
On the Correlations Between Developmental Diversity and
Genomic Composition

Gunnar Tufte
Norwegian University of Science and Technology

Department of Computer and Information
Science

Sem Selandsvei 7-9 7491 Trondheim Norway
gunnart@idi.ntnu.no

Stefano Nichele
Norwegian University of Science and Technology

Department of Computer and Information
Science

Sem Selandsvei 7-9 7491 Trondheim Norway
nichele@idi.ntnu.no

ABSTRACT
In this work we target to measure genomic properties in
EvoDevo systems as to predict phenotypic properties re-
lated to the emergence of artificial organisms. We propose a
measurement, λd, based on the composition of the genome,
that can give prediction on how the emerging organism will
develop. The experimental approach uses a minimalistic de-
velopmental model. The result show that the parameter λd
can predict phenotypic properties. The aim of introducing
a parameter like λd is to get more knowledge on the rela-
tion between genomic properties and phenotypic properties
of developing organisms.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: [Cellular arrays]

General Terms
Design, Experimentation

Keywords
Development, Cellular Computation, Emergence

1. INTRODUCTION
Evolved artificial developmental systems are systems that

share and hold favourable features and there by also some
of the inherent complexity of natural biological systems [34].
Favourable features of such artificial Evolutionary Develop-
mental (EvoDevo [12]) systems may include adaptation [29],
robustness [18] or scalability [16]. The biological inspiration
to achieve such goals may be based on selected biological
processes, e.g. adaptation by phenotypic plasticity [29], ro-
bustness by self-repair [23] or scalability of phenotypic size
by growth [2].

Many artificial developmental systems are based on a cel-
lular developmental model [7, 19, 3, 23, 30, 28], as in the
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biological counterpart the key element of cellular models is
a cell. The cell is an autonomous unit that serve as construct
and constructor of the emerging organism. Another key ele-
ment in many of these models is an evolved gene regulatory
network that is in control of cellular action, e.g. growth, dif-
ferentiation and apoptosis. A consequence of such a cellular
approach is a model that depends on autonomous cellular
processes influencing on the developmental path and the be-
haviour/form of the resulting artificial organism. However,
developmental models do not need to follow a cellular ap-
proach, many models depend on other principles then an
autonomous cell, e.g. generative systems [15, 9], self modi-
fying systems [14] or cellular encoding [11].

The topic of this work falls within EvoDevo systems with
a developmental cellular model. As such, other models with
their potential pros and cons are not covered any further.

The characteristics leading from the inherent autonomous
properties place developmental systems within dynamical
systems. Further, the cellular nature and lack of global con-
trol can result in nonlinear phenomena. These characteris-
tics define several properties that may be favourable and nec-
essary qualities to reach the target sought, but at the same
time inherent property of such non-linear dynamic system
also bring problematic issues. For instance a developmental
system may show robustness to external perturbation [24],
however the underlying model of the developmental process,
i.e. a Cellular Automata (CA), is sensitive to initial infor-
mation [33].

The dynamics of developing organisms can be traced to
the information and representation of the genome and gene
regulation; what information must be present? And what
information processing capability must be available in the
gene regulation network? These questions are highly con-
nected to what kind of organisms an EvoDevo system can
produce by evolution. ”Kind of organisms” includes dynam-
ical properties related to self-organisation of structure and
behaviour. If the developmental process is considered, the
amount of regulatory information available to the develop-
mental process is crucial. What amount of information must
be available to the gene regulation? What cellular actions
are required to be expressed as to be able to develop a target
organism? e.g. von Neumann’s self-replicating automata [31]
was originally defined with cells capable of expressing 29
states, later reduced by Codd to 8 [4]. For developmental
systems we would like to be able to define what a cell needs
to express, e.g. number of cell types, and what cellular reg-
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ulatory information that is needed to develop an artificial
organism.

When an opinion on the above issues exists there is a
need to define a genome representation for the evolutionary
process. An important factor here is evolvability, we need
a genome and a gene regulation process that is evolvable,
i.e. can be included in an evolutionary search that stand a
good chance of finding a possible candidate that fulfils the
targeted goal.

By taking inspiration from earlier work of Langton [21] we
try to explore possible connections between a measurement
of how the genome is composite and phenotypic properties
related to the developmental path of the emerging organism.
The measurement proposed is similar to Langton’s λ param-
eter. However, the definition of λ is modified to replace the
CA with a simple minimalistic developmental system.

The experimental approach taken tries to reveal such pos-
sible connection between genetic information and develop-
mental properties.

The article is laid out as follows: background information
and motivation for the work is presented in Section 2. In
Section 3 the development model used in the experiments
is presented together with thoughts on genome representa-
tion and phenotypic properties. Section 4 discusses possible
measurements of genetic and phenotypic properties. Results
of the experiments are given in Section 5. A discussion of
the ideas and the results are presented in Section 6. Finally
Section 7 concludes the work.

2. BACKGROUND AND MOTIVATION
Developmental systems are closely connected to several

complex systems. The lack of global control in developmen-
tal artificial organisms place such systems in the emergent
computation [8] regime. Even though many developmental
systems deal with structure as phenotypic target property [6,
23, 5, 28] instead of organisms that execute a computational
property emerging from the development of a machine struc-
ture [10, 30]. The computations executed in every cell pro-
cess the local information available to the cell and regulate
cellular actions that are expressed in the phenotype, either
as a change in structure and/or as a change in the devel-
oping computational machine. As such, the process of de-
velopment itself is a dynamic system that interacts with its
environment on a cellular and organism level [1].

2.1 A Developmental λ
The work of Langton and follow up findings on edge of

chaos and possibility of a measurement for plausibility of
computation [21, 27] may not be conclusive [26], but the ba-
sic idea regarding behaviour, i.e. number of states and tran-
sient length, linked to cellular regulative properties have a
potential for exploration as to get an extended understand-
ing of developmental systems.

2.2 Cellular Properties and EvoDevo Paths
A cellular developmental system may share properties with

CAs and other sparsely connected networks. However, the
processes of growth and differentiation in developmental sys-
tems part such system from other cellular systems. A de-
velopmental system is not static, the structure of the phe-
notype change according to cellular changes. Changes may
materialise as an alteration in phenotypic shape directly in-
fluencing on phenotypic properties if structure is a goal in

itself [5], or the cellular change may influence on computa-
tional behaviour by modifying the composition of a devel-
oping machine [29].

The dynamic machine and computational behaviour can
be governed by two set of state variables and corresponding
different dynamic laws. There exists a state space for the
dynamic machine where each machine state (configuration)
may produce a state space for computational behaviour.

3. EVOLUTION AND DEVELOPMENT

3.1 A Development Model
The developmental model used herein is similar to other

models based on cellular automata, e.g. [23, 18, 29], in-
cluding a synchronized cellular cycle, parallel operation and
discrete cell states. To be able to have a complete regulatory
network for all possible regulatory states the model needs to
be minimalistic. However, two features are not taken to the
minimal. The number of cell types is set to three instead
of two. This was done to keep within multicellular devel-
opment, i.e. two types of cells in addition to cells that are
defined to be dead (void). To be able to keep the principle
of a growing (expanding) organism there is a constraint on
how a cell can come ”alive”. This constrain is to only allow
cells that have at least one neighbour expressing a cell type
different from void to be able to come alive. We also choose
to use a two dimensional world as to make the phenotype
closer to a developing organism.

In Figure 1 the minimalistic developmental model is shown.
The organisms develop in a two dimensional grid world as
illustrated in Figure 1(a). Development starts from a single
cell placed in the grid. The placement of the first cell is of
no importance as the grid uses cyclic boundary conditions.

The extracellular communications only include cell types.
In Figure 1(b) possible communication for a cell is shown.
The centre cell’s (C) developmental process have informa-
tion concerning the cell’s own state and cell type of the four
neighbouring cells.

To be able to conduct the experiments a developmental
model with a limited number of regulatory possibilities was
needed. Therefore the model was restricted to include three
possible cell types, void (or dead) counts as a cell type since
all possible states in the cellular neighbourhood must have
an unique representation. With three cell types multicel-
lularity is possible and at the same time the number of all
possible cellular states in the defined neighbourhood is not
terrifying large, i.e. max 243 (or 35). A developing organism
will consist of different construct of these three cells. Fig-
ure 1(c) show a graphical representation where each cell is
given a distinguishable colour.

The result is a minimalistic model were all input com-
binations to the development processes consist of only 35

possibilities. As such, all possible regulatory input combi-
nations and resulting cellular actions can be represented as a
table. The table in Figure 1(d) is a scaled down illustration.
For the first entry in the table, i.e. all regulatory inputs set
to 0, the output of the development process is fixed at 0.
This is done to fulfil the stated constraint related to growth.
All other regulatory inputs have a possibility of regulating
the cell to be at any of the available cell types, indicated by
the triplet {0, 1, 2}. Note that a cell can be regulated to ”no
change” if the regulatory output is the same as the centre
cell of the regulatory input, i.e. Ctype(t + 1) = Ctype(t).
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(a) A 2D-grid defining the or-
ganism size.

(b) Cellular neigh-
bourhood.

(c) Cell types. (d) Genetic information. Regula-
tory input and cellular actions.

Figure 1: A minimalistic cellular developmental model.

Figure 2: An example of a developing organism.

Figure 2 shows a developing organism using the minimal-
istic developmental model. Here the grid size is set to 5x5
cells, the colours used to indicate cell types are taken from
Figure 1(c). At Development Step (DS) 0 the organism con-
sists of only a single cell of type 1 (the zygote), at DS 1
the first cell has divided and differentiated into three cells of
type 2. At DS 2 – DS 4 the change in phenotypic structure
along the developmental path can be observed. The last
shown organism is at DS 2000000.

3.2 Representation and Evolvable Information
In the model described in Section 3.1 the local informa-

tion is the cell state (type) of the five cells in a von Neu-
mann neighbourhood. The developmental model’s possible
cellular actions are given by the defined next states t + 1 in
the transition table in Figure 1(d). The genome, or evolv-
able information, may not necessarily cover all regulatory
possibilities. That is, there may be that the size of the
genome constrains the number of possible regulatory con-
ditions and corresponding actions. For most developmental
models this is an inevitable necessity, e.g. complete regu-
latory information for Tufte’s model [29] would require a
specification of 545 regulatory possibilities or for Miller and
Banzhaf’s model [25] a total of 7689. A complete coverage of
all possible regulatory conditions would require a develop-
ment process with an undesirable amount of logic (or any sig-
nal processing resources). Artificial EvoDevo-system often
consists of a predefined developmental model with defined

developmental processes. Further, the evolvable information
is similar to a genome consisting of genes that together with
possible intracellular and extracellular information regulates
actions of the developmental processes.

Figure 3: The inner working of a simple develop-
mental process.

Figure 3 illustrates the relation between regulatory infor-
mation and development as a quasi Finite State Machine
(FSM). The state Regulatory ”Decoding” take regulatory in-
formation from a local cellular neighbourhood (Extracellular
Information) and information from the cell itself (Intracel-
lular Information) as input to a gene regulation process de-
fined by the genome. Cellular action, indicated by state Cell
Action 0 − n, is promoted out of the outcome of the gene
regulation process. In this example the cell can express a
change, e.g. in intracellular state, or no change if the regula-
tory information codes for a jump to the No Change state.

The state no change is also the state the cell will be in for
all input regulatory information that not explicit regulates
to a cellular action, e.g. input information may be the total
of Extracellular and IntraCellular. This implies that all reg-
ulatory input combinations not covered in the genome will
indirectly regulate the cell into the No Change state. As
such, a genome of a size that do not cover all regulatory
possibilities will in a way have a given part that indirectly
code for the developmental process of No Change in Figure 3.

3.3 EvoDevo
The relation between evolution, development and the evo-

lution of development in biological systems is still a relative
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unexplored area. Even though a lot of work is done toward
a synthesis [12] there is a lack of possibilities to obtain ex-
perimental proof due to the time scale of evolution. As such
work is often based in philosophy of biology. In the artifi-
cial domain there is no lack of possibilities to monitor all
processes. It is possible to see cause and effect on all levels
from evolutionary changes to detailed influence on develop-
mental trajectories. However, there is a lack of knowledge
of what properties that make a developmental process suc-
cessful. Further, the issue of genetic information and repre-
sentation lack an understanding on the level of how should
a developmental genome be designed for a successful result.

To add some knowledge to the puzzles we try to explore
the relation between a simple developmental model and the
information in the developmental genome. That is, we want
to investigate how the compositions of information in the
genome with regards to gene regulation influence on the de-
velopmental trajectory.

3.4 Genome information, Developmental Pro-
cesses and Phenotypic Variation

We address the above problems by using a developmental
model where the total of regulative input can be coded com-
pletely in the genome. Such a genome will not include any
implicit DCs in its gene regulation specification and develop-
mental actions. This does not imply that all of the genome
information is expressed in the phenotype, i.e. no redundant
information, rather that such a genome open for a possibil-
ity to specify all regulatory input combinations without a
need to replace genetic information.

If the genome codes for developmental actions explicitly
for all possible input combinations evolution can actually
exploit all of the combinations. In contrast the model of
Tufte [29] uses a genome that have a fixed length far smaller
then all possible regulatory combinations. In Tufte’s model
genome size varies from experiment to experiment, e.g. 64
rules opens for 64 different regulation possibilities out of the
total of 545. This implies that if a regulatory combination
(rule) is to be added an existing rule must be dropped.

A similar approach as Langton’s is taken, monitoring and
comparing the behaviours of the system. Here Langton’s
emergent CA behaviour is replaced by what may be char-
acterised as ”developmental behaviour”. Developmental be-
haviour is an attempt to monitor and classify properties of
expressed change in developing phenotypes, i.e. change in
phenotypic structure over the lifetime of organisms, in rela-
tion to what and how information are present in the genome.
As for Langton, our hypothesis is that there is a connection
between regulatory information describing behaviour on a
cellular level and the emerging behaviour of the system as a
whole. In Langton’s work this connection was between CA
transition rules and the behaviour of the CA. Herein a con-
nection between regulative information in a developmental
genome and structural properties of a developing organism
is investigated.

4. QUANTIFICATION OF GENOMES AND
DEVELOPING ORGANISMS

As stated, Langton’s use of λ as a prediction of behaviour
in CAs is similar to the experimental investigation taken. A
kind of developmental λ (λd), that can be extracted from the

genome (regulatory information) and linked to properties of
the developing organism is sought.

4.1 λd Extracted from Genetic Information
The developmental model with its total of 35 regulatory

combinations makes it possible to specify genetic informa-
tion that can explicitly code for all possible regulatory in-
put combinations and corresponding developmental actions.
Since all regulatory inputs are to be covered, the develop-
mental model’s genetic information only need to code for
the regulative outcome. That is, the genetic information
only specifies the developmental action (growth, differentia-
tion or no action) for each input combination. This enables
genomes in the form of strings of 35 symbols, where a symbol
can code for each of the defined cell types (see Figure 1(c)).
This string of symbols composes the column C(t + 1) in
Figure 1(d).

The genetic string can be any 35 length string of 3 symbols
(as long it complies with the given constraint) of the total of
the 3243 possible strings. Following Langtons definition of λ
a quiescent state must be chosen. The void (type 0) is taken
as the quiescent state. The number of symbols representing
void in the symbol string is used in the calculation of λd
together with the number of non quiescent states, here all
entries specifying growth or differentiation to cells of type 1
and 2.

λd =
KN − n

KN
(1)

A developmental λ can then be calculated according to
Equation 1. n denotes the number of transitions to the qui-
escent state, for the developmental genome. Here, n gives
the number of transitions to the void cell type (type 0). K
defines the number of cell states, for the described develop-
mental model. That is, K = 3, cell can be of type: void, 1
or 2. The cellular neighbourhood, or regulatory inputs, is
given by N . Here N = 5, the von Neumann neighbourhood.

By using the composition of the transition table it is pos-
sible to calculate a λd that gives a numerical representation
of the local cells developmental behaviour. This value is only
based on the local cellular properties of neighbourhood, pos-
sible cell types and the composition of the genome that is
present in every cell.

4.2 Trajectories and Attractors as a Classifi-
cation Criteria

Having defined genetic information as the local cellular
parameter λd, a measurable quantity must be identified for
the developmental organism. Properties that can be used
need to be of a type that can provide information on the
developing organism as a whole and the phenotypic change
in the organism. Changes here denote a phenotypic alter-
ation in developmental time, e.g. change in phenotypic form
from development step n to n + 1. Such measurement of
change may also be viewed as dynamic behaviour of devel-
oping organisms. However, here behaviour is the same as
the emergence of structure as a result of development.

In developmental mappings there are several possible out-
comes when emergence of phenotypic structure is consid-
ered. It may be argued that a stable final structure is im-
portant [25], i.e. development reaches a structure (or state)
that is stable by self-regulation. On the other hand it may
be argued that a dynamic phenotypic structure with self-
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reorganizing possibilities may be an important part for com-
putation and/or adaptation for developmental machines [29].

Anyhow, dynamic behaviour of a developing organism is
defined by its state space, i.e. the emergence of a develop-
ing organism given by its initial conditions and the genome.
For a given organism a trajectory in the state space starts
from an initial cell (zygote) and follows the developmental
path, i.e. trajectory. The state information can include mor-
phology, size, behaviour etc. The trajectory describing the
developmental path can end up in a final stable organism;
a point attractor or as a self-reorganising organism; a cyclic
attractor. As such, the developmental trajectory with its
transient part and attractor can represent a possible quan-
tifiable measurement of the development of an artificial or-
ganism.

Applying trajectory information to quantify developmen-
tal properties gives information regarding stability of the or-
ganism, does development create a stable organism or does
the organism end with a structure that change form in a
cyclic manner. Both alternatives provide interesting knowl-
edge that would be favourable if it can be predicted already
at the design point of developmental models, genome repre-
sentation and/or genetic operators.

4.3 Possible Interpretations of λd
Measurements of attractor and trajectory length together

with their ratio may indicate information about structural
and adaptive properties of the organism. If the transient
phase of the trajectory is considered, the length indicates the
number of phenotypic changes involved in the developmental
path. Such knowledge can be used to tune the system toward
a hypothesis of expected need for developmental steps as to
develop an organism of a given structural complexity. For
example, if there exist knowledge of the range of steps (or
substructures) required to reach a phenotype structure with
desired properties. Knowledge related to attractor length
may be used the same way. There may be knowledge of
what range an attractor length may have in order to meet a
goal, e.g. for self-replication: number of required steps based
on number of possible cell types and cell neighbourhood [20].

A more speculative use of the trajectory/attractor infor-
mation may be to try to predict phenotypic plasticity [32]
as an indication of adaptivity. The argumentation regarding
using λd toward indication of adaptivity relates to a hypoth-
esis connecting long attractors to the ability to change, i.e
change in phenotypic structure during development.

The model described in Section 3.1 do not include any
external information except the state of the initial cell. Any
developmental path of the model will be deterministic start-
ing from two of the three possible initial configurations (an
initial cell of type one or two). An initial cell of type 0 (void)
will not develop as the model requires a minimum of one cell
alive for any phenotypic change. As the model in our inves-
tigation do not include environmental influence in the gene
regulation, i.e. no possibility to deviate from the trajectory
given by the initial configuration and genome, there is no
direct access to measeur effects on development caused by
dynamic attractor landscapes and environmental perturba-
tions.

5. EXPERIMENTS
The experiments are divided in two main categories. First,

an investigation of the relation between the defined λd and

the trajectory length and the length of the attractor cycle.
This set of experiments targeted to investigate if λd could
be used as a measurement to predict developmental proper-
ties. Experimental results regarding trajectory and attrac-
tor length as a function of λd is presented in Section 5.2.

In the second set of experiments the goal was to find corre-
lations between internal qualities of the developmental pro-
cesses (growth, cell death and differentiation) and the λd
value. Growth and differentiation is herein taken as indi-
cation of the activity of the developmental processes and
there by thought of as a measure of different developmental
phases. Two phases of interest are defined. First, a growth
phase where the organism expand in size toward an ”adult”
form. Second, change in the adult organism. We introduce
two measurements; growth and change rate that can be a
related to the λd parameter. Details of the experiments re-
garding growth and change rate and their relation to λd are
given in Section 5.3.

5.1 Experimental Setup
In the experiments herein the main idea is to generate

genomes with a given property. As such, there is no evo-
lution, instead genomes are generated with predefined λd
values. The generated genomes are developed and the devel-
oping phenotypes are investigated as to quantify properties
as to see if there exists a correlation with the genomic λd
value.

The minimalistic developmental model presented in Sec-
tion 3.1 is the test case for the experiments. The genome is
a string describing the result of every cellular action (given
in column C(t+1) in Figure 1(d)).

In order to generate genomes with different λd value a
similar method to Langton’s [21] random table method is
used. λd was given by Equation 1. The void cell type was
defined as the quiescent state. The λd span from 0 to 1 and
was investigated by generating test sets of genomes with λd
at intervals of 0.01. The test genomes were generated in the
following manner as to produce genomes with a correct λd;
for every entry in the table:

• With probability 1 − λd, the cell type at the next de-
velopmental step is quiescent (type 0);

• With probability λd, the cell type at the next develop-
mental step is a generated by a uniform random dis-
tribution among the other cell types (type 1 or 2).

In the experiments an organism size of maximum 4x4 cells
and 5x5 cells were used. The set up of cellular array size and
number of tests for each λd are covered in the description of
the experiments.

5.2 Experiment I
In these experiments the genomes were generated accord-

ing to the λd parameter in Section 5.1. The trajectory
length and attractor was recorded and plotted as a func-
tion of λd. As much work in developmental systems deals
with the problem of scalability and other issues related to
the size of the phenotype the experiment is repeated for two
differently sized cellular arrays.

The arrays size was set to 4x4 and 5x5. The size of the
arrays was chosen as to be able to carry out experiments in
reasonable computational time. Organisms of 4x4 and 5x5
cells may be considered rather small, however, the theoret-
ical maximum attractor length is 316 for the 4x4 array and
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(a) Trajectory length.

(b) Attractor length.

(c) Average trajectory and attractor length.

Figure 4: Experiment I. Results for 4x4 organisms
plotted as function of λd. 1000 tests for each λd.

325 for the 5x5 array. As such, even at the chosen array
sizes, the variation in trajectory and attractor length can
show a huge deviation.

For the 4x4 array a 1000 test was carried out for each λd
value. The complete data output of the experiment is pre-
sented in Figure 4(a). Each data point shows the trajectory
length, i.e. the length of the sequence of unique configura-
tions of cells during development.

To be able to discriminate between organism with a long
developmental path with many unique developmental steps
and organism with a long cyclic attractor, i.e. the length of
the cyclic attractor after the transient phase, the attractor
length is presented in Figure 4(b) a point attractor is here
given the length of one.

To further illustrate the results, Figure 4(c) shows the
average trajectory and attractor length. The plot is created
out of the raw data presented in Figure 4(a) and Figure 4(b).

(a) Trajectory length.

(b) Attractor length.

(c) Average trajectory and attractor length.

Figure 5: Experiment I. Results for 5x5 organisms
plotted as function of λd. 100 tests for each λd.

When the organism size was scaled up from 4x4 to 5x5 the
computational demand required that the number of tests for
each λd was reduced to 100. Figure 5(a) shows the complete
set of data results regarding trajectory lengths for 5x5 cell
organisms. As for the 4x4 experiment, Figure 5(b) present
attractor length and Figure 5(c) shows the average of tra-
jectory and attractor length.

5.3 Experiment II
Experiments in section 5.2 deal directly with phenotypic

properties, i.e. the emergent form of the organism along
the developmental path. As to further investigate if a ge-
nomic measurement such as λd can be taken into account as
to predict developmental properties the focus was changed
to investigate developmental processes. In the model two
main processes can be identified; growth and differentiation.
Growth increases the number of cells ”alive” and differentia-
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tion changes the cell type. As such, we want to define a way
to quantify growth and differentiation during development
according to λd.

Figure 6: Growth and change rate illustrated as
phases in the life time of a developing organism.

Two measurements are defined; growth rate and change
rate these measurements can be quantified in relation to
λd. Growth is defined (not exactly biological correct) as
the transient phase of a trajectory. The measurement of
growth chosen is the size of the organism, i.e. all cells of
type non-void. Change is defined as the number of cells that
change cell type from development step to development step
along the attractor. Figure 6 illustrates the measurements
of growth and change. Growth rate is defined as the size of
the organism at the end of the transient phase, indicated by
the arrow going from zygote to adult organism in the figure.
Change is a measurement of the number of cells changing
type from development n to development step n+1. Change
rate is the average of change for all development steps in the
attractor. In Figure 6 this measurement is the cycle that
indicates the attractor. The change rate can then be seen
as a measurement of the adult life of the organism.

Figure 7: Experiment II. Average growth and
change rate in correlation to λd on a 4x4 organism.
Average over a 1000 tests for each λd value.

In the experiment a 4x4 organism applying a 1000 tests
at each λd value was used. The average growth and change
rate was measured and plotted according to the λd value.
The result of the experiment can be seen in Figure 7.

6. DISCUSSION
The experiments presented have some common results

with Langtons work, i.e. the sudden increase in the length
of trajectories, attractors and transient phase of a develop-
ing organism. In Figure 4(c) and 5(c) this phenomenon can
clearly be observed as the length of the trajectory, attrac-
tor and difference between trajectory and attractor length
increase around λd = 0.67. However, the goal was to inves-
tigate if it is possible to measure properties of the genome

composition as an indicator of how the resulting organism
will develop instead of Langton’s work on potential compu-
tational properties of the system related to phase transitions.

The plots in Figure 4(a), 4(b), 5(a) and 5(b) show a very
similar trend of how the data points are distributed accord-
ing to the λd value. This result is in itself encouraging as it
indicate that the observed correlation between λd and the
state space properties measured is not a special case related
to the development model and a given size constraint.

The plots in Figure 4(a) and 5(a) show that the length of
the trajectories depend strongly on λd. As such, the result
show that a calculation based on genome composition can
reflect a predictable developmental behaviour. As stated
in Section 4.3 knowledge of probable developmental path
properties, such as length, may help evolution if there exist
knowledge of what developmental path length that is likely
to be needed to reach a phenotype with certain structural
properties.

The plots regarding attractor length in Figure 4(b) and
5(b) show that if plasticity can be taken as a measurement
toward adaptivity, the λd can be used as to guide toward
part of the search space where genomes with long attrac-
tors are more likely to be found. It is important to note, as
stated in Section 4.3, that such an interpretation is a little
speculative. However, when it comes to adaptivity and evo-
lution the results are also interesting. The plots regarding
trajectories and attractors show that genomes with a given
λd value will most likely mutate to genomes with similar
developmental behaviour as long as the mutation result in
an offspring with similar λd. Even though the variance of
the plots showing all data points is high, specially for long
trajectories/attractors, the trend shown in Figure 4(c) and
5(c) is easy to spot.

The results in experiment II further emphases a relation
between the measurement of genomic composition and de-
velopmental behaviour. In Figure 7 the growth rate shows
that for low values of λd the transient phase of the devel-
opmental path is rather short. Further, the standard de-
viation is low. Genomes with this property have a rather
high probability of short developmental time with a point
or short attractor. This knowledge is useful if a requirement
is to develop stable organisms.

The change rate shares a common path with the growth
rate. However, it shows that the organisms developed in the
upper middle of λd change their form at a rather high rate
from development step to development step. The decrease
in change rate for high λd values may relates to a move to
a less chaotic regime. As for the results in experiment I the
results of experiment II should be helpful if knowledge exist
of sought properties of the emerging developmental organ-
ism. An example can be that a fast growing organism will
probably be rather stable and include few changes in form.

The measurement used herein is close to complexity mea-
surements of phenotypic properties [17]. Kolmogorov in-
spired complexity measurements [22, 13] is related and can
be used in the same way as the chosen state space measure-
ment. This is part of ongoing work.

7. CONCLUSION
The presented λd used as a measurement of genomic com-

position has shown to be rather well suited to predict devel-
opmental behaviour. The results clearly show a correlation
between genomic composition and developmental properties.
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The distribution of developmental behaviour according to
λd found can be exploited as to be able to design EvoDevo
systems with smoother search space. Further, if there exist
knowledge of developmental properties related to the de-
velopment of form, parameters like λd can be exploited to
point evolution toward parts of the search space where the
existence of sought behaviour is more likely. Another im-
portant use of parameters, such as λd, is in the design phase
of EvoDevo systems. If the system is not able to exhibit
behaviour in the different regimes resulting from different
λd values, it is given that the system can not be applied
to problems that most likely require such developmental be-
haviour.

8. REFERENCES
[1] R. D. Beer. A dynamical systems perspective on

agent-environment interaction. Artificial Intelligence,
1–2(72):173–215, 1995.

[2] P. J. Bentley and S. Kumar. Three ways to grow designs: A
comparison of embryogenies for an evolutionary design
problem. In Genetic and Evolutionary Computation
Conference (GECCO ’99), pages 35–43, 1999.

[3] J. C. Bongard and R. Pfeifer. Morpho-functional Machines:
The New Species (Designing Embodied Intelligence),
chapter Evolving complete agents using artificial ontogeny,
pages 237–258. Springer-Verlag, 2003.

[4] E. F. Codd. Cellular Automata. Association for computing
machinery, Inc. Monograph series. Academic Press, New
York, 1968.

[5] S. Cussat-Blanc, H. Luga, and Y. Duthen. From single cell
to simple creature morphology and metabolism. In
S. Bullock, J. Noble, R. Watson, and M. A. Bedau, editors,
Artificial Life XI: Proceedings of the Eleventh International
Conference on the Simulation and Synthesis of Living
Systems, pages 134–141. MIT Press, Cambridge, MA, 2008.

[6] P. Eggenberger. Evolving morphologies of simulated 3d
organisms based on differential gene expression. In Fourth
European Conference on Artificial Life, pages 205–213.
MIT press, 1997.

[7] K. Fleischer and A. H. Barr. A simulation testbed for the
study of multicellular development: The multiple
mechanisms of morphogenesis. In Artificial Life III, pages
389–416. Addison-Wesley, 1993.

[8] S. Forrest. Emergent Computation. MIT Press, 1991.
[9] J. Gauci and K. Stanley. Generating large-scale neural

networks through discovering geometric regularities. In
GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 997–1004,
New York, NY, USA, 2007. ACM.

[10] T. G. W. Gordon. Exploring models of development for
evolutionary circuit design. In 2003 Congress on
Evolutionary Computation (CEC 2003), pages 2050–2057.
IEEE, 2003.

[11] F. Gruau. Cellular encoding of genetic neural networks.
Technical report 92-21, Laboratoire de l’Informatique du
Parallilisme. Ecole Normale Supirieure de Lyon, France,
1992.

[12] B. K. Hall, R. D. Pearson, and G. B. Müller. Environment,
development, and Evolution Toward a Synthesis. The
Vienna Series in Theoretical Biology. MIT-Press, 2004.

[13] S. Harding and W. Banzhaf. Organic Computing, chapter
Artificial Development, pages 201 – 220. Springer Verlag,
2008.

[14] S. L. Harding, J. F. Miller, and W. Banzhaf. Self-modifying
cartesian genetic programming. In GECCO ’07:
Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1021–1028, New York,
NY, USA, 2007. ACM.

[15] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design. In

Congress on Evolutionary Computation (CEC 2001).
IEEE, 2001.

[16] H. Kitano. Building complex systems using development
process: An engineering approach. In Evolvable Systems:
from Biology to Hardware, ICES, Lecture Notes in
Computer Science, pages 218–229. Springer, 1998.

[17] T. Kowaliw. Measures of complexity for artificial
embryogeny. In GECCO ’08: Proceedings of the 10th
annual conference on Genetic and Evolutionary
Computation. ACM, 2008.

[18] T. Kowaliw, P. Grogono, and N. Kharma. Environment as
a spatial constraint on the growth of structural form. In
GECCO ’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 1037–1044,
New York, NY, USA, 2007. ACM.

[19] S. Kumar and P. J. Bentley. Biologically inspired
evolutionary development. In 5th International Conference
on Evolvable Systems (ICES03), Lecture Notes in
Computer Science, pages 57–68. Springer, 2003.

[20] C. G. Langton. Self-reproduction in cellular automata.
Physica D, 10:135–144, 1984.

[21] C. G. Langton. Computation at the edge of chaos: phase
transitions and emergant computation. In S. Forrest, editor,
Emergent Computation, pages 12–37. MIT Press, 1991.

[22] P. K. Lehre and P. C. Haddow. Developmental mappings
and phenotypic complexity. In Congress on Evolutionary
Computation(CEC2003), pages 62–68. IEEE, 2003.

[23] J. F. Miller. Evolving developmental programs for
adaptation, morphogenesis, and self-repair. In Seventh
European Conference on Artificial Life, Lecture Notes in
Artificial Intelligence, pages 256–265. Springer, 2003.

[24] J. F. Miller. Evolving a self-repairing, self-regulating, french
flag organism. In Genetic and Evolutionary Computation
(GECCO 2004), Lecture Notes in Computer Science, pages
129–139. Springer, 2004.

[25] J. F. Miller and W. Banzhaf. Evolving the program for a
cell: from french flag to boolean circuits. In S. Kumar and
P. J. Bentley, editors, On Growth, Form and Computers,
pages 278–301. Elsevier Limited Oxford UK, 2003.

[26] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. revisiting
the egde of chaos: Evolving cellular automata to perform
computations. Complex Systems, 7:89–130, 1993. Santa Fe
Institute Working Paper 93-03-014.

[27] N. H. Packard. Dynamic Patterns in Complex Systems,
chapter Adaptation Toward the Edge of Chaos, pages
293–301. World Scientific, 1988.

[28] T. Steiner, Y. Jin, and B. Sendhoff. A cellular model for
the evolutionary development of lightweight material with
an inner structure. In GECCO ’08: Proceedings of the 10th
annual conference on Genetic and evolutionary
computation, pages 851–858, New York, NY, USA, 2008.
ACM.

[29] G. Tufte. Evolution, development and environment toward
adaptation through phenotypic plasticity and exploitation
of external information. In S. Bullock, J. Noble, R. Watson,
and M. A. Bedau, editors, Artificial Life XI: Proceedings of
the Eleventh International Conference on the Simulation
and Synthesis of Living Systems, pages 624–631. MIT
Press, Cambridge, MA, 2008.

[30] G. Tufte and P. C. Haddow. Towards development on a
silicon-based cellular computation machine. Natural
Computation, 4(4):387–416, 2005.

[31] J. von Neumann. Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana, IL, USA, 1966., 1966.

[32] M. J. West-Eberhard. Developmental Plasticity and
Evolution. Oxford University Press, 2003.

[33] S. Wolfram. Universality and complexity in cellular
automata. Physica D, 10(1-2):1–35, 1984.

[34] L. Wolpert. Principles of Development, Second edition.
Oxford University Press, 2002.

1514


	Introduction
	Background and Motivation
	A Developmental 
	Cellular Properties and EvoDevo Paths

	Evolution and Development
	A Development Model
	Representation and Evolvable Information
	EvoDevo
	Genome information, Developmental Processes and Phenotypic Variation

	Quantification of Genomes and Developing Organisms
	d Extracted from Genetic Information
	Trajectories and Attractors as a Classification Criteria
	Possible Interpretations of d

	Experiments
	Experimental Setup
	Experiment I
	Experiment II

	Discussion
	Conclusion
	References



