Application of Evolutionary Algorithms in Detecting SMS
Spam at Access Layer

M Zubair Rafique, Nasser Alrayes and Muhammad Khurram Khan
Center of Excellence in Information Assurance, CoEIA
King Saud University
Riyadh 11653, Saudi Arabia

{zrafqiue.c,nalrayes,mkhurram}@ksu.edu.sa

ABSTRACT

In recent years, Short Message Service (SMS) has been widely
exploited in arbitrary advertising campaigns and the prop-
agation of scam. In this paper, we first analyze the role
of SMS spam as an increasing threat to mobile and smart
phone users. Afterward, we present a filtering method for
controlling SMS spam on the access layer of mobile de-
vices. We analyze the role of different evolutionary and non-
evolutionary classifiers for our spam filter by assimilating the
byte-level features of SMS. We evaluated our framework on
real-world benign and spam datasets collected from Grum-
bletext and the users in our social networking community.
The results of carefully designed experiments demonstrated
that the evolutionary classifiers, like the Structural Learning
Algorithm in Vague Environment (SLAVE), could efficiently
detect spam messages at the access layer of a mobile device.
To the best of our knowledge, the current work is the first
SMS spam filter based on evolutionary classifier that works
on the access layer of a mobile device. The results of our
experiments show that our framework, using evolutionary al-
gorithms, achieves a detection accuracy of more than 93%,
with false alarm rate of < 0.13% in classifying spam SMS.
Moreover, the memory requirement for incorporating SMS
features is relatively small, and it takes less than one second
to classify a message as spam or benign.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering; H.3.4 [Inform-
ation Storage and Retrieval]: Systems and Software—
performance evaluation (efficiency and effectiveness).

General Terms

Algorithms, Experimentation, Security

Keywords
SMS Spam, Smart Phones, Access Layer Detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’11, July 12-16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1787

1. INTRODUCTION

Short Message Service (SMS) is one of the most popular
and ubiquitously adopted data communication services on
mobile devices. The prime factor behind this is its simplic-
ity for end users and huge revenue generation for service
providers. A recent report by Portio Research, an indepen-
dent UK-based research company, shows that more than 5.5
trillion text messages were sent over carrier networks world-
wide in year 2009 [20]. This trend appears to be increasing
as a survey projected that 6.6 trillion SMS messages would
be exchanged globally during 2010. SMS is widely used
in automated information retrieval systems, mobile bank-
ing, over-the-air (0TA) mobile configuration, social web site
alerts (e.g., Facebook), and for user authentication.

With this level of usage, the volume of spam SMS received
by mobile users has also dramatically increased. A recent
study, by the messaging security firm Cloudmark showed
that 66% of UK mobile phone users have received spam text
messages [26]. Another survey [15] reported that the number
of spam SMS exceeds more than 50% of the total SMS mes-
sages received by consumers. Moreover, it was observed that
more than 200 million subscribers were hit by SMS spam in a
single day [25]. Apart from simple advertisement messages,
SMS spam has also been used in modern sophisticated at-
tacks, like the stealing of personal information, phishing, and
scam propagation schemes [26]. One important point is that
the majority of spam SMS is sent directly by (or through)
cellular companies or on behalf of third party providers [3].
Therefore, it is important and relevant to filter the SMS
spam on mobile devices and smart phones. Despite the sever-
ity of the problem, SMS spam detection has received little
attention in the research community.

We, therefore, performed an empirical study to analyze
the applicability of different evolutionary and non-evolut-
ionary classifiers in solving the real-world problem of de-
tecting SMS spam on mobile devices. We here propose a
real-time SMS spam detection framework that models the
byte-level transitions of an SMS message as a potential in-
put attribute for the different classification algorithms. Our
framework functions at the access layer of a mobile device;
as a result, it silently moves a spam SMS message into a
spam folder without disturbing the user through ring tone
or vibration alerts. We selected four evolutionary and four
non-evolutionary algorithms from various machine learning
schemes. These classifiers are listed in Table 2. We eval-
uated these classifiers on a real-world dataset of SMS. The
SMS spam dataset consisted of more than 2000 messages
and is collected through Grumbletext [11] and from our

research lab. We also collected more than 5,000 benign
SMS messages through our customized mobile terminal in-
terface. These benign SMS messages were obtained from a
large number of volunteers in our social network with diverse
socio-economic backgrounds, including engineers, students,
housewives, professionals, and corporate employees.

The results of our experiments show that our framework
achieves a detection rate of more than 93% with a false alarm
rate < 0.13% when distinguishing between benign and spam
SMS. It needs little memory to store the features vector and
less than one second for classification (when using evolution-
ary classifiers); as a result, it could easily be deployed and
integrated into the base band processor of a mobile phone.

The rest of this paper is organized as follows. We present
related work on the mitigation of SMS spam in Section 2.
The SMS spam detection framework is proposed in Section
3, followed by an explanation of feature extraction in Section
4. We discuss the classifiers in Section 5 and describe the
evaluation strategy and dataset in Section 6. We report the
results of our experiments in Section 7. Finally, we conclude
the paper with a discussion of our future work.

2. RELATED WORK

Many cellular operators have recently devised sophisti-
cated mechanisms, like Open Mobile Alliance (OMA), to pro-
tect mobile users from SMS spam [12]. While these adminis-
trative measures cut off a massive quantity of spam directed
towards consumers, the problem of personalized spam filter-
ing on mobile devices remains unsolved. The existing spam
filtering techniques for mobile phones are based on the con-
tent of SMS [6][7]. Most of these techniques are straight-
forward adaptations of email spam detection schemes and
usually incorporate features—specific words, character bi-gr-
ams, and tri-grams—for the classification of spam messages
[10]. Some other works (such as [13]) have proposed schemes
based on machine learning algorithms (like SVM, KNN, or
Naive Bayes) for the classification of SMS spam. Recently,
the author of [23] used a Hidden Markov Model to detect
SMS spam messages at the access layer of mobile devices.
Evolutionary algorithms have been applied to solve real-
world problems in the domain of email spam [16][17][21].
However, no previous study has incorporated evolutionary
algorithms for the detection of SMS spam on mobile devices.

3. SMS SPAM DETECTION FRAMEWORK

We now present a SMS spam detection framework that
works at the access layer of a mobile phone to detect spam
messages. We set the following requirements for our spam
detection filter: (1) it should correctly identify spam and be-
nign SMS, (2) the learning process must be robust to word
adulteration techniques, and (3) it should be real-time de-
ployable on smart phones, i.e., it should require little pro-
cessing and storage resources. This framework is the generic
form of the spam detection system proposed by the authors
of [23], which used Hidden Markov Model to detect the spam
SMS at the access layer of mobile device. Our framework is
modular in nature, which allows it to operate on the different
architectures of mobile devices and smart phones.

3.1 Modules

Figure 1 shows the architecture of our SMS spam detec-
tion framework inside a mobile phone. Note that our frame-

1788

! Application Layer |
: Camera Time Zone Internet Multimedia Applications :
1 1
: Contact Call Rec Settings E-mail Spam Inbox :
: |
[__
Feature .
Extraction Classifier
il Decision

1
1
1
1
1
1
1
:
1
E Rules Storage I !
1
1
1
1
1
1
1
:
1

S g A g g

Figure 1: SMS Spam Detection Architecture.

work receives the SMS from the base-band processor! of the
mobile device at the access layer. This allows us to sniff the
SMS before it reaches the application layer.

The SMS sniffer module captures the SMS from the mo-
dem in a specific format called as SMS-DELIVER Protocol De-
scription Unit (PDU)[9] with complete SMS payload (User-
Data) and headers in a hexadecimal representation. Figure
2 depicts the format of a complete SMS captured by the
SMS sniffer module at an access layer. The SMS user data
(TP-UD) (maximum of 140 bytes) is extracted to analyze
the message and determine whether it is benign or spam.
This user data can be encoded in different formats and are
used for displaying different kinds of messages, e.g., Unicode
(UCS2) text message, WAP, Over the Air (0TA) configuration
messages, etc. [9]. The Data-Coding-Scheme (TP-DCS) field
in the SMS header is used to indicate the particular encod-
ing of the SMS. We designed our framework to analyze all
of the encoded SMS formats to detect various kinds of spam
messages that can be received by a user.

As the user data are extracted, the feature extraction
module computes the byte-level (hexadecimal octet) tran-
sitions of SMS TP-UD as potential features. Then, the ex-
tracted features from different encoding schemes are given as
input to the classifier. The idea of incorporating byte-level
features for different encoding schemes to detect SMS spam
was proposed in [23]. The advantage of byte-level feature
extraction is that the spam detection can also be performed
on messages with a modern composition style such as short
abbreviated spam SMS (through alphabets or special char-
acters) that are not actually part of any formal language.

The classification module takes the values of the byte-

In current mobile devices, the SMS is received by the GSM
modem from a Short Message Service Center (SMSC). GSM
modem provides an interface between the cellular network
and the application processor of a mobile device. The SMSs
received by the modem are delivered to the OS of the ap-
plication processor through the telephony stack. AT com-
mands are used to control the GSM modem inside the smart
phone. The telephony stack decodes the API calls (Applica-
tion Program Interface) into corresponding AT commands
and AT result codes depending on the types of message.

Figure 2: SMS-DELIVER Format.

level features as input and solves a binary classification (be-
nign vs. spam) problem with the help of rules (population)
stored in the rules database. In this work, we evaluated the
performance of the spam detection framework for different
classification algorithms. These algorithms are described in
Section 5. The classification decision made by the classifica-
tion module is used to decide between two alternatives: (1)
the SMS is silently moved to the spam folder if the classi-
fier determines that it is spam, (2) otherwise, the message
is moved to the Inbox and the user in notified.

3.2 Methodology

Our spam detection methodology consists of two phases.
In the training phase, benign and spam labeled messages
from the user’s Inbox are passed to the spam detection sys-
tem. The classification module learns its rules or evolves
its population based on the byte-level transitions of these
labeled messages in different encoding schemes. For accu-
rate classification, the spam detection filter can be instantly
updated on smart phones to accommodate textual changes
in the received spam or benign messages. Once the training
phase of the spam detection filter is completed, it starts func-
tioning on incoming SMS to classify spam messages based
on the behavior learned during the training phase.

4. FEATURE EXTRACTION

Our spam detection framework can be customized to use
any set of features extracted from the User Data of an SMS-
DELIVER PDU at the access layer of a mobile device. Usually
the User Data in an SMS-DELIVER PDU is encoded using three
different formats: 7-bit encoded messages (max. 160 char-
acters), 8-bit messages (max. 140 characters), and 16-bit
messages (max. 70 characters) [9]. Table 1 shows the en-
coding of an SMS in different formats. We argue that, for
the effective detection of spam SMS, the feature extraction
module should be robust to word adulteration techniques.
In other words, it should not use the keyword features and
it should be real-time, i.e., it should require less memory and
processing time on the resource constrained mobile devices.

We therefore present SMS Message M as a sequence of
octets (bytes) M = {bo, b1, ba....... b}, where [is the length
of the User Data. With no loss of generality, we can also
treat every successive n octets in M as our input attributes
for the classification module. This is commonly referred to
n — gram feature space, where the frequency of n bytes in

1789

Bit no 7 6 5 4 3 2 1 0
[Oct. no| I | [[[[. . .
. Length of SMSC Address i Address Length Table 1: SMS in Different Encoding Schemes.
o851 1 | Type of Number | Numbering Plan Identification Type-of-Address -
9 E 2 T ‘ c n g T t s u w [n
i KN
§§§% SMSC Number in Semi Octet Representation Address Value 7- 43 F7 59 4B 9F 83 EA A0 7B DA 0D
@ x| | | | | | | |
1[TP-RP| TP-UDHI| TP-SRI | X | X | TP-MMS TP-MTI First-Octet(M) 8 43 O6E 67 72 74 73 20 75 20 77 69 6E
o 1 Lery_th of Sender Address Information Address Lenglh
S © 5 i ificati -
2 ESL T } LypeotBomeet, { Humbering Plan ldenfleaton 1 Type-of Address 16- 0043 006E0067 0072 0074 0073 0020 0075 0020 0077 0060 006E
. 5™
E § ‘gi Sender Number in Semi Octet Representation Address Value
R
S | | I R B
1| Bits 7-6 TP-PID [Bit 5 TP-PID | Bits 4...0 TP-PID TP-PIDsM
1 Bits 74 TP-DCS [Bits 3-0 TP-DCS TP-DCS(M,
. H Year M acts as a measure of its importance in M. The right
£ . . o, .
28 Day. TPSCTSM) in choice of the value of n plays a critical role in such systems:
DS Winute Format if n is too small, the probability of false detection increases.
= econ
7 Time Zone In contrast, if we choose a large value for n, it significantly
1 User Data Length TP-UDL(M)

increases the processing overhead, making the framework
infeasible for resource constrained mobile devices. Further-
more, the joint distribution of the n — gram feature space
may contain redundant information, which may result in an
inaccurate analysis for a given problem [1]. For the real-
time detection of spam SMS, we need a model that not only
extracts the relevant underlying information but is efficient
in terms of system throughput.

We therefore model the octet sequence of SMS using a
Markov process [8] with a discrete (finite or countable) state-
space. The Markov state-space characterizes the conditional
distribution of a random process. The conditional distri-
bution has an advantage over the joint distribution (n —
gram feature space) because it reduces the underlying fea-
ture space [1]. This is important for our SMS spam detection
framework because it corresponds to the removal of redun-
dant information from the joint distribution.

The order of the state-space, induced by the Markov pro-
cess, depicts the number of past states (octets) needed to
determine the current state (next octet). A correlation anal-
ysis of different encoding schemes shows a 1° order depen-
dence for the byte-level distribution of SMS [23]. For our
generic spam detection framework, we modeled the byte-
level distribution of SMS message M in k states, i.e., 0, =
{6v0, 0p1, Op2...... Ovi }. Transaction function v operates on
each incoming SMS M and embeds the spatial information
in the form of a transition probability of states. With each
byte value b;, such that b; — 0p;, we computed the transi-
tion probability of byte b;+1 followed by byte b; as t(q, 6,,,}-
The transition probability values of k states are represented
by Transition matrix 7'(65). Mathematically, entrenching
function 1) is represented as:

P(M) — (T(0s))eem

and the Transition Matrix as :

(1)

600,600 600,601 L000,05
091,000 1601.6001 too1.05

T(6y) = (2)
Lopr,600 L0pp,001 Lopr,0pp

Note that the number of states in the transition matrix
ranges from 00 to FF. This corresponds to a feature space of
64KB, making it feasible to deploy on resource constrained
mobile devices. The transitions in bytes represent the com-
plete formation of the SMS. Any deviations in the transi-
tion values reflects a different composition for the SMS mes-
sage. This situation indicates anomalous user data—possibly
a spam message-received by the user. The transition ma-

Table 2: Classification Algorithms & Standards.

| Evolutionary |
CLASSIFIER | STANDARD
XCS Michigan-Style GMBL
SLAVE Genetic Fuzzy
UcCs Michigan-Style GMBL
cAnt-Miner Ant Colony Optimization

| Non-Evolutionary |
CLASSIFIER | STANDARD
RIPPER Inductive Rule Learning
Naive Bayes Statistical Model
C4.5 Decision Tree Induction
C-SVM Support Vector Machine

trix values are given as potential features to the classification
module, and the instances are stored in the ARFF format.

S. CLASSIFICATION MODULE

We analyzed the use of evolutionary classifiers for the de-
tection of spam SMS at the access layer using byte-level
features. We also included reputable non-evolutionary algo-
rithms to gain better insight into which classifier to select
for our framework. We next evaluate the effectiveness of the
classifiers based on their classification accuracy and run-time
performance (their training and testing times). The goal is
to select a suitable classifier that can effectively detect spam
SMS at the access layer of a mobile device (smart phone).

We selected a diverse set of reputable evolutionary and
non-evolutionary classification algorithms for our study. The
under-lying rationale for choosing different classification al-
gorithms in our study was an attempt to cover a broad set
of standards in evolutionary computing and machine learn-
ing. The classifiers and standards used in this study are
summarized in Table 2. We now provide a brief description
of each classifier. An interested reader can find a detailed
description of these algorithms in the cited references.

5.1 Evolutionary Algorithms

5.1.1 eXtended Classifier System (XCS)

XCS is a Michigan-style classifier [27] that evolves a set of
rules as a population of classifiers and is based on accuracy.
The algorithm derives the complete ruleset from the whole
population, where each individual represents a single rule.
Training data are used to compute the initial rules, which
are then evolved into new rules using a niche Genetic Algo-
rithm (GA) that is stored in the population. The fitness of
the individual is based on the prediction accuracy of each
rule. A prediction array is used to store the expected payoff
values for all of the actions. Depending upon the knowledge
of the rules, some of them are also deleted from the pop-
ulation. The evolution of accurate generalizations and real
value representations make XCS adaptable to solve various
real-world problems [28].

5.1.2 sUpervised Classifier System (UCS)

UCS [4] is also an accuracy-based, Michigan-style classi-
fier. It works on the same principle as XCS and evolves
an initial population of rules from training data. However,
it differs from XCS as it is based on a supervised learning

1790

scheme that computes fitness instead of the reinforcement
learning employed by XCS. The genetic algorithm is applied
to correct the rule-set for updating its population. Further-
more, UCS does not maintain a prediction array. The online
learning and evolving characteristic of UCS can be easily
exploited to solve real-world problems and has been well
studied in the literature.

5.1.3 Continuous Ant-Miner Algorithm (cAnt-Miner)

Ant-Miner is a data mining algorithm based on the Ant
Colony Optimization (ACO) algorithm [19]. The ant colony
algorithm is based on the behavior of ants searching for food
and finding an optimal path. Ants randomly begin searching
the food and leave “markers” (pheromones) on their paths.
There is a certain probability that other ants, when they
come across these markers, will follow the same path. A par-
ticular path to the food source will be more populated with
pheromones if more ants traverse that path. The shorter
path, with more concentrated pheromones, is the optimal
path to the source of food. The Ant-Miner algorithm trans-
lates this behavior into a classification domain. It starts
creating a rule one at a time with an empty rule set by ac-
cumulating terms for a partial rule in a probabilistic manner.
The quality of the rule determines the iterative addition of
the pheromone (updating of the rule). Finally, the optimal
rules are generated by defining a threshold on a pheromone
value. We used the cAnt-Miner algorithm (for real values)
[18], an extension of Ant-miner, to classify the SMS spam.

5.1.4 SLAVE Algorithm

SLAVE (Structural Learning Algorithm in Vague Envi-
ronment) is a genetic learning algorithm based on the use
of fuzzy logic concepts and the genetic iterative approach.
It selects and learns only one fuzzy rule in each iteration as
the result of reducing the search space of possible solutions.
After that, it fixes a class and selects the best prior for this
class. The complete set of rules is acquired through a se-
quence of repeated iterations, which is eventually used for
classification. Completeness and consistency are the param-
eters used to determine the fitness of the rules.

5.2 Non-Evolutionary Algorithms

5.2.1 Support Vector Machine (C-SVM)

Support Vector Machines [14] convert multifarious domain
knowledge with overlapping inputs in to non-overlapping
parametric objects by modeling the instances from the in-
put space to the feature space using kernel functions. The
classification is done by constructing a hyper plane between
instances of different classes. C-SVM-a variant of SVM-is a
commonly used classifier for a two class problem. The com-
monly used kernels in SVM are Linear, Polynomial, Radial
Basis Function (RBF) and Sigmoid kernels.

5.2.2 (C4.5 Algorithm

C4.5 [22] is based on the concept of information theory and
generates a decision tree to solve the classification problem.
The algorithm operates by mapping a set of features to a
specific class. The decision tree is constructed from training
data based on the information gain of features. It recur-
sively operates on the subsets of the features until all of the
features are evaluated or no additional information is gained

by splitting the remaining features. The features with the
largest information gain are considered for classification.

5.2.3 Repeated Incremental Pruning to Produce Er-
ror Reduction (RIPPER)

RIPPER [5] is based on associating rules with reduced
error pruning (REP). RIPPER iteratively constructs rule-
sets through the greedy induction of rules from the training
data. The reduction in the size of the rule-set and its fitness
to the dataset is obtained through postpass optimization.
To prevent over fitting, the cross-validation and minimum-
description length techniques are used in combination.

5.2.4 Naive Bayes Algorithm (NB)

Naive Bayes [24] is a probabilistic classifier based on the
assumption that the presence/absence of attributes are sta-
tistically unrelated. The Naive Bayes classifier can be ef-
fectively trained through supervised learning depending on
the nature of the probabilistic model. More precisely, given
a set of features A = {a1,a2,as,....an} and Class C, the
presence probability is effectively calculated as P(A/C) =
H‘Li‘l P(A;/C). The algorithm is well known for its perfor-
mance in many real-world applications.

6. EVALUATION STRATEGY

In this section, we present our approach for evaluating
and comparing the above-mentioned algorithms. Our main
goal was to analyze the detection capability of different al-
gorithms on actual SMS messages received by mobile users.
Therefore, we first discuss our approach for collecting a real-
world benign and spam dataset. We present our tool to ac-
quire an SMS dataset in the PDU format. Afterwards, we de-
fine the performance metrics for the detection of spam SMS
to carry out an unbiased analysis of the different classifiers.
Finally, we show the results of our experiments.

6.1 Dataset Acquisition

We built a collection of more than 5000 real-world benign
and 800 spam SMS by organizing a volunteer campaign on
the premises of our university and in the local community.
The purpose of the campaign was to collect and analyze both
spam and benign SMS received by mobile users. The partic-
ipants in our campaign included teenagers, researchers, stu-
dents, professionals, teachers and some senior citizens. This
gave us a diverse set of SMS messages that were received by
users on their mobile devices and smart phones.

To read the messages in the SMS-DELIVER format, we de-
veloped a modem terminal interface that directly accesses
SMS from the memory of the baseband processor of a mo-
bile phone. Our interface interacts serially with the modem
of a mobile device through AT commands. It first configures
the modem to operate in PDU mode by giving the AT+CMGF=0
command. Once the modem is configured in the PDU mode,
using AT+CMGL=ALL, all of the messages in the memory of
the base-band processor of the mobile phone are redirected
to the terminal. The user data is then extracted from SMS-
DELIVER format in different encoding schemes.

Apart from our SMS collection campaign, we also col-
lected more than 1200 spam messages from Grumbletext.
Grumbletext is a UK-based consumer complaint web site,
where cell phone users post messages online that they con-
sider spam. We manually extracted and identified spam
SMS by a thorough examination of numerous web pages.

1791

To support our detection framework, the plain English text
was converted into the SMS-DELIVER format using our cus-
tomized PDU encoder written in C#. The encoder converted
the messages in all three encoding schemes (see Section 4).

6.2 Performance Metrics

We now define the performance metrics used for an accu-
rate evaluation and comparison of the different algorithms.
The main goal was not to bias our approach to a particu-
lar classifier or learning standard for the detection of spam
SMS. We used the following four performance metrics:

1. Detection Rate: The percentage of spam messages correctly
classified as spam,

2. False Alarm Rate: The percentage of benign messages in-
correctly classified as spam,

3. Training Time: The time taken (in seconds) by the classifier
to train itself on the given dataset,

4. Testing Time: The time taken (in seconds) by the classifier
to detect an SMS as benign or spam.

The Detection Rate (DR) shows the spam detection accu-
racy of a classifier. A higher DR indicates better spam de-
tection. The False Alarm Rate (FAR) indicates the false
detection of incoming messages. A classifier with a high
FAR will move benign messages into the spam folder with-
out user notification. The training time is important for
periodically updating the rule-base of the classifiers on mo-
bile device. The testing time shows the delay introduced in
SMS reception (at the OS of the mobile device) by the clas-
sifier. These four parameters were very useful for evaluating
the accuracy and efficiency of the algorithms on resource
constrained mobile devices and smart phones.

6.3 Classification

We evaluated the classifiers by using an open source soft-
ware KEEL [2]. For cANT-Miner we used the implementa-
tion of [18]. For an unbiased evaluation, we used standard
parameter values for all of the classifiers. The classifiers are
separately trained on messages in 7-bit, 8-bit, and 16-bit
encoding schemes. We then used a stratified 10-fold cross
validation procedure on the dataset of each encoding scheme.
In this procedure, we partitioned each dataset into 10 sec-
tions, where 9 of them were used for training the classifiers
and the remaining section was used for testing. This process
was repeated for all of the sections, and the reported results
are an average for all the sections.

7. EXPERIMENTS AND RESULTS

In this section, we present the results of our experiments.
We first show our analysis of the quality of the attributes
used for our classification module. We then discuss in detail
the performance of the classifiers in terms of the performance
metrics (see Section 6.2). Our evaluation results include the
detection rate, false alarm rate, training time, and testing
time. The classification accuracy (DR and FAR) results are
summarized in Table 3 for 7-bit, 8-bit, and 16-bit encoded
SMS. The efficiency analysis of the different classifiers (train-
ing and testing time) is shown in Table 4.

Table 3: Classification Accuracy in (%) of Selected Algorithms on SMS Dataset.

| | 7-bit | 8/16-bit |
Training Testing Training Testing
DR | FAR | DR | FAR | DR | FAR | DR | FAR
XCS 64.2 | 2.7 5.6 0 68.3 | 2.1 10.2 | 4.34
UCs 52.05 | 3.98 | 52.2 | 4.7 53.4 [4.2 52.2 | 0.23
cAnt-Miner | 86.35 | 2.34 | 83.37 | 7.21 88.5 1 1.3 81.6 | 17.67
Slave 93.45 | 0.01 92.66 | 0.05 93.6 | 0.1 93.4 1 0.21
Naive Bayes | 87 19.22 | 87.7 | 25.5 84.5 | 2 83.8 | 6.32
RIPPER 83.8 | 3.24 7 6 83.6 | 6.3 86.5 | 3.44
C4.5 86.12 | 0.2 74 0.5 85.4 1 0.5 84.5 | 3.41
C-SVM 100 0.1 85.7 | 1.4 100 | 0.1 83.6 | 2.01

7.1 Qualitative Analysis of Byte-Level Features

We now present some general insights into the distinctive
nature of the attributes extracted from our datasets. This
analysis will be helpful in investigating the effectiveness of
the evolutionary and non-evolutionary algorithms used to
detect SMS spam at the access layer. The focus of our
evaluation is based on the quality of the extracted features
modeled using the 1% order Markov process (see Section 4).
Several measures based on information and statistic theory
parameters are used by researchers to examine the impor-
tance of features in a given dataset. Information gain and
gain ratio are two widely used algorithms for the qualitative
analysis of features [8] and are often employed for selecting
distinctive features.

Information gain measures the decline in uncertainty hav-
ing a prior knowledge of attribute values [8]. With class
attribute C € {Benign,Spam} and feature F, the uncer-
tainty is given by their respective entropies H(C') and H (F).
Mathematically, the information gain of F with respect to
C is given as:

[G(C; F) = H(C) — H(C|F) (3)

We believe that evaluating the attributes by using infor-
mation gain may not give us accurate results for the given
problem, as it will bias our evaluation towards features split
in defined classes [8]. This draw-back of information gain can
be overcome by using Gain Ratio (GR). The gain ratio of fea-
ture F' with respect to class attribute C' € { Benign, Spam}
is given as GR(C ;F), where

. IG(C;F) H(C)—H(C|F)

GR(C;F) = HE) R (4)

We performed our analysis of the byte transition values
gain ratio (extracted features’ gain ratio) distribution for
the SMS dataset using 7-bit and 8/16-bit encoding schemes.
Figure 3 shows the normal probability plot for the gain ra-
tio of the attributes of the SMS dataset using different en-
coding schemes. It can be seen that the behavior of gain
ratio features’ distribution is ‘skewed’ on all of the encoding
schemes. In actuality, the gain ratio value ranges from 0 to
1. The values near 1 depict a higher classification potential
of extracted features and vice versa. In our case, it is clear
from Figure 3 that the majority of features have very low
gain ratios and can proved to be redundant for classification
algorithms. In contrast, very few features have gain ratio
values greater than 0.3. These features with high gain ratio

1792

0.999:
0.997 -

0.99 [
0.98 -

0.95
0.90

0.75 |
0.50 -
0.25

0.10 - : : : : : 1
0.05 - : : 1

0.02 - : : 1
0.01 1

0.003 : + T-bit |q
0.001 * 8/16-bit ||

Probability

s

i Il Il
0 0.1 0.2 0.3 0.4 0.5
GR

Figure 3: Normal Probability Plot of Gain Ratio.

values can be considered vital for the accurate classification
of spam messages at the access layer of mobile devices.

7.2 Classification Accuracy

The DR and FAR results of the classifiers for 7-bit, 8-bit
and 16-bit encoding on the real-world SMS spam dataset are
discussed below.

7.2.1 Training Accuracy

From Table 3, we can see that all of the algorithms show
different training accuracies for the 7-bit encoded messages.
Most of the algorithms (except SLAVE and C-SVM) achieved
low training accuracies with considerably high FAR values.
This is an expected result of the byte-level features of SMS
messages, as inferred from our qualitative analysis. The ge-
netic fuzzy algorithm SLAVE achieved the highest training
accuracy, with a DR of 93.45% and a 0.01% false alarm
rate. Naive Bayes achieved the worst FAR of 19.22% when
trained using 7-bit encoded messages. The high FAR of the
Naive Bayes algorithm was the result of the bit-swap in the
octets of the SMS message in the 7-bit encoded scheme [9)].
This bit-swapping in the 7-bit message configuration con-
travened the Naive Bayes basic theory of the independence
of attribute values. C-SVM was the only non-evolutionary
algorithm achieved detection rate of 100%, but at the cost
of a 0.1% FAR.

100
90
80
70
60

uDR
FAR
52.2

50
40
30
20
10 : 217 2.465

0

Xcs ucs

Figure 4: Average Detection & False Alarm Rate.

93.03

4|

Slave

85.75
81.75 8

79
15.91
4.72
0.13

.25
.955
ca.s5

4.65

|705

C-svMm

82.485

I24

C-Ant
Miner

Percentage (%)

Naive
Bayes

RIPPER

The 8/16-bit encoded messages are the direct representa-
tion of the characters in SMS as compared to 7-bit encoded
messages. This direct mapping of characters to the octets
representation makes the detection of spam SMS easier (see
Section 7.1). Therefore, all of the algorithms showed im-
provement in the training accuracy results on 8/16-bit en-
coded messages, as compared to 7-bit encoded messages.
Table 3 shows that SLAVE had the lowest FAR of 0.1%,
with a detection rate of 93.6%. UCS achieved 4.2% FAR on
training but with the lowest DR of 53.4%. C-SVM achieved
the highest training accuracy, with the DR of 100% but at
the cost of a 0.1% false alarm rate. RIPPER had the highest
FAR of 6.3%, with the DR of 83.6%.

7.2.2 Testing Accuracy

Table 3 shows the diversity in the testing accuracies of the
classifiers on 7-bit encoded messages. The evolutionary clas-
sifier SLAVE was able to evolve an effective rule for filtering
the SMS spam of 7-bit encoded messages. SLAVE showed
the best combined testing accuracy results, with a 92.66%
DR and 0.05% FAR. XCS had the lowest FAR of 0%, with
the worst DR of 5.6%, and was not an effective algorithm
to detect spam messages in 7-bit encoding. cAnt-Miner
and UCS achieved DR values of 83.37% and 52.2% with
7.21% and 4.7% FAR respectively. The non-evolutionary al-
gorithms, RIPPER, C4.5, and C-SVM, achieved the DR of
7%, 74% and 85.7% respectively, but at the cost of rela-
tively high FAR values of 6%, 0.5%, and 1.4% respectively.
Naive Bayes had the worst FAR of 25.5%, with a DR of
87.7%. To conclude, SLAVE stood out as the most ac-
curate evolutionary algorithm for classifying 7-bit encoded
messages with the lowest false detection of benign messages
and high detection of spam messages.

Table 3 shows a noticeable improvement in the FAR values
of the non-evolutionary algorithms for the 8/16-bit encoded
messages testing accuracy results, as compared to 7-bit en-
coded messages. The non-evolutionary algorithms, Naive
Bayes, RIPPER, C4.5, and C-SVM, achieved DR values of
83.8%, 86.5%, 84.5% and 83.6% but with 6.32%, 3.44%,
3.41%, and 2.01% FAR values, respectively. The evolu-
tionary algorithm SLAVE again achieved the lowest FAR
of 0.21%, with a detection rate of 93.4%. XCS and UCS
achieved 4.34% and 0.23% FAR values with DR of 10.2%
and 52.2%, respectively. Despite achieving good training

1793

Table 4: Average Training & Testing Times (secs).

7-bit 8/16-bit
Training | Testing | Training | Testing

XCS 415.22 0.021 431.916 | 0.02

UcCs 397.88 0.054 383.97 0.043
cAnt-Miner | 28 0.021 27.65 0.016
Slave 180 0.448 177.6 0.367
Naive Bayes | 2.14 0.001 2.25 0.001
RIPPER 56.61 0.001 30 0.001
C4.5 35.86 0.001 35.44 0.001
C-SVM 5.75 0.001 5.15 0.001

accuracy, cAnt-Miner achieved the worst FAR of 17.67% in
the detection of 8/16-bit encoded messages. This means that
the rules evolved as a result of training the cAnt-Miner al-
gorithm provided good accuracy on the transitions on which
it was trained, but poor accuracy when the byte-level tran-
sitions of the messages varied significantly.

For the current problem, a high false detection of benign
messages is unacceptable for mobile phone users in many
real-world scenarios (e.g., Bank notification SMS). There-
fore, the optimal classification of spam messages can be ob-
tained with a high detection rate and a false alarm rate of
< 1%. Figure 4 shows the average detection and false alarm
rates of the classifiers for 7-bit and 8/16-bit encoded mes-
sages. Note that most of the detection rates in the center of
the figure are distributed around the 80% mark. Figure 4
also shows that SLAVE is the only algorithm that achieves
the optimum accuracy for both 7-bit and 8/16-bit encoded
messages with an average FAR of 0.13%. If we restrict our-
selves to non-evolutionary algorithms, the C-SVM classifier
becomes the optimal choice for the problem at hand but
with a cost of 1.75% FAR.

7.3 Training and Testing Time Analysis

7.3.1 Training Time

The training time is the time required by the classifier
to evolve its rule for detection. For the given problem, the
training time is of less importance than the testing time.
It is not a problem for a mobile device to spend several
minutes in training during idle hours (e.g., at night). Ta-
ble 4 shows that the non-evolutionary algorithms outper-
formed the evolutionary algorithms (except cAnt-Miner) in
the training time. The lowest training time was achieved
by Naive Bayes, which only took 2.14 seconds to build the
model. The cAnt-Miner algorithm had the lowest training
time among the evolutionary algorithms. This was because
cAnt-Miner does not employ any mutation or crossover pro-
cedures, which take a considerable amount of time during
the evolving of rules in other evolutionary algorithms. The
Michigan style LCS (XCS and UCS) consumed more time
in training than the fuzzy rule learning classifier SLAVE.

7.3.2 Testing Time

Table 4 shows that the C4.5, RIPPER, C-SVM, and Naive
Bayes algorithms had small testing times, similar to their
smaller training times. The cAnt-Miner and XCS algorithms
had the lowest testing times of evolutionary classifiers. The
fuzzy rule learning classifier SLAVE had the highest testing
time compared to all of the other classifiers. A higher testing

time for an algorithm might result in the delayed reception
of SMS on a mobile device and smart phone.

7.4 Implications

It is obvious from our classification accuracy results that
the evolutionary algorithm SLAVE had the lowest FAR,
with an average DR of 93.03%. While achieving such out-
standing results, the SLAVE algorithm was less efficient than
the non-evolutionary algorithms in terms of speed. Naive
Bayes turned out to be the fastest classifier but at cost of
high FAR. Likewise, some of the other algorithms that took
less testing time had high FAR values. We believe that the
testing times of the evolutionary classifiers could be notably
decreased by using efficient feature selection schemes. The
redundant features could be removed by using quality mea-
sures such as information gain and gain ratio. The higher
ranking features could then be selected in the training of
classifiers. This would not only improve the classification
accuracy but also decrease the testing time by reducing the
complexity of the evolved rules.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a real-time spam detection
architecture that models the byte-level transitions of SMS
PDU as a potential input attribute for the different classifi-
cation algorithms. We performed a comprehensive study of
four evolutionary and four non-evolutionary classifiers. The
other important contribution of this paper is the collection
of real-world SMS messages and its classification in different
underlying encoding schemes. To the best of our knowl-
edge, this is the first investigative study of evolutionary and
non-evolutionary classifiers to develop a real-time detection
filter for solving the SMS spam problem at the access layer
of smart phones. The focus of our future work will be to
study the effect of features selection on the classification ac-
curacy at the access layer. We also plan to extend this work
to the mitigation of other security threats in mobile devices.

9. REFERENCES

[1] AuMmED, F., HAMEED, H., SHAFIQ, M. Z., AND FAROOQ, M.
Using spatio-temporal information in API calls with
machine learning algorithms for malware detection. In
Proceedings of the 2nd ACM workshop on security and
artificial intelligence (NY, USA, 2009), ACM, pp. 55-62.
ALCALA-FDEZ, J., SANCHEZ, L., GARCiA, S., DEL JESUS,
M., VENTURA, S., GARRELL, J., OTERO, J., ROMERO, C.,
BAcARDIT, J., Rivas, V., ET AL. Keel: a software tool to
assess evolutionary algorithms for data mining problems.
Soft Comput. 13, 3 (Oct. 2008), Springer-Verlag, 307-318.
BERGSTEN, H. Comprehensive study gives insight into
mobile spam, June 2005. http:
//vwww.ericsson.com/ericsson/corpinfo/publications/
telecomreport/archive/2005/june/mobile_spam.shtml.
BERNADO-MANSILLA, E., AND GARRELL-GUIU, J.
Accuracy-based learning classifier systems: models, analysis
and applications to classification tasks. Evolutionary
Computation 11, 3 (2003), MIT Press, 209-238.

CoHEN, W. Fast Effective Rule Induction. In Proceedings of
the 12th International Conference on Machine Learning
(July 1995), Morgan Kaufmann, pp. 115-123.

CORMACK, G. V., GoMEZ HIDALGO, J. M., AND SANZ,

E. P. Feature engineering for mobile (SMS) spam filtering.
In Proceedings of the 30th annual conference on Research
and development in information retrieval (New York, NY,
USA, 2007), ACM, pp. 871-872.

[4

(5]

6

1794

[7] CormaAcK, G. V., G6MEZ HIDALGO, J. M., AND SANZ,

E. P. Spam filtering for short messages. In Proceedings of
the 16th ACM Conference on information and knowledge
management (NY, USA, 2007), ACM, pp. 313-320.
COVER, T., THOMAS, J., WILEY, J., ET AL. Elements of
information theory, vol. 306. Wiley Online Library, 1991.
ETSI-GSM. 03.40 Technical realization of the SMS.
http://www.3gpp.org/ftp/Specs/html-info/0340.htm.
GOMEZ HipALGO, J. M., BRINGAS, G. C., SANz, E. P., AND
GARcia, F. C. Content based SMS spam filtering. In
Proceedings of the 2006 ACM symposium on Document
engineering (NY, USA, 2006), ACM, pp. 107-114.
GRUMBLETEXT. UK consumer complaints.
http://http://wuw.grumbletext.co.uk/.

GSMWORLD. GSMA to Address Spam and Fraudulent
Messaging Threats for Consumers, Mar. 2010. http://
gsmworld.com/newsroom/press-releases/2010/4797 .htm.
HeaLy, M., DELANY, S., AND ZAMOLOTSKIKH, A. An
assessment of case-based reasoning for short text message
classification. In Proceedings of 16th Irish Conference on
Artificial Intelligence and Cognitive Science (Sept. 2005),
AICS ’05, pp. 257—266.

HivL, T., AND LEWICKI, P. Statistics: methods and
applications. StatSoft, 2006.

IRONPORT. Case-Study: IronPort Helps a Nationwide
Carrier Stop Wireless Threats. http://www.ironport.com/
pdf/ironport_case_study_wireless.pdf.

OpA, T., AND WHITE, T. Developing an immunity to spam.
In Proceedings of the 2003 international conference on
Genetic and evolutionary computation (Berlin, Heidelberg,
2003), GECCO’03, Springer-Verlag, pp. 231-242.

OpA, T., AND WHITE, T. Increasing the accuracy of a
spam-detecting artificial immune system. In The 2003
Congress on Evolutionary Computation (Dec. 2003), vol. 1
of CEC ’03, IEEE, pp. 390 — 396.

OTERO, F. E., FREITAS, A. A., AND JOHNSON, C. G.
cAnt-Miner: An Ant Colony Classification Algorithm to
Cope with Continuous Attributes. In Proceedings of the 6th
international conference on Ant Colony Optimization and
Swarm Intelligence (Berlin, Heidelberg, 2008), ANTS ’08,
Springer-Verlag, pp. 48-59.

PArRPINELLI, R., LOPES, H., AND FREITAS, A. An Ant
Colony Algorithm for Classification Rule Discovery. Data
Mining: A Heuristic Approach 208 (2002), 191-132.
PORTIO-RESEARCH. Mobile Messaging Future. http:
//www.portioresearch.com/mobile-factbook-2009.php.
QING, J., MAoO, R., BIE, R., AND GaoO, X. An AIS-based
e-mail classification method. In Proceedings of 5th
international conference on Emerging intelligent computing
technology and applications (Berlin, Heidelberg, September
2009), ICIC’09, Springer-Verlag, pp. 492-499.

QUINLAN, J. R. Improved use of continuous attributes in
C4.5. Journal of Art. Int. Res. 4 (March 1996), 77-90.
RAFIQUE, M. Z., AND FAROOQ, M. ‘Be Liberal in What You
Recieve’ on your mobile phone. In Proceedings of 20th
Virus Bulletin Conference (Vanc., Canada, 2010), VB ’10.
RisH, I. An empirical study of the naive Bayes classifier. In
Workshop on Empirical Methods in Artificial Intelligence
(Seaatle, USA, Aug. 2001), IJCAI 2001, pp. 41-46.
SOPHOS. 200 million cellphone users hit by SMS spam
tidalwave in China, Mar. 2008. http://www.sophos.com/
pressoffice/news/articles/2008/03/china_sms.html.
TEXT4EVER. White Paper: UK spam study, Oct. 2009.
http://www.txtdever.com/study/spamstudy.pdf.

WILSON, S. Generalization in the XCS classifier system. In
Proceedings of the 3rd Annual Genetic Programming
Conference (June 1998), Morgan Kaufmann, pp. 665-674.
WILSON, S. W. Get Real! XCS with Continuous-Valued
Inputs. In Learning Classifier Systems, From Found. to
Apps. (London, UK, 2000), Springer-Verlag, pp. 209-222.

(8]
[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

19]

20]

(21]

(22]

(23]

[24]

[25]

[26]

27]

28]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

