
Transition Coverage Testing for Simulink/Stateflow Models
Using Messy Genetic Algorithms

Jungsup Oh
Sungkyunkwan University

300 Chencheon Dong
Suwon, South Korea

jungsup.oh@skku.edu

Mark Harman
University College London

Gower Street, London
WC1E 6BT, UK

m.harman@cs.ucl.ac.uk

Shin Yoo
University College London

Gower Street, London
WC1E 6BT, UK

s.yoo@cs.ucl.ac.uk

ABSTRACT
This paper introduces a messy-GA for transition coverage
of Simulink/StateFlow models. We introduce a tool that
implements our approach and evaluate it on three bench-
mark embedded system Simulink models. Our messy-GA
is able to achieve statistically significantly better coverage
when compared to both random search and to a commercial
tool for Simulink/StateFlow model Testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
Algorithms

Keywords
Search-Based Software Engineering, Model-Based Testing

1. INTRODUCTION
This paper is concerned with search based testing for tran-

sition coverage of Simulink/Stateflow models. State based
models are widely used in the design and implementation of
embedded systems. This is an important domain for search
based testing because of the prevalence of embedded sys-
tems. It has been estimated that the total number of em-
bedded systems, world wide is 1.6×1010, rising to 4.0×1010

by the year 2020 [9]. By these estimates there are already
more than three embedded systems per global head of pop-
ulation with a growth trend far exceeding global population
growth forecasts. Furthermore, these systems control vital
aspects of daily life including telecommunications, health-
care, automotive and aerospace systems.

Testing and other verification activities are even more im-
portant because of the difficulty of post deployment fault
correction in such models, which are often embedded in de-
vices that can neither be easily nor cheaply recalled and
for which the code is often inaccessible. However, of more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

than 300 papers on Search Based Software Testing (SBST)
only about 5% concern test data generation for state based
models and fewer than 2% concern Simulink models1.

Simulink/Stateflow (SL/SF) is one of the most popular
modelling languages in the automotive and aerospace do-
main. Simulink [34] is a software package for modelling,
simulation and analysis of system-level design features of
dynamic systems. A Simulink model consists of connected
blocks, each of which is a functional unit. Models can be
designed hierarchically using a block as a subsystem of the
other block. Simulink also includes Stateflow [36] blocks,
which enable modelling of event-based functionalities.

Figure 1 contains a SL/SF model for the automotive power-
window system (PW) used in our evaluation in Section 4.
Simulink blocks and a Stateflow block are described in de-
tail on the right hand side of the figure. It contains two of
the features that illustrate the challenges involved in testing
SL/SF models.

The first challenge is the operational semantics of SL blocks,
such as the Discrete-Time Integrator block in Figure 1.
The integrator block is often used to integrate or accumulate
signals. Some transition triggers may require this block to
accumulate a specific amount of signal before they become
activated. The existence of such blocks significantly reduces
the chance of generating a valid test without a guide.

The second challenge is the existence of cyclic paths. In
the model, the trigger for transition (17) requires hit to be
0. However, the only way of reaching the source state (6)

is to go over the cyclic paths between state (3), (5) and
(6) twice: once using transition (14) and the second time
using transition (16). The shortest transition tour that cov-
ers transition (17) would be either (11)-(12)-(14)-(15)-

(12)-(10)-(16)-(17) or (11)-(12)-(10)-(16)-(15)-(12)-
(14)-(17).

This paper introduces an SBST approach for SL/SF mod-
els using messy-GA (mGA). Naturally the choice of rep-
resentation and crossover operator are important success
drivers for any evolutionary approach [16]. Our approach
can generate test data for transition coverage and assumes
no, a priori, knowledge of the length of the input sequence.
It can handle Simulink blocks, concurrency, nested loops and
cyclic paths and it is evaluated on three practical SL/SF
models: a stop watch model and two automative system
models. We use a modified cut and splice crossover opera-
tor that promotes higher diversity of input sequence length,

1Publication trend analysis data source: SBSE repository at
www.sebase.org/sbse/publications/repository.html.
Accessed January 4th 2011.

1851

dri_up (3)
en: moveup=1;

dri_ne (5)
en: moveup=0;

hitcount (6)
en: moveup=0;

dri_do (4)
en: moveup=-1;

cycledone (7)

[dr==2]
(13)

[dr==1]
(12)

[dr==1]
(9)

[dr==0]
(10)

[winhit]/hit+=1;
(14)

[hit==0]
(17)[dr==2]

(15)
[dr==2]

(8)

[winhit]/hit-=1;
(16)

[dr==2]
(18)

12

2

3

1

2

3

/hit=0
(11)

1 int32 K Ts
z-1

moveup

driver Data-type
conversion

chart

dr

winhit

winhit

Discrete-Time
Integrator

-1

Lower_Hit_Limit

1

Upper_Hit_Limit

>=

relational
operator

<=

relational
operator

OR

logical
operator

Window_Pos

Figure 1: SL/SF model of a car power-window. It contains two factors that are challenging to automated
test data generation. First, the Discrete-Time Integrator SF block requires a certain number of accumulated
input to generate a signal. Second, the SF block contains a cyclic path.

thereby guiding the search towards those paths that either
are cyclic or include accumulation blocks.

The primary contributions of this paper are as follows:

1. The paper introduces a automated test data genera-
tion approach for SL/SF models using messy-GA. The
messy-GA allows us to generate transition coverage-
adequate input sequences without fixing the length
of sequences in advance. The approach is also able
to cope with not only cyclic paths and concurrency
but also Simulink blocks such as integrator, delay and
change detection.

2. The paper introduces a tool that implements our ap-
proach and presents an empirical study to evaluate it.
The results of the study reveal that our approach out-
performs both the random approach and a commer-
cially available tool with respect to transition cover-
age criterion. For each of the three systems the per-
formance of our approach is significantly better than
both random search and the commercial tool at the
99% confidence level (for both t-test and the non para-
metric Wilcoxon test).

The organisation of the remainder of the paper is as fol-
lows. Section 2 formalises the definitions of SL/SF models
upon which our approach is based, while Section 3 describes
our algorithm and its implementation. Section 4 describes
the empirical evaluation of our approach, the results of which
are discussed in Section 5. In order to give the reader the
context in which our work resides, Section 6 describes the
previous work to which our work is related and sets out some
directions for future work that draw in our results as well as
this previous work. Section 7 concludes.

2. DEFINITIONS
There are many variations of SL/SF models with subtle

differences. For clarity, this section defines the SL/SF mod-
els used in or work. A state-based model is defined as a tuple
M = (S,Π, V, T), where S is a set of states, Π is a set of
events, V is a set of variables and T is a set of transitions [20].
Let Θ denote an interpretation of V that assigns an initial

value to each variable v in V . For example, the initial value
of the variable m in Figure 2 is defined by Θ(m) = 0. A
transition t ∈ T is a tuple (sS , trg, gr, a, sT): sS ∈ S is the
source state of the transition, sT ∈ S is the target state of
the transition, trg is a predicate on Π, gr is a predicate on
V and a is a set of assignments to V . Let sS(t) denote the
source state of a specific transition t, sT (t) the target state
of a specific transition t and so on.

We partition the set of variables, V , into three disjoint
subsets: VI , VO and VL, each representing a set of input,
output and local variables respectively. Input variables are
set by an external input of the state-based model. Out-
put variables communicate the output from the state-based
model to the external world. Finally, local variables are only
used internally.

A Stateflow model can contain a hierarchical and/or a
concurrent structure defined over states. A state is either
basic or composite. A basic state is one without any child
state, whereas a composite state contains at least one child
states (a set of which is denoted by ch(s)). For example,
State 1 in Figure 2 is a composition state, while all others
are basic. A composite state s is classified either as an OR-
state (s||) or as an AND-state (s&). An OR-state has only
one active sub-state at any time, i.e., the model in Figure 2
being in State 1 implies that the model is actually in either
State 2, 3, 4 or 5 but not in more than one of the sub-states
at any time. On the other hand, child states of an AND-
state are all active simultaneously. Let S|| and S& represent
the set of OR- and AND-states respectively; it follows that
S = S||∪S&. Finally, any Stateflow model contains a unique
state called the root state, which is the state at the highest
level of this hierarchy. In Figure 2, State 1 is the root state.

A configuration C is a maximal set of states in which a
system can be simultaneously. More formally, C ⊆ S is
called a configuration if all the following conditions are met:

• C contains the root state of M

• ∀s& ∈ S, (s& ∪ ch(s&) ∈ C) ∨ (s& ∪ ch(s&) /∈ C)

• ∀s|| ∈ S, (s|| ∈ C∧|ch(s||)∩C| = 1)∨(s&∪ch(s&) /∈ C)

Therefore, each configuration can be uniquely characterised
by its basic states. There are 4 configurations in Figure 2,

1852

1

2 3

5 4

/m=0

[c≥0]

[a>0]

[d<10]/m=m+1;

[b>4]

Figure 2: A simple Stateflow model

which are {1, 2}, {1, 3}, {1, 4} and {1, 5}. Since the root
state is always included in any configuration, these notations
can be simplified to {2}, {3}, {4} and {5}.

We define a base node to be a snapshot of an executable
SL/SF model. More formally, a base node B is a tuple
(C, Vgr(tO(C)), īC) given a configuration C. First, let tO(C)
be the set of transitions whose source state is in the con-
figuration (sS(t) ∈ C). The set gr(tO(C)) contains the
guards of all outgoing transitions from the states in the
configuration C, i.e. gr(tO(C)) = {gr(t)|∀t, sS(t) ∈ C}.
Finally, Vgr(tO(C)) is called transitional trigger values and
is defined as follows: Vgr(tO(C)) = {v|(v ∈ VL ∪ VO) ∧
(v is used by gr(tO(C))}

Note that v /∈ VI , i.e. Vgr(tO(C)) does not include variables
that depend on external inputs. Let us consider an example
with the configuration C = {1, 4} in Figure 2. tO(C) would
be the transition from State 4 to State 5, as this is the only
outgoing transition from the states in C, {1, 4}. gr(tO(C))
would be {[a > 0]}. Finally, Vgr(tO(C)) would be {a : 5}.
Note that other variables, b, c, d and m are not included
because they are not involved in the guard [a > 0].

It is possible to uniquely identify base nodes given a con-
figuration, C, and transition triggers, Vgr(tO(C)). Two dis-
tinct base nodes may have the same configuration C but
contain different transition triggers, Vgr(tO(C)). The formal
definition of the base node forms the phenotype representa-
tion, which is described in more detail in Section 3. The last
element of the base node tuple B is an input sequence, īC .
This is a sequence of inputs that will lead the SL/SF model
from its initial state to the state of the snapshot denoted
by the pair of configuration C and the transition triggers
Vgr(tO(C)).

3. TEST DATA GENERATION ALGORITHM
The test case generator aims to find test cases that achieve

the given coverage criterion. This paper uses all transition
coverage. Algorithm 1 shows the pseudo-code for the main
algorithm for transition coverage test data generation. The
algorithm first sorts all transitions in the given SL/SF model
by topological order. For example, with the model depicted
in Figure 2, the transition from State 3 to State 4 should
be attempted after the test case for transition from State
2 to State 3 has been found, providing the base node that
contains the source state in the configuration. The algo-
rithm starts with an initial base node b0 that represents
the initial state of the model. In the main loop, the algo-
rithm searches for test case for each transition by invoking
FindTestCase. The algorithm saves the collateral coverage
achieved for non-target transitions. The FindTestCase pro-
cedure is essentially a messy Genetic Algorithm applied to
test case generation for SL/SF models.

Initial population: An individual solution for the messy-
GA is a data-structure that contains a base node, B: the in-
put sequence of the base node forms the chromosome, while
each step of the sequence forms the genes. As discussed in
Section 2, the pair of configuration and transition triggers is
used to identify individual snapshots. In order to begin the
search for a test case that executes a specific transition, the
source state of the transition should be active, i.e. be in the
configuration. Once the source state is in the configuration,
the algorithm can seek to generate test inputs that will trig-
ger the target transition. When initialising the population
for a specific target node, a base node b is selected from a list
of base nodes L if the configuration of b contains the source
state. If the number of qualifying base nodes is larger than
the population size, base nodes with higher fitness values
are prioritised. If there are fewer qualifying base nodes than
the population size, some of the qualifying base nodes will
be duplicated to initialise the population.

Algorithm 1: Main Algorithm for Test Data Generation
for Transition Coverage

Input: A SL/SF model M = (S,Π, V, T)
Output: A list of base-nodes, L, that satisfies the tran-
sition coverage criterion
(1) Sort T in topological order
(2) L← ∅
(3) Add the initial base node, b0, to L
(4) foreach t ∈ T
(5) L← L∪FindTestCase(t)
(6) if transition coverage is satisfied then break
(7) return L

Fitness Evaluation: FindTestCase uses Korel’s objective
function table [27] to calculate the branch distance for each
predicate that forms the guard of the transition of interest.
Branch distance is the sum of objective function values of
each term in the target transition; it measures how close the
test input is to satisfying the guard of the target transition.
Since the input sequence has an unspecified and potentially
unbounded number of steps, it is possible for an individ-
ual to visit the target transition multiple times, initiating
the calculation of branch distance multiple times. However,
the algorithm uses only the final measurement of branch
distance. Despite the relative simplicity of this approach,
our results indicate that it can be effective for SL/SF mod-
els, though undoubtedly it would perform poorly if used for
SBST of programs rather than models. A further fortunate
side effect of our approach is that the unbounded nature of
the input means that there is no need for normalising fitness
values, avoiding issue with normalisation[4].
Genetic Operators: We use binary tournament selection
and a mutation operator adds a single step to the input se-
quence by adding random input values. These are entirely
standard. However, we use a cross over operator and repre-
sentation that is specifically designed for the SL/SF problem
in order to overcome the challenges for SL/SF testing men-
tioned in the introduction. With test data generation for
SL/SF models, a key insight is that crossover should be con-
strained to occur only at specific points in order to preserve
building blocks and to yield recombinations of compatible
genetic material, rather than arbitrary material.

We employ a ‘cut and splice’ crossover that allow us to
cut two parents at different locations and splice the parts
together. This naturally entails a variable length chromo-

1853

some representation, which is why we combine this crossover
with a messy-GA algorithm. Our goal is to ensure that se-
quences are spliced at points which share the same config-
uration. Where this is possible for two parents, a cut and
splice point is chosen so that the input flows continuously
from the part of the child chromosome taken from one parent
to that part of the child taken from the other parent. Where
this is not possible the crossover chooses an arbitrary splice
point.
Implementation: Figure 3 describes the architecture of
the test data generator, which contains 3 main components:
executable model generator, coverage goal generator and
test case generator. The executable model generator cre-
ates an executable model from an SL/SF model in order to
dynamically valuate test inputs. The coverage goal gener-
ator provides the list of goal elements of the SL/SF model
under test to be covered by test cases following a cover-
age criterion. The test case generator uses the messy-GA
to construct test cases for the criteria supplied to it by the
coverage goal generator on the model from the executable
model generator.

SL/SF
Model

Executable
Model

Generator

Test Cases

Coverage
Goal

Generator

Coverage
Goals

Executabe
Model

Test Case
Generator

Set Test Input &
Execute ModelGet

Feedbacks

Figure 3: Test Data Generation Framework

A feedback report is generated for a guard contains the
following information: 1) id of the guard, 2) boolean eval-
uation and branch distance of each term in the guard (fol-
lowing Trace et al.) and 3) the final boolean evaluation of
the guard. An example report is T1|T(-3.0)F(2.0)|T. This
is interpreted as follows: the guard for transition T1, which
consists of two terms, has been evaluated; the first term
has been evaluated to be True with the branch distance of
-3.0 while the second term has been evaluated to be False

with the branch distance of 2.0. The guard itself has been
resolved to be True, thereby initiating the transition.

4. EXPERIMENTAL SETUP
The empirical study uses 3 SL/SF models from the MATLAB

benchmark suite in order to evaluate the proposed approach
with respect to the full transition coverage criterion. All 3
models have been studied for test data generation in the lit-
erature. The PW model contains a relatively simple Stateflow
chart but a complicated Simulink block (an integrator). It
also contains a cyclic path. The sf_car model represents an
automatic transmission controller of a modern car; it con-
tains concurrent states and events. The logic determines
when the gear goes up or down. The stopwatch model is
a model of a stopwatch logic. This model has several junc-
tions, some of which work like nested loops. This makes

Table 1: Summary of the subject models
Model No.States No.Transitions

PW 5 11
sf_car 15 19
stopwatch 7 15

Table 2: Transition Coverage Results
Model Stats mGA Random Reactis

PW

Success Rate 8% 0% 0%
Mean Cov. 83.17% 54.55% 81.82%
Max. Cov. 100% 54.55% 81.82%
Min. Cov. 81.82% 54.55% 81.82%

sf_car

Success Rate 90% 0% -
Mean Cov. 98.57% 76.57% -
Max. Cov. 100% 85.71% -
Min. Cov. 78.57% 71.43% -

stopwatch

Success Rate 45% 0% 0%
Mean Cov. 96.27% 86.53% 93.33%
Max. Cov. 100% 86.67% 93.33%
Min. Cov. 86.67% 80.00% 93.33%

stopwatch model an ideal subject for checking whether a
test data generation algorithm can solve the loop problem.
One transition in this model requires 6,000 (= 60 * 100) it-
erations of the loop before being triggered. It also contains
several Simulink blocks.

The proposed messy-GA approach is compared to two
other test data generation approach: random test data gen-
eration and a well-known commercial tool for Model-Based
Testing called Reactis. Random approach provides a base-
line and a sanity check. The internals of Reactis tool is not
known as it is a commercially available tool but it is said
to use guided simulation of the model. The population size
of the messy-GA has been set to 100, while the mutation
rate has been set to 0.1. In order to cater for the inherent
randomness in the algorithm, each of the 3 algorithms have
been repeated 100 times.

The research questions for the study are now defined.
RQ1 concerns the effectiveness of the use of messy-GA in or-
der to generate test data for SL/SF models while RQ2 asks
a more qualitative question and is answered by analysing the
SL/SF models as well as the results of the empirical study.
RQ1. Effectiveness: for a given coverage criterion, how
does messy-GA perform against other test data generation
approaches? Section 5 answers RQ1 by observing the cov-
erage values achieved by different approaches. On the con-
trary,
RQ2. Insights: are there any specific properties of SL/SF
models that make messy-GA an effective/ineffective tool for
test data generation? Section 5.1 answers RQ2 by analysing
the test input generated by the messy-GA in detail.

5. RESULTS
Table 2 shows the results of our experiments, while Fig-

ure 4 depicts the mean coverage observed from 100 runs of
each tool for each subject model, along with the 95% con-
fidence level intervals. The column labelled ‘Success Rate’
in Table 2 denotes the percentage of successful runs; those
producing 100% transition coverage. For all 3 subject mod-
els the messy-GA produces not only higher mean coverage
values but also higher success rates. Reactis fails to gen-
erate any test data for sf_car because it cannot cope with
some complicated Simulink blocks included in the model. In

1854

Figure 4: Mean coverage over 100 runs

PW sf_car stopwatch

0
20

40
60

80
10
0

Mean and 95% CI of Transition Coverage

Benchmarks

C
ov
er
ag
e
(%
)

mGA
Random
Reactis

Table 3: One Sided t-Test Outcomes
Comparison PW sf_car stopwatch

vs. Random < 2.2e-16 < 2.2e-16 < 2.2e-16
vs. Reactis 0.002102 - 1.049e-13

other models the messy-GA outperforms both the random
tool and Reactis.

To gain more confidence, the results in Table 2 have been
statistically tested using a one-sided t–test (See Table 3).
A one-sided Wilcoxon non-parametric test was also applied
(with identical significance at the 99% level) indicating that
no assumptions need be made about the distributions of
results. The null hypothesis is that the transition cover-
age achieved by the messy-GA is equal to coverage val-
ues achieved by the other two approaches. The alterna-
tive hypothesis is that messy-GA achieves higher coverage
than the other two. For all cases2, the null hypothesis is
rejected with confidence, i.e. messy-GA does outperform
other two approaches with statistical significance. This an-
swers RQ1: the messy-GA does produce higher transitional
coverage compared to both random and a commercial tool.

5.1 Insight Result for PW model
Let us revisit the PW model example from the introduc-

tion to examine how our messy-GA generates test input.
Table 4 gives an input sequence generated by the messy-GA
for transition (17) of the model PW. For brevity we list only
salient parts of the entire input sequence; the shortest input
sequence generated contained more than 200 steps. Each
row contains a single step. The input sampling rate is 0.05
seconds, hence the time column.

It can be seen that during the part (a) of the input se-
quence, the integrator reached the pre-defined accumulation
level and triggered the winhit signal, which resulted in tran-
sition (16) being activated in the next step. Similarly, the
part (b) led to triggering of winhit again. However, it is
transition (14) that is triggered after (b), leading the exe-
cution towards the subsequent execution of transition (17).

2Reactis was unable to cover sf_car so no test was possible
in this case.

Table 4: A test input generated by messy-GA for
transition (17) of model PW depicted in Figure 1

Time Test Input Feedbacks
driver

0.00 0 -
0.05 1 12|T(0.00)|T

0.10 1 14|F(1.00)|F, 10|F(1.00)|F, 13|F(1.00)|F

0.15 0 14|F(1.00)|F, 10|T(0.00)|T

0.20 0 9|F(1.00)|F, 16|F(1.00)|F, 8|F(2.00)|F

(a) . . .
1.25 0 9|F(1.00)|F, 16|F(1.00)|F, 8|F(2.00)|F

1.30 0 9|F(1.00)|F, 16|T(0.00)|T

1.35 0 17|F(1.00)|F, 15|F(2.00)|F

(b) . . .
4.95 1 14|T(0.00)|T

5.00 2 17|T(0.00)|T

5.05 1 18|F(1.00)|F

5.10 2 18|T(0.00)|T

This illustrates how the messy-GA increases the length of an
input sequence until the integrator block triggers the neces-
sary event. The algorithm also guides the execution so that,
when the second time the integrator triggers the necessary
event, the correct cyclic path is chosen in order to cover a
specific transition. This shows how messy-GA can overcome
the some of the SL/SF challenges answering RQ2.

6. RELATED AND FUTURE WORK
During last decade, evolutionary algorithm has been widely

used to generate test data. It has been successfully ap-
plied to many testing problems including path-based testing,
mutation testing, stress testing, regression testing as well
as testing of Object–Oriented, Aspect–Oriented, concurrent
and Agent–Oriented systems. There are several excellent
surveys of this previous SBST work [1, 14, 19, 37]. How-
ever, as these surveys all reveal, very little of the literature
on SBST is concerned with state based models, and an even
smaller proportion with SL/SF Models. In this section we
review related work on SBST for state based models and its
relationship to our work.

There has been considerable work in the SBST for the
generation of Unique Input Output sequences and related
test sequences of FSM testing [7, 12, 13]. Derderian et al.
also applied GA to generate test data for Finite State Ma-
chine(FSM) with temporal constraints [8]. The fitness func-
tion was based on the number of temporal constraint vio-
lations committed by each candidate input sequence. How-
ever, SL/SF models are considerably more demanding, since
they are extended FSMs and so these FSM testing approaches
do not directly apply to SL/SF testing.

Lefticaru et al. [28, 30, 31, 29] presented an application of
GA to generate test input that executes a specific path in
an extended FSM, drawn from UML models. This work is
closer to that required for testing SL/SF, since the FSMs are
extended, though the authors do not report on approaches to
handle concurrency nor does their formalism include state-
flow blocks.

Windisch et al. [47, 48, 49] used Simulated Annealing
(SA), Genetic Algorithms (GA) and Particle Swarm Opti-
mization (PSO) in order to generate continuous input signal
for real-time SL/SF models: the signals were generated by
a sequence of individual signal blocks. Lindlar [32], incor-
porated Lehmann and Bringmann’s Time Partition Testing
process into SBST for models. However, unlike our approach
this work retains the concept of an approach level metric as

1855

part of fitness and fixed length input sequences. Ghani et
al. [10] used GA and SA for switch block path coverage of
Simulink model (but, unlike our work, without Stateflow
blocks). They report that GA and SA achieved similar cov-
erage, but GA was more often successful, which was one of
our motivations for using a GA in our work, which can be
thought of as an extension of the work of Ghani et al.

Zhan and Clark [53] combined random testing and search-
based test data generation in order to generate branch ade-
quate test data more efficiently. After applying random test
data generation, remaining test requirements were targeted
using search-based techniques. Zhan and Clark [51] also de-
fined mutation operators for Matlab/Simulink models and
use SBST to find mutation adequate test data for these sets
of mutants. Zhan and Clark [50] also used a simulation-
based approach to SBST for Matlab/Simulink models with
basic blocks. They simulate the execution of the block in
a ‘black box’ style to attempt to generate test data for the
block. They subsequently developed this approach to incor-
porate elements of symbolic execution to address the state
variable problem [52].

Our work also differs from this previous work in its method
of handling concurrency, which presents further challenge for
SBST. Kim et al. [26] use a sequentialisation technique to
convert a (concurrent) model into a sequential equivalent.
However, this can create a state explosion, as sequentialisa-
tion is well-known to suffer from this problem. Katayama
et al. [25] seek to overcome any potential state explosion
by using an extra graph to denote concurrent interactions,
while Ambrosio et al. [2] generate test data for each se-
quential EFSM before attempting to combine the results for
the concurrent ensemble. Our approach avoids the need for
sequentialisation, external graphs or piecewise composition
because it uses a crossover operation specifically tailored for
SL/SF. However, the careful construction of representation
and crossover operators for SBSE has been previously stud-
ied for other problems such as modularisation [16] and SBST
for Object Oriented Programs [5].

Other authors [41, 39, 40, 43] have also considered the
problem of state variables in programs. These program
are not state based models, but their use of state variables
means that the number of times a method is executed may
affect whether a branch is covered, rather than merely the
values passed to the method on a single call. This compli-
cates SBST for programs. At the model level, the presence
of counter variables creates similar problem. For instance,
it may lead to infeasible paths.

Kalaji et al. [22, 24] used GA to guide the search for feasi-
ble transition paths (rather than test cases to exercise them).
They show that a GA can overcome problems with counter
variables. Kalaji et al. [23] also show how the problem of
state variables can be overcome using a testability trans-
formation [17]. Complementary to this, Zhao et al. pro-
posed an approach to generate test data for feasible EFSM
paths [54]. Kalaji et al’s work on feasible paths in EFSMs
could be combined with a Species Per Path approach [38] to
locate sets of feasible paths to those difficult target transi-
tions that transition coverage approaches (like ours) may be
unable to cover.

There are other work on generating test data for SL/SF
models without using a search-based approach. Satpathy et
al. tried to outperform commercial tools by combining dif-
ferent existing approaches [44]: Directed Automated Ran-

dom Testing (DART) [11], hybrid concolic testing [33] and
feedback-directed random testing [42] have been applied in
conjunction with each other based on a heuristic.

Commercial tools are available for testing SL/SF models.
T-VEC [46] from T-VEC technologies automatically gen-
erates test cases using domain testing theory. Safety Test
Builder [6] from Greensoft generates numerical test cases
by building exhaustive execution trees from automata-based
specifications. This tool is based on symbolic execution and
constraint solving. BEACON Tester [21] from Applied Dy-
namics International is a tool for generation of code from
Simulink models and automatic generation of test vectors.
The Automatic Unit Test Tool (AUTT)-part of BEACON
creates test vectors. These test vectors target several cover-
age criteria and other common error sources such as numeri-
cal overflows. Simulink Design Verifier [35] from Mathworks
generates random test inputs after statically analysing the
SL/SF model. Reactis [45] from Reactis Systems uses guided
simulations using algorithms and heuristics. It is one of the
most famous commercial tools for generating test cases from
an SL/SF model.

Our work is the first to present results for transition cov-
erage of Simulink models with Stateflow blocks. It is also,
to the author’s knowledge, the first paper to present empiri-
cal results that compare SBST approaches with commercial
off-the-shelf tools for state based model testing. Therefore,
despite the relative lack of work on SL/SF testing compared
to other topics in SBST, it is perhaps an encouraging sign
of the increasing maturing of the field that it is possible
to compare results from prototype SBST tools such as ours
to commercial products in this way. Naturally the usual
caveats about threats to validity and the degree to which
one can generalise from these initial results still apply.

Though our results are encouraging, but there remains
more to be done. In future work, we shall explore the de-
gree to which recent results [3] on dependence analysis for
state based models can help to determine those inputs that
can affect whether a transition is covered. This information
will be used to investigate whether domain reduction tech-
niques, found successful in search based testing for imper-
ative [15] and aspect oriented [18] programming styles can
also be extended to reduce effort and improve effectiveness
for search based testing of SL/SF models. Future work will
also include a wider evaluation of the proposed approach
and exploration of the performance of other search based
algorithms such as the hill climbing/Alternating Variable
method, Simulated Annealing and Genetic Programming.

7. CONCLUSION
This paper presents a messy-GA based framework for gen-

erating test data for SL/SF models. It consists of three ma-
jor components; the executable model generator, the cover-
age goal generator and the test case generator. The frame-
work creates an executable model from a SL/SF model (ex-
ecutable model generator), sets up a test plan based on a
coverage criterion (coverage goal generator) then dynami-
cally generates test data by applying messy-GA using the
feedback from the executable model (test data generator).

The empirical evaluation compared the proposed frame-
work to both the random approach and a commercially avail-
able test data generation tool, using 3 widely-studied bench-
mark SL/SF models. The results show that, without any
a-priori knowledge of the required length of test input se-
quences, messy-GA is outperforms other algorithms with re-

1856

spect to the full transition coverage criterion, even when
there exist memory-contained Simulink blocks, nested loops
or cyclic paths. The proposed framework also consistently
outperformed the commercially available tool, which failed
to generate any test data for one of the subject models.

Acknowledgement This work was supported by the Na-
tional Research Foundation of Korea funded by the Korean
Government (NRF-2009-352-D00266) and PRCP through
NRF of Korea funded by MEST (2010-0020210).

8. REFERENCES
[1] S. Ali, L. C. Briand, H. Hemmati, and R. K.

Panesar-Walawege. A systematic review of the
application and empirical investigation of search-based
test-case generation. IEEE Transactions on Software
Engineering, 2010. To appear.

[2] A. M. Ambrosio, E. Martins, S. V. de Carvalho, and
N. L. Vijaykumar. An Approach for Concurrent
FSM–based Test Case Generation. In 36rd Workshop
dos Cursos de Computacao Aplicada do INPE -
WORCAP, 2003.

[3] K. Androutsopoulos, D. Binkely, D. Clark, N. Gold,
M. Harman, K. Lano, and Z. Li. Environment
restriction slicing: Automated state based model
simplification. In 33th International Conference on
Software Engineering (ICSE’11), 2011.

[4] A. Arcuri. It does matter how you normalise the
branch distance in search based software testing. In
Proceedings of IEEE International Conference on
Software Testing, Verification and Validation (ICST
’10), pages 205–214. IEEE, 4-7 May 2010.

[5] A. Arcuri and X. Yao. Search based software testing of
object-oriented containers. Information Sciences,
178(15):3075–3095, August 2008.

[6] ChiasTek. Safety test builder:
http://www.chiastek.com/products/stb.html.

[7] K. Derderian, R. Hierons, M. Harman, and Q. Guo.
Automated unique input output sequence generation
for conformance testing of fsms. The Computer
Journal, 49(3):331–344, May 2006.

[8] K. Derderian, M. Merayo, R. Hierons, and M. Núñez.
Aiding test case generation in temporally constrained
state based systems using genetic algorithms. In
Bio-Inspired Systems: Computational and Ambient
Intelligence, volume 5517 of Lecture Notes in
Computer Science, pages 327–334. Springer, 2009.

[9] European Union. ARTEMIS programme embedded
computing systems call for proposals, 2009. Available
online at https://www.artemis-ju.eu/.

[10] K. Ghani, J. A. Clark, and Y. Zhan. Comparing
algorithms for search-based test data generation of
matlab simulink models. In Proceedings of the 10th
IEEE Congress on Evolutionary Computation (CEC
’09), Trondheim, Norway, 18-21 May 2009. IEEE.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming
language design and implementation (PLDI 2005),
volume 40, pages 213–223. ACM Press, June 2005.

[12] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian.
Constructing multiple unique input/output sequences

using evolutionary optimisation techniques. IEEE
Proceedings - Software, 152(3):127–140, June 2005.

[13] Q. Guo, R. M. Hierons, M. Harman, and
K. Derderian. Heuristics for fault diagnosis when
testing from finite state machines. Software Testing,
Verification and Reliability, 17(1):41–57, March 2007.

[14] M. Harman. Automated test data generation using
search based software engineering (keynote). In 2nd
Workshop on Automation of Software Test (AST 07)
at the 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, USA, 2007.

[15] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn,
and J. Wegener. The impact of input domain
reduction on search-based test data generation. In
ACM Symposium on the Foundations of Software
Engineering (FSE ’07), pages 155–164, Dubrovnik,
Croatia, September 2007. ACM.

[16] M. Harman, R. Hierons, and M. Proctor. A new
representation and crossover operator for search-based
optimization of software modularization. In GECCO
2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1351–1358. Morgan
Kaufmann Publishers, 9-13 July 2002.

[17] M. Harman, L. Hu, R. Hierons, J. Wegener,
H. Sthamer, A. Baresel, and M. Roper. Testability
transformation. IEEE Transactions on Software
Engineering, 30(1):3–16, Jan. 2004.

[18] M. Harman, F. Islam, T. Xie, and S. Wappler.
Automated test data generation for aspect-oriented
programs. In 8th International Conference on
Aspect-Oriented Software Development (AOSD ’09),
pages 185–196, Charlottesville, VA, USA, Mar. 2009.

[19] M. Harman, A. Mansouri, and Y. Zhang. Search based
software engineering: A comprehensive analysis and
review of trends techniques and applications.
Technical Report TR-09-03, Department of Computer
Science, King’s College London, April 2009.

[20] H. S. Hong, I. Lee, O. Sokolsky, and S. D. Cha.
Automatic test generation from statecharts using
model checking. In Proceedings of Workshop on
Formal Approaches to Testing of Software, volume
NS-01-4 of BRICS Notes, pages 15–30, 2001.

[21] A. D. International. Beacon for simulink/stateflow:
http://www.adi.com/products_be_bss.htm.

[22] A. Kalaji, R. M. Hierons, and S. Swift. A search-based
approach for automatic test generation from extended
finite state machine (efsm). In Proceedings of Testing:
Academia and Industry Conference - Practice And
Research Techniques (TAIC-PART ’09), pages
131–132, Windsor, UK, 4-6 September 2009. IEEE.

[23] A. Kalaji, R. M. Hierons, and S. Swift. A testability
transformation approach for state-based programs. In
Proceedings of the 1st International Symposium on
Search Based Software Engineering (SSBSE ’09),
pages 85–88. IEEE, 13-15 May 2009.

[24] A. Kalaji, R. M. Hierons, and S. Swift. Generating
feasible transition paths for testing from an extended
finite state machine (efsm) with the counter problem.
In Proceedings of the 3rd International Workshop on
Search-Based Software Testing (SBST) in conjunction
with ICST 2010, pages 230–239. IEEE, 6 April 2010.

[25] T. Katayama, Z. Furukawa, and K. Ushijima. Event

1857

interactions graph for test-case generations of
concurrent programs. In Proceedings of Asia Pacific
Software Engineering Conference, pages 29–37. IEEE,
1995.

[26] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha.
Test cases generation from UML state diagrams.
146(4):187–192, 2002.

[27] B. Korel. Automated software test data generation.
IEEE Trans. Softw. Eng., 16:870–879, August 1990.

[28] R. Lefticaru and F. Ipate. Automatic state-based test
generation using genetic algorithms. In Proceedings of
the Ninth International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages
188–195. IEEE, 2007.

[29] R. Lefticaru and F. Ipate. A comparative landscape
analysis of fitness functions for search-based testing.
In Proceedings of the 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific
Computing, pages 201–208. IEEE, 2008.

[30] R. Lefticaru and F. Ipate. Functional search-based
testing from state machines. In Proceedings of the
First International Conference on Software Testing,
Verfication and Validation (ICST 2008), pages
525–528, Lillehammer, Norway, 9-11 April 2008. IEEE.

[31] R. Lefticaru and F. Ipate. Search-based testing using
state-based fitness. In Proceedings of 1st International
Workshop on Search-Based Software Testing (SBST)
in conjunction with ICST 2008, pages 210–210,
Lillehammer, Norway, 9-11 April 2008. IEEE.

[32] F. Lindlar, A. Windisch, and J. Wegener. Integrating
model-based testing with evolutionary functional
testing. In Proceedings of the 3rd International
Workshop on Search-Based Software Testing (SBST)
in conjunction with ICST 2010, pages 163–172, Paris,
France, 6 April 2010. IEEE.

[33] R. Majumdar and K. Sen. Hybrid concolic testing. In
Proceedings of the 29th international conference on
Software Engineering, pages 416–426. IEEE, 2007.

[34] Mathworks. Simulink – simulation and model-based
design:
http://www.mathworks.com/products/simulink.

[35] Mathworks. Simulink design verifier:
http://www.mathworks.com.

[36] Mathworks. Stateflow 7.2 – design and simulate state
machines and control logic:
http://www.mathworks.com/product/stateflow.

[37] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, June 2004.

[38] P. McMinn, M. Harman, D. Binkley, and P. Tonella.
The species per path approach to search-based test
data generation. In International Symposium on
Software Testing and Analysis (ISSTA 06), pages
13–24, Portland, Maine, USA., 2006.

[39] P. McMinn and M. Holcombe. Hybridizing
evolutionary testing with the chaining approach. In
Proceedings of the 2004 Conference on Genetic and
Evolutionary Computation (GECCO ’04), volume
3103, pages 1363–1374. Springer, 26-30 June 2004.

[40] P. McMinn and M. Holcombe. Evolutionary testing of
state-based programs. In Proceedings of the 2005

conference on Genetic and evolutionary computation,
GECCO ’05, pages 1013–1020. ACM, 2005.

[41] M. Miraz, P. L. Lanzi, and L. Baresi. Testful: Using a
hybrid evolutionary algorithm for testing stateful
systems. In Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation (GECCO
’09), pages 1947–1948. ACM, 8-12 July 2009.

[42] C. Pacheco and M. D. Ernst. Randoop:
feedback-directed random testing for Java. In
Proceedings of OOPSLA 2007 Companion, pages
815–816. ACM Press, October 2007.

[43] V. Rajappa, A. Biradar, and S. Panda. Efficient
software test case generation using genetic algorithm
based graph theory. In Proceedings of the 2008 First
International Conference on Emerging Trends in
Engineering and Technology, pages 298–303,
Washington, DC, USA, 2008. IEEE Computer Society.

[44] M. Satpathy, A. Yeolekar, and S. Ramesh.
Randomized directed testing (redirect) for
simulink/stateflow models. In Proceedings of the
International Conference on Embedded Software 2008
(EMSOFT 2008), pages 217–226, 2008.

[45] S. Sims and D. C. DuVarney. Experience report: the
reactis validation tool. In Proceedings of the 12th
International Conference on Functional Programming,
pages 137–140. ACM, 2007.

[46] T.-V. Technologies. T-vec tester for simulink:
http://www.t-vec.com/solutions/simulink.php.

[47] A. Windisch. Search-based testing of complex simulink
models containing stateflow diagrams. In Proceedings
of 1st International Workshop on Search-Based
Software Testing (SBST) in conjunction with ICST
2008, pages 251–251. IEEE, 9-11 April 2008.

[48] A. Windisch. Search-based test data generation from
stateflow statecharts. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation,
GECCO ’10, pages 1349–1356. ACM, 2010.

[49] A. Windisch and N. Al Moubayed. Signal generation
for search-based testing of continuous systems. In
Proceedings of the IEEE International Conference on
Software Testing, Verification, and Validation
Workshops, pages 121–130. IEEE, 2009.

[50] Y. Zhan and J. Clark. Search based automatic
test-data generation at an architectural level. In
Genetic and Evolutionary Computation–GECCO
2004, pages 1413–1424. Springer, 2004.

[51] Y. Zhan and J. A. Clark. Search-based mutation
testing for simulink models. In Proceedings of the 2005
Conference on Genetic and Evolutionary Computation
(GECCO ’05), pages 1061–1068. ACM, June 2005.

[52] Y. Zhan and J. A. Clark. The state problem for test
generation in simulink. In Proceedings of the 8th
annual Conference on Genetic and Evolutionary
Computation, pages 1941–1948. ACM, July 2006.

[53] Y. Zhan and J. A. Clark. A search-based framework
for automatic testing of matlab/simulink models.
Journal of Systems Software, 81:262–285, 2008.

[54] R. Zhao, M. Harman, and Z. Li. Empirical study on
the efficiency of search based test generation for efsm
models. In Proceedings of the 3rd International
Workshop on Search-Based Software Testing, pages
222–231. IEEE, April 2010.

1858

