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ABSTRACT

In this paper, we develop a new fitness function based on
adjustment of the original fitness function using popula-
tion performance. We call this new fitness function norm-
referenced fitness function since it is motivated by the idea of
norm-referenced test. Experiments performed in two bench-
mark problems show that, the norm-referenced fitness func-
tion developed is capable of improving the overall perfor-
mance of GP system. Further analysis of the fitness func-
tion reveals that the original fitness function suffers from an
implicit bias we named as implicit bias towards exploitation
in later generations. This implicit bias pushes the popula-
tion towards convergence. The norm-referenced fitness de-
veloped however does not inherit this bias, and we think this
is the main reason why the norm-referenced fitness function
is able to outperform the original fitness function. We fur-
ther study the selection of the newly introduced parameter
A in norm-referenced fitness function and give a number of
advices to select the optimal value of the parameter.

Categories and Subject Descriptors

1.2.2 [Automatic Programming]: Program synthesis; F.2
[Analysis of Algorithms and Problem Complexity]:
General

General Terms
Algorithms

Keywords

Fitness Function Adjustment, Population Performance, In-
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1. INTRODUCTION

In educational assessment, there are mainly two kinds of
tests widely used: criterion-referenced test or norm-referenced
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test [3]. In criterion-referenced test, as the name implies,
candidates are measured against predefined objective crite-
ria [3]. A good example of criterion-referenced test is driv-
ing test. In norm-referenced test, candidates are measured
against a predefined group of exam takers, to give an es-
timation of their relative positions in that population [3].
Examples of norm-referenced test include the 1Q test, and
many entrance exams such as GRE. The main difference be-
tween norm- and criterion-referenced test is that, the former
tries to show the relative ranking of test subjects while the
later assesses mastery of certain material [3]. As a result,
entrance exams are generally norm-referenced since insti-
tutions are more interested in exam takers’ relative rank-
ing, while most of the end of term diagnostic exams are
criterion-referenced tests because teachers are more inter-
ested in whether students have mastered course material or
not. One big problem of criterion-referenced test is the pos-
sibility that test takers are judged by exam questions which
are not appropriate to their level. To overcome this problem,
question setters must make sure their expectation matches
exam takers’ level. On the other hand, norm-referenced test
does not have this problem because it does not seek to en-
force any expectation of what exam takers should be able to
do.

In genetic programming (GP), the role of fitness function
is very similar to an exam. Individuals within population are
exam takers. The fitness value obtained is the exam result.
GP system then uses the exam result to guide the selection of
parents in breading phase. The exact form of fitness function
may vary from problem to problem. Typically, a fitness
function consists of a number of test cases. Each test case
consists of a number of inputs and a desired output. It acts
as a “question” in exam. An individual’s fitness value for
a test case is the distance from individual’s actual output
using given input to the desired output. Formally, let = be
an individual, we use f;(x) to represent the fitness value of
individual x for test case i, then, for a fitness function which
consists of n test cases, denoted as F(x), we have:

Pla)= " fi). 1)

The fitness function is a criterion-referenced test. This is
because an individual’s “absolute” performance is used to
judge the quality of that individual. As a result, the fitness
function does have the miss-match problem we discussed
previously. The fundamental problem of the mismatch be-
tween the expectation and the actual performance is that



it reduces the ability to differentiate between better exam
takers and worse exam takers. In another word, when us-
ing criterion-referenced test result to establish the relative
ranking of test takers, one needs to ensure that test ques-
tions match the exam takers’ average level, such that those
questions are able to differentiate those exam takers’ level.

On the other hand, a norm-referenced test would be a
better fit in this scenario because, firstly norm-referenced
test does not enforce any expectation of test subjects’ level,
and secondly the primary purpose of the norm-referenced
test is to give ranking information telling which exam taker
performed at an average level, which exam taker did better,
and which exam taker did worse. In this paper, we develop
a new norm-referenced fitness function as an alternative to
the original fitness function (1) in GP. We firstly develop
the concept of internal fitness measure which represents the
population’s performance. Then the norm-referenced fitness
function is developed through adjustment of the original fit-
ness function using internal fitness measures. We perform
experiments on two GP domains, one continuous and one
discrete. Experiments on both domains show that the norm-
referenced fitness function is capable of improving the overall
GP performance. The rest of this paper is organised as fol-
lows. In the next section, we develop two internal fitness
measures. Then, we use those two measures to build the
norm-referenced fitness function. In section 3, we give a
concrete description of the algorithm and a discussion of a
number of implementation issues. Then, in section 4, we test
the performance of the new fitness function using two GP
problems. Finally, we conclude this paper with a discussion
of further works.

2. INTERNAL FITNESS MEASURE

As we discussed in Section 1, the fundamental problem of
the criterion-referenced fitness function used in GP is that,
it only subjectively judges the quality of candidate solution
without taking into account other individuals’ performance
within the same population. To overcome this problem, in
this section, we build a more comprehensive fitness func-
tion which not only considers individual’s subjective raw
fitness, but also takes into account present population’s per-
formance. We call the former “external” fitness measure be-
cause it is defined by the user and is provided as input into
the GP system. We call the later “internal” fitness measure
because it is derived from the population and it is indepen-
dent from the problem the GP system is solving.

In this paper, we consider two ways to build the “inter-
nal” fitness measure. Fitness function is a summation of
errors from every single test case. Usually, we consider all
test cases as a fitness value. The objective of GP system
would be to minimize F'(z). Now, if we consider each test
case independently, for a problem with n test cases, given a
population P which consists of m individuals, for each test
case, we can calculate the population P’s performance:

m
o S SUi(a) o

m
where S(.) is a scaling function and S(z) € [0,1] and f(.) is
the same as in (1). Let e = (e1, €2, ..., €n ), then e represents
the population’s performance for all test cases. Normalizing
this error vector e, we get a weight vector w™, in which:

®3)

_ €;
w

t > €

1324

This weight vector w™ represents the relative importance of
test cases using error as the criterion.

Similar to the calculation above, if we use accuracy rather
than error as the criterion, we can calculate the population
P’s performance, a = (a1, az, ..., an ), where:

ai:1—62‘

(4)
Normalizing a, we get the weight vector w™, where:
— ai
Y a
This weight vector wT represents the relative importance of
test cases using accuracy as the criterion.
We can use w~ and w7 as internal fitness measures to

create adjustments of the original fitness function. Let f =
(fi(z), f2(2), .oy fu(2))T, if only w™ is used, we get:

w+

(®)

Fog(z) =w™ - f
If only w is used, we get:

Fatlj(x) =wt. f.
In the next, we give a brief example calculating w—, w™,
F,(z) and F;dj(ac)7 using even parity 3 problem domain

which has 8 test cases as an example. Considering a popu-
lation of 4 individuals: P = {p1,p2,p3,pa}. The fitness of
each individual is listed in Table 1. For this population P,

Individual | fi | fo | fa | fa | fs | fe | fr| fs | F
p1 0 0 0 0 0 1 1 0|2
P2 1 0 1 0 1 1 1 0|5
p3 1 0 1 0 1 0 1 0|4
Ppa 0 0 0 0 1 1 1 0|3

Table 1: Fitness Values of 4 Individuals in P

using (2), we get:

20203340
4°4°4°4°4°4°4°4

(0.5,0,0.5,0,0.75, 0.75, 1, 0)

Where S(z) = x is used as the scaling function. Normalizing
e using (3), we get:

w- = (%2 0 05 0 075075 1 0
T \35’35°35'35 35 3.5 '35 175
= (0.143,0,0.143,0,0.214,0.214, 0.286, 0)

Similarly, we can also calculate a using (4):
2 0 2 0 3 3 4
a = (1-J1-71-71-31-71-71-71-

(0.5,1,0.5,1,0.25,0.25,0, 1)

Normalizing a using (5), we get:

wh _ (05 L 05 1 0% 025 0 1
© 45°45745°45’ 45° 45745 4.5
(0.11,0.22,0.11, 0.22,0.06, 0.06, 0, 0.22)

Using w~ and w™T, we can calculate F;dj and Fatlj. For

example, for p1:

F,(p1) = (0.143,0,0.143,0,0.214,0.214, 0.286, 0)-
(0,0,0,0,0,1,1,0)"
= 05
Fl.(p) = (0.11,0.22,0.11,0.22,0.06, 0.06, 0,0.22)-
(0,0,0,0,0,1,1,0)7
= 0.06.



F(;dj and F dej consider the present population’s perfor-
mance from two different perspectives of view. They explic-
itly address the population’s performance differences among
different test cases, similar to historically assessed hardness
developed in [5]. In our case, using the examination analogy,
test cases are exam questions. In the original fitness func-

tion, all “questions” worth the same mark. In F__ 4> 0 which

the original fitness function is adjusted using w™, “hard”
questions which most of students cannot answer are worth
more marks. This encourages students to try to solve those
hard questions. In F'F adj> where the original fitness function is

adjusted using w™, “easy” questions which most of students

answer correctly are worth more marks. This promotes stu-
dents to concentrate on easy questions while ignoring hard
ones. The accumulated effect of F adj drifts the population
towards unexplored region of searching space. This is be-
cause a “hard” test case attracts the population by having a
bigger weight. But once the population performs better on
that “hard” test case, its weight becomes smaller. Then the
population moves its “interest” to other “hard” test cases.
In another word, F_,. destabilizes the evolution by keeping
changing the searching direction. On the other hand, the
accumulated effect of F atzj' drives the population to converge
to the current state of evolution. This is because “easy” test
cases, which have bigger weights, have even bigger weights
as the population evolves. In another word, F* adj stabilizes
the evolution by enforcmg the search direction.

In fact, I wa; and F* wa; Tepresent two different but equally
important aspects of the evolution system: the exploration
and exploitation [1]. On one hand, F dj constantly changes
the searching direction to explore the Whole searching space.
on the other hand, F atlj drifts the population into conver-
gence, maintaining the stability of the system. The balance
between exploration and exploitation is critical to the behav-
ior of GP system [1]. As a result, we can combine I ;. and

Fadj to build a more comprehensive fitness function based

on population’s performance:
Fag;(x)

A Fadg( )+(1_)\) Fl;,tij

Aw™ + (1 - Nwh) - f

(z) (©6)

where A is a parameter and A € [0,1]. We call this new
fitness function (6) the norm-referenced fitness function be-
cause it not only considers the raw fitness value f, but also
takes into account population’s performance. Similar to the
norm-referenced test, which gives relative rank of test taker,
F4; gives an individual’s fitness value relative to the present
population’s performance.

3. ALGORITHM DESCRIPTION

The norm-referenced fitness function developed can be
ported into existing GP implementations using adjusted fit-
ness. The concept of adjusted fitness is originally developed
by Koza to “exaggerate the importance of small differences
in the value of the standardized fitness as the standardized
fitness approaches 0” [6]. It was mainly used for fitness pro-
portionate selection. Later on, because of the development
of various bloating control methods, the usage of adjusted
fitness has been extended. Nowadays, most of GP imple-
mentations use adjusted fitness calculation as a custom point
where users can alter raw fitness value, applying linear para-
metric parsimony pressure for example, and underlying se-
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lection methods are based on adjusted fitness rather than
raw fitness values [9].

In our case, the adjustment of fitness can be implemented
in two steps. After every individual’s fitness in the present

population is calculated, we firstly calculate w™ and wt
using algorithm 1.

Algorithm 1 Algorithm to Build w™ and w™

1: function build-metric(population p) : w™, wT

2: e+ (e1=0,...,en=0),i=1...1n
3:a+(a;i=0,...,an,=0),i=1...n

4: for testcase i =1...n do

5:  for all individual = € p do

6: e; = e; +S(fi(x))

T ai = a; + (1 = S(fi(z)))

8 end for

9: end for e .

10: w™ + (w] = =—— .-, Wy, ——),i=1...n

! Ziazl €i Ziazl €i
11: wt « (wf = =r—, ..., w} Yi=1...
w (wy S : . w ™ ai) i n

12: return w~ and wt

13: end function

Then, with w™ and wt, we can calculate fitness adjust-

ments for every individual in the population using Algorithm
2.

Algorithm 2 Algorithm to Calculate Fitness Adjustment

1: function calc-adjusted-fitness(individual x, w™, wt,

A) ¢ fadj
fadj +~—0
for testcase i =1...n do
fadj = fadj + (/\ w; +(1=A)-w
end for
return fqq;
end function

1) filx)

Unlike common fitness adjustment calculations such as
linear parametric parsimony pressure, in which the adjusted
fitness is calculated immediately after the calculation of raw
fitness, our adjustment can only be calculated after all indi-
viduals within the population are evaluated. This is because
the calculation of w™ and w7 require every individual’s raw
fitness information. In addition, to avoid repeated evalua-
tion, every individual’s fitness needs to be stored as a vector
indexed by the test case number rather than a single ag-
gregated value. This is because individual test case fitness
information i.e. f(z), is required in both Algorithm 1 and
Algorithm 2. Without re-evaluation, the runtime overheads
to implement the adjustment can be neglected.

4. EXPERIMENTS

In this section, we empirically study the performance of
the norm-referenced fitness function developed. In the first
experiment, we test the performance using the even parity
problem domain. Even parity domain is selected for two rea-
sons. Firstly, it is a discrete problem, i.e. the fitness value
for each test case can only be either 0 or 1. This simplifies
the choice of scaling function S in (2). Secondly, the parity
problem is a representative problem in digital circuit gener-
ation, and according to Koza, even parity problem appears



to be the most difficult boolean functions to be detected via
a blind random search [6]. The complexity of even parity
problem has been thoroughly studied. As a result, parity
problem is selected and studied in this paper.

4.1 Initial Experiments

In the first experiment, we test the performance of norm-
referenced fitness function using the even parity 5 problem
domain. We firstly randomly generate 50 initial popula-
tions. Then, for each population generated, we perform
GP runs firstly using the original fitness function, and then
using the norm-referenced fitness function developed. We
test the parameter A ranging from 0 to 1 in steps of 0.1
for norm-referenced fitness function. So, for each popula-
tion initialization, we have 11 GP runs, one using original
fitness function, and the other 10 using norm-referenced fit-
ness function with different A values. Since the output of
GP system is usually the best individual in the last genera-
tion, to compare the performance, we use best individual in
the current generation as the criterion. The rest experiment
parameters are as follows. The population size is 500. Tour-
nament selection is used and tournament size is set to 5. In
breeding process, only crossover and reproduction are used
with probability 90% and 10% respectively. GP runs for 50
generations. We use S(z) = z as the scaling function in (2).
We use GPLab [9] as the testing platform.

Fitness Function A Best Fitness Std T-Test
Original 7.46 1.459

1.0 7.70 1.170 —
0.9 7.60 1.095 —
0.8 7.50 1.063 —
0.7 6.92 1.197 1T
0.6 6.32 1.618 0

Norm-referenced 0.5 6.26 1.180 4
0.4 6.84 2.043 —
0.3 9.92 2.252 1
0.2 11.46 1.846 1
0.1 11.52 1.526 1
0.0 11.44 1.627 1

Table 2: Best Fitness at Gen 50 in Even Parity 5
Problem

Table 2 summaries the experiment results we get. The
best fitness column is the average best fitness achieved at
generation 50 over 50 initializations. In order to illustrate
the statistical significance, we perform T-Test with 95% con-
fidence between the original statistics (in the first row) and
each A value. The test results are given in column T-Test
in Table 2, where 1 represents mean value which is statisti-
cally superior to original fitness function, | represents mean
value which is statistically inferior, and — represents no sta-
tistically significant difference. From Table 2, we find that
norm-referenced fitness function developed outperforms the
original fitness function when parameter A is around 0.5. A
equals to 0.5 gives best performance improvement (16.08%).
But, when A is small, the performance is worse compared to
the original fitness function. Because we are using the same
50 initializations across experiments of different parameters,
in addition to the average performance comparison above,
it is also possible to compare performance in a one-to-one
basis, as in Table 3. From Table 3, we can find that, when
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A | Num of Better | Num of Equal | Num of Worse
1.0 15 15 20
0.9 17 7 26
0.8 18 11 21
0.7 24 8 18
0.6 26 13 11
0.5 29 13 8
0.4 25 10 15
0.3 6 6 38
0.2 2 2 46
0.1 0 2 48
0.0 0 3 47
Table 3: Number of GP Runs when Norm-

referenced Fitness Function Performs Better, Equal,
or Worse Compared to the According Original Fit-
ness function with Same Initialization

A = 0.4,0.5,0.6,0.7, norm-referenced fitness function per-
forms better in around 50% initializations.

4.2 Analysis of Selection Intensity

Norm-referenced fitness function adjusts the original fit-
ness function using the population’s performance. This ad-
justment changes individuals’ fitness ranks and ultimately
affects the selection of parents in the breeding phase. Thus,
it is possible to analyze the effect of norm-referenced fitness
function by studying how it affects the selection of parents.
Here, we use selection intensity to analyze the effect of the
norm-referenced fitness function. Selection intensity is de-
veloped by Blickle and Thiele in [2]. The selection intensity
I of a selection method is:

I M - M

I

where M* is the expected mean fitness after selection, M is
the expected mean fitness before selection, and & is the mean
fitness variance before selection. The selection intensity de-
pends on the distribution of fitness of the population before
the selection process. As a result, in [2], Blickle and Thiele
restricted the fitness distribution to normalized Gaussian
distribution in order to derive mathematical formulas, such
that different selection methods can be compared. In our
case, however, the goal is to analyze how norm-referenced
fitness function affects the selection method throughout the
evolution process. Thus, we need to consider different dis-
tributions of fitness.

The simulation of selection intensity is designed as fol-
lows. We select a single GP run from previous experiments
in which the original fitness function is used. For each gen-
eration, we simulate tournament selections with tournament
size 5 firstly using original fitness function, then using norm-
referenced fitness function with A ranging from 0 to 1 in
steps of 0.1. We then calculate the selection intensity for
each case. In order to reduce the randomness in tourna-
ment selection, we use the same random number generator
for each simulation, i.e. the same 5 random individuals are
selected, only the selection of the best may be altered based
on different fitness functions and parameter A settings. The
simulation result is in Figure 1.

From this simulation, we get two direct observations. Firstly,

the selection intensity of tournament selection with the orig-
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Figure 1: The Selection Intensity of Tournament Se-
lection for the Original Fitness Function and Norm-
referenced Fitness Functions with Different )\ Set-
tings

inal fitness function increases in later generations. The aver-
age selection intensity for the original fitness function from
generation 0 to 20 is 0.192, while this average increases to
0.810 for generation 21 to 50. Secondly, for tournament se-
lection with norm-referenced fitness function, the selection
intensity behaviors can be divided into three categories. For
A values 0.6 to 1, where w™ dominates F,q;, the selection
intensity fluctuates around 0. For A values 0 to 0.4, where
w™ dominates Fiq;, the selection intensity follows the same
trend as the original fitness function. For A value 0.5, the se-
lection intensity seems to be independent from generation.
The mean selection intensity is 0.149, which is very close
to the initial selection intensity in generation 0, which is
0.171. This observation confirms our discussion in Section
2. w~ promotes exploration by reducing the selection in-
tensity, while wT promotes exploitation by increasing the
selection intensity. A value 0.5 gives the best balance be-
tween exploration and exploitation. As a result, it gives the
best performance in the initial experiment.

To further study the selection intensity, Let’s review Fiq;.
From (6), we have:

Fagj(z) = (Aw_+(1— Nw?) - f
= XL Owy + 1= Nw) - fi(z)
Substitute w; and w; using (3) and (5), we get:

a;

50

)

Fadj(x) Z:I(Am‘f‘(l—)\)m) fz(x)
Substitute a; using (4), we have:
n € 1-— €4
Fagj(z) = 2L Qsm—+ (01— A)m) - fi(w
e OmaS" e+ TEN T e
:L:l 7 =1 i=1 "1 . fl(I)

(n—371 ) > €
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7.1 €;
Let A = &=1 " then:
n

€0+ (-0 ) T e
ne(n—300 e) > e

?:1 Ji(x)

)

n
i=1

Fogi() - fi(z)

=3 = M

(z

n

which is irrelevant to e;. On one hand, we could say that
norm-referenced fitness function is useless when parameter

)\:Z

i=16i
. -n . . . .
the original fitness function is a “special” kind of norm-
referenced fitness function, in which the parameter X is dy-

On the other hand, we can also say that

i )
namically adjusted to Z==1" for each generation. We call

this value Aoriginat, i.€.

Zn

N Zai=1 G
original —
n

Since e; is the population’s average error for a single test

n
i=1 6

case 1, then is the population’s average error for

n
the problem currently solving. During the evolution pro-
cess, the population’s fitness generally improves. So, this

i=1 %

value becomes smaller as GP system evolves. In

another W7(L)rd, in the original fitness function, the Aoriginat
value decreases through generations. Since smaller A means
stronger effect of w™, thus, there is an implicit bias within
the original fitness function increasing the selection intensity
as GP system evolves, “pushing” the system to converge.

0.5

Iambd‘a original —+—

0.45

0.4

0.35

lambda original

0.3

02 L L L L

Generation

Figure 2: Aoriginat for a GP Run in Even Parity 5
Problem using Original Fitness Function

Figure 2 gives an example of how Aoriginai changes when
the original fitness function is used. In the initial popula-
tion at generation 0, the Aoriginar is 0.49975, which is very
close to 0.5. This is not an accident. Parity problem is a
binary problem. The output can only be either 1 or 0. Be-
cause the initial population is randomly generated, as a re-
sult, the expected value of Aoriginai in generation 0 would be
0.5. With Aoriginas equal to 0.5 initially, the original fitness
function achieves a good balance between exploration and
exploitation. But, as the population’s fitness gets better,

50



the Aoriginai gets smaller, the original fitness function then
puts more weight on exploitation, breaking the balance be-
tween exploration and exploitation. As a result, after around
35 generations, the GP system’s evolution speed has been
greatly reduced. So, in conclusion, the main problem of orig-
inal fitness function is the implicit bias towards exploitation
in later generations. On the other hand, because of the fixed
A parameter setting, norm-referenced fitness function does
not have this implicit bias.

Using this theory of implicit bias, we can explain why
different A\ values achieve different performances in the initial
experiment. In the initial experiment, A values ranging from
0 to 0.3 failed to perform well. This is because those A values
are too small such that the GP system does not have enough
ability to explore the searching space. As a result, in the
selection of parameter A, we generally should avoid small
numbers. This is because small A values not only cannot
reduce the implicit bias towards exploitation in the original
fitness function, but also enforce the bias. So, smaller A
values may lead to early convergence of the system, which
is not desired.

On the other hand, when A is too big, the selection in-
tensity would be very small. This does remove the implicit
bias in later generations, but it put too much emphasis to
exploration in early generations, such that the evolution will
be slowed down. This is why A values 1, 0.9 and 0.8 haven’t
achieved better performance compared to original fitness
function in the initial experiment. In even parity 5 problem
domain, A equals to 0.5 gives the best balance between the
exploration and exploitation. In early generations, it mimics
the behavior of original fitness function to give a good bal-
ance between the exploration and exploitation. In later gen-
erations, when the implicit bias starts to affect the original
fitness function breaking the balance, the norm-referenced
fitness function with A equals to 0.5 still maintains the bal-
ance. We think because the behavior of Aoriginar as in Figure
2 would be quite similar in other binary problem domains
such as multiplexer, parameter A equals to 0.5 would be the
optimal parameter setting for norm-referenced fitness func-
tion in all binary problem domains.

The theory of the implicit bias towards exploitation in
the original fitness function not only can be used to explain
why norm-referenced fitness function works as we discussed
above, the significance of this theory is much more profound.
In fact, this theory offers a new perspective while tuning se-
lection pressure in GP. Selection pressure is the key feature
of selection methods [8] and it plays a critical role in GP
system [11]. Furthermore, selection pressure plays an im-
portant role in bloating [4]. But, current research about
selection pressure control are mainly concentrated on modi-
fications of selection methods. For example, in [10], a mod-
ification of standard tournament selection using population
clustering is developed. The theory of implicit bias shows
that, in addition to selection methods, fitness function also
plays an important role in the formation of selection pres-
sure. Adjusting parameter X\ in norm-referenced fitness func-
tion provides a completely new and effective approach to
tune the selection pressure.

4.3 Further Experiments in Even Parity 5 Do-
main

In the previous simulation, we find that bigger A values

result in smaller selection intensity and conclude that this
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slows down the convergence speed of the algorithm. In the
next experiment, we study whether smaller selection inten-
sity leads to better convergence of algorithm despite the
speed. In this experiment, we select 10 initializations cre-
ated in the first experiment and run them for 300 genera-
tions instead of 50. Given enough time for GP algorithm to
evolve, we then check if the norm-referenced fitness function
leads to better convergence for big A values. The rest of the
parameters are the same as in initial experiment. Here, we
test norm-referenced fitness with A values ranging from 0.5
to 1 in steps of 0.1.

The experiment result is summarized in Table 4 and Fig-
ure 3. In Table 4, each cell gives the best raw fitness achieved.
The number in brackets is the generation when the best raw
fitness is achieved. GP runs in which the optimal solution
is found (raw fitness 0) are highlighted. From Figure 3, we
can find that, original fitness function performs very well in
the first 100 generations. The best fitness of generations has
been improved from 13.7 at generation 0 to 5.7 at genera-
tion 100. But after that, it failed to continuously improve
the best fitness of generation. It takes 200 generations to
improve the best fitness of generation to 4.6 at generation
300. On the other hand, norm-referenced fitness function
is able to continuously improve the best fitness of genera-
tion. Bigger A value results in slower improvements in early
generations. When A equals to 1, it takes 62 generations
for norm-referenced fitness function to outperform original
fitness function. It takes 72 generations when A\ equals to
0.9. This number is reduced to 61 when A\ equals to 0.8,
45 when A equals to 0.7, 50 when A equals to 0.6, and 10
when )\ equals to 0.5. But, given 300 generations to evolve,
norm-referenced fitness function outperforms original fitness
function in almost all cases for all A\ values experimented.
In addition, there is no clear difference in performance for
different A values. This suggests that even though bigger
A value results in smaller selection intensity and it slows
down the evolution, given enough time to evolve, big A value
can achieve the same level of performance as appropriate A,
and greatly outperforms the original fitness function. Thus,
when selecting A value, we can increase the number of gen-
erations GP runs to reduce the sensitivity of the parameter

A

4.4 Regression Problem

All previous experiments deal with discrete domain, in
which f(z) is binary. This makes the selection of scaling
function S in (2) quite simple. In regression problems, how-
ever, f(x) usually is not bounded, i.e. f(z) € [0,00). In
this case, for certain unfit individuals, f(z) could be ex-
tremely large. These outliers affect the calculation of e;
and ultimately affect the calculations of both w™ and w.
For example, using GP to solve quartic symbolic regression
problem (m4 + 23+ 2% 4+ z with 20 points generated from -1,
1] as test cases), individual 2z* + z® + 32’s error for test

case z = 1 is 6 — 4 = 2. Another individual e¢* ’s error for
the same test case is 3814275.1. If we add those two errors
together directly in (2), the effect of the first error value will
be neglected. Moreover, from pure implementation point of
view, adding very big numbers together in (2) may cause
floating point number overflow. Then e; will be co and the
whole calculation of w™ and w™ will be wrong.

To solve this problem, we need an effective scaling function
in (2) to control those outliers. In this paper, we develop a



PR .. Norm-referenced

Initialization | Original =T 0 T =09 T =03 T =07 T =06 T =035 Best Param
1 3 (300) | 2(300) | 0 (110) | 1(300) [ 0 (140) | O (232) | 0 (193) A=0.9
2 3 (300) | 0 (240) | 1 (300) | 0 (213) [ 0 (151) | O (192) | O (100) A=05
3 5(300) | 0 (219) | 3 (300) 1 (300) 1 (300) | 2 (300) 1 (300) A=1.0
4 5 (300) | 3 (300) 1 (300) 1 (300) 1(300) | 3 (300) | O (156) A=0.5
5 8 (300) | 0 (290) | 1(300) | 0 (204) | 2 (300) | 3 (300) | O (190) A=05
6 5(300) | 4 (300) | 0 (244) | 0 (213) | 3 (300) 1 (300) | 0 (209) A=0.8
7 3(300) | 0 (215) | 0 (252) | 0 (188) [ 1(300) | O (215) | 3 (300) | A=1.0,0.6
8 4 (300) | 2(300) | 5 (300) 1(300) | O (281) | 1(300) | 0 (271) A=1.0
9 4 (300) | 3(300) | 3(300) | 0 (227) [ 1 (300) 1 (300) 1 (300) A=08
10 6 (300) | 0 (198) | 0 (240) | 3 (300) | 5 (300) | O (207) | 3 (300) A=1.0

Avg. Fitness 4.6 1.4 1.4 0.7 14 1.1 0.8

Table 4: Experiment Results for

10 Initializations Running 300 Generations using Even Parity 5 Problem
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Figure 3: Comparison of Best Fitness of Generation Changes over Generations Between Original Fitness
Function and Norm-referenced Fitness Functions with Different A Settings using Even Parity 5 Problem

simple linear scaling function as follows. Given a population
P = {x;]1 < i < m}, for a problem which contains n test
cases, let

E={fi(z;)|1<i<m,1<j<n}

Let a = min(E) ie. the minimal value in E, and b =
trimmean(E), i.e. the trimmed mean value of E, then the
scaling function S is:

0, r=a
S(z) = ! a <z<2 7
@=Vsp—a)" w_a TP O
1, xr>2b—a

This scaling function uses a linear function to map the min-
imal error value (a) to 0, and the trimmed mean value (b)
to 0.5. All values bigger than 2(b — a) are mapped to 1. For
every generation, we rebuild E and recalculate the value of
a and b before calculating e; and a;. One thing to note
is that, S(f(z)) here is an adjustment of f(z) relative to
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present population’s performance. Comparing the value of
S(f(x)) from different generations would be meaningless.

We test the performance of norm-referenced fitness func-
tion with the linear scaling function using sextic regression
problem introduced in [7]. In sextic problem, the equation
to be regressed is y = 2® — 22* 4+ 2 where z € [-1,1].
The experiment is designed as follows. Similar to the initial
experiment, we firstly generate 50 initializations. Then for
each initialization, we firstly run GP with original fitness
function, and then run with norm-referenced fitness func-
tion. In the later, the parameter \ ranges from 0.5 to 1 in
steps of 0.1. We also use best individual in the last gen-
eration as comparison criteria. The population size is 500.
Tournament selection is used and the tournament size is 5.
crossover and reproduction are used for selection of parent
in breading with probability 90% and 10% respectively. GP
runs for 50 generations. In the scaling function (7), when
calculating trimmed mean, we discard 10% values at both
high and low ends.

Similar to initial experiment, the experiment results are



summarized in Table 5. In sextic problem, we find that
A equals to 1.0 gives the best performance improvement
(40.35%). The optimal A value in sextic problem is much

Fitness Function A Best Fitness Std T-Test
Original 0.347 0.318
1.0 0.229 0.207 0
0.9 0.288 0.278 1T
Norm-referenced 0.8 0.313 0.339 -
0.7 0.306 0.319 —
0.6 0.364 0.342 —
0.5 0.329 0.301 —

Table 5: Best Fitness at Gen 50 in Sextic Problem

bigger compared to parity problem. We think this is mainly

because of the usage of scaling function (7), rather than the

change of problem domain. In previous discussion, we find

that the original fitness function is a “special” kind of norm-

referenced fitness function, in which the parameter Aoriginai
n

i=1%i

equals to for each generation. In parity problem,

this value gogs down as GP evolves. But in sextic prob-
lem, because of the linear scaling function (7), in which the
trimmed mean is always mapped to 0.5, the value of Aoriginai
does not change through generations and

Ao'r'iginal ~ 0.5

for all generations. In early generations, when individuals
are generally unfit, this value is reduced by the scaling func-
tion. In later generations, when individuals are generally fit,
the scaling function amplifies this value. As we discussed
previously, big A value prevents GP system from converging
in later generations and this leads to better performance.
Since the A has been amplified by the scaling function in
later generations, as a result, we need even bigger A values
to effectively control the convergence speed. In our case,
the scaling function (7) amplifies A in sextic problem. So,
bigger value (A = 1) performs best. In conclusion, the se-
lection of scaling function has much bigger implication to
the norm-referenced fitness function. It may affect the value
of optimal parameter A. For the linear scaling function (7)
developed, we can generally choose big A\ values like 0.9 or
1.

5. CONCLUSION

In this paper, we develop an adjustment of original fit-
ness function using population performance. The motiva-
tion of the newly created norm-referenced fitness function
comes from comparison of norm- and criterion- referenced
tests in real world examinations. We develop this new fit-
ness function in the context of GP and use two well known
benchmarks: even parity 5 and sextic, to show the effective-
ness of the adjustment we made. We find that, instead of
using absolute fitness value, using fitness value relative to
present population’s performance can greatly improve the
overall performance of GP in terms of best individual gener-
ated. Further analysis of the norm-referenced fitness func-
tion shows that it improves the performance through reduc-
ing selection intensity in parent selection, and thus prevent-
ing premature convergence of the algorithm. We further
study the issue of selecting parameter A in norm-referenced

1330

fitness function and give a number of heuristics to find the
optimal A\ value.

Although the new fitness function is developed and tested
in the context of GP, this algorithm can be easily applied to
other population based optimization algorithms. Thus, one
further work following this study is to apply norm-referenced
fitness function to a broader range of algorithms such as
genetic algorithm. In addition, we would also like to further
study how parameter A affects the performance of algorithm,
and ultimately leads to automatic adjustment of the value
of A. This then frees users from defining A.
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