure 2: Iris type 1 fuzzy system found by NSGAII
and SPEA2.

shows the average best result from 30 runs for the MOEA
and fuzzy system evaluation methods that were tested. Best
performance was for TSK 2 and NSGAII. There was a clear
relationship between the number of rules and inputs, and the
classification error. The error was reduced by, on average,
3-5% for each increase in average inputs by 1 and by around
25% for additional rules. Figure ?? shows that the best
in sample rulebas was generally simpler than the best out
sample rulebase, figure ?? shows the relationship between
accuracy and interpretability.

Table 1: Average best results of the methods tested
(from 30 runs) in the iris dataset.

Iris Dataset
NSGAII SPEA2 SSNSGA FastPGA MOCell

TSK FS 1 1.67 2.29 4.16 3.33 5
TSK FS 2 0.83 2.5 1.67 5 3.33
TSK FS 3 2.08 1.67 1.67 3.33 4.16
TSK FS 4 4.17 3.33 1.67 4.16 1.67

4. CONCLUSION
This paper has provided an overview the application of

a genetic fuzzy system for learning classifiers for five dis-
tinct datasets. In comparison to other state of the art ap-

proaches, a direct genotype encoding approach to learning
fuzzy knowledge bases (rather than an a multi-stage ap-
proach [?]) has performed credibly and sometimes better
than good results reported in the literature. We have also
found that there is a statistically significant relationship be-
tween interpretability (i.e. the number of rules/inputs per
rule) and accuracy with the addition of rules and inputs both
contributing to improved performance up to a point (with
p-value for the effect of number of rules and inputs <0.0005
in all cases). In the iris data tested, additional rules pro-
vided more than 20% improvement for early rules and the
advantages quickly became negligible (e.g. a linear model
was E = 60 − 1.35 ∗ NumInput − 18.81 ∗ NumRules for
SPEA2).
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