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ABSTRACT
The Differential Evolution (DE) algorithm is an efficient and
powerful evolutionary algorithm (EA) for solving optimiza-
tion problems. However the success of DE in solving a spe-
cific problem is closely related to appropriately choosing its
control parameters. Parameter tuning leads to additional
computational costs because of time-consuming trial-and-
error tests. Self-adaptation, in contrast, allows the algo-
rithm to reconfigure itself, automatically adapting to the
problem being solved. There are in the literature some self-
adaptive versions of differential evolution, however they do
not align completely with self-adaptation concepts. In this
paper, some self-adaptive versions of DE in the literature
are described and discussed, and then a new Self-Adaptive
Differential Evolution with multiple mutation strategies is
proposed; it is called Self-adaptive Mutation Differential
Evolution (SaMDE) and aims at preserving the essential
characteristics of self-adaptation. Some computational ex-
periments which illustrate algorithm behaviour and a com-
parative test with the classical DE and with an important
self-adaptive DE are presented. The results suggest that
SaMDE is a very promising algorithm.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Stochastic pro-
gramming, Global optimization

General Terms
Algorithms

Keywords
Differential Evolution, Self-Adaptation, Numerical Optimi-
zation, Evolutionary Algorithms
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The Differential Evolution (DE) algorithm is a simple yet
powerful evolutionary algorithm (EA) proposed in the mid
1990s for optimization with continuous variables [23, 24].
In this context, it is an important optimizer for both single
objective optimization [18, 13, 6] and multiobjective prob-
lems [28, 2], and, more recently, it has also been successfully
applied to combinatorial optimization problems [16, 17, 15].

Like most evolutionary algorithms, DE uses a population
of solutions and has mutation, recombination and selection
operators. The algorithm has some parameters that must be
defined: the population size, the scale factor of the pertur-
bations generated by mutation and the recombination prob-
ability. As shown in [5], the choice of suitable parameter set-
tings is critical on DE performance and depends on the prob-
lem being solved. Usually this may lead to additional com-
putational costs due to the time-consuming trial-and-error
parameter tuning process. In this context, self-adaptation
has proven to be highly beneficial in automatically and dy-
namically adjusting evolutionary parameters [3, 22].

In Self-adaptation the control parameters are encoded into
the genotype of the individuals and undergo the actions of
the genetic operators. The idea is that good values of these
encoded parameters tend to lead to better individuals which
are more likely to survive and, hence, more likely to prop-
agate these good parameter values. The self-adaptation al-
lows the algorithm to adapt to any kind of problem recon-
figuring itself without the need of user interaction.

There are, in the literature, some works related to self-
adaptation in differential evolution [5, 19, 25, 26, 27]. How-
ever, when dealing with self-adaptation, the basic premise is
that the self-adapted parameters must be implicitly or indi-
rectly evaluated by the selection operator, which means that
they should influence the fitness of the individual to whom
they are related. Additionally, there should be some learn-
ing capability in the adaptation process, in which previous
parameter values are taken into account in the production
of new values. These characteristics are not always observed
in self-adaptation mechanisms available in the literature.

In this paper, three self-adaptive versions of differential
evolution are briefly described and analyzed, then a new self-
adaptive Differential Evolution method with multiple mu-
tation strategies is proposed, called Self-adaptive Mutation
Differential Evolution (SaMDE). The new approach aims
at preserving the essential characteristics of self-adaptation.
The proposed method self-adapts parameters that can be
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implicitly evaluated during the selection procedure and uses
the“knowledge”acquired by the algorithm during the search
process for building new parameter values. In the end some
computational tests in well known test functions are pre-
sented. The results suggest that SaMDE is a very promising
algorithm for general-purpose optimization and show that
an adequate use of self-adaptation strategies can indeed lead
to improved performance in differential evolution.

This paper is organized as follows: Section 2 presents the
basic DE and reviews other self-adaptive approaches for dif-
ferential evolution proposed in the literature; Section 3 de-
scribes the new self-adaptive approach; Section 4 presents a
picture of the new approach behaviour; Section 5 presents
the results obtained in a benchmark of test functions; and
Section 6 concludes the paper.

2. BACKGROUND

2.1 Basic Differential Evolution
In this section, the basic DE algorithm is briefly reviewed,

see [23, 24, 18] for additional details. Like other evolutionary
algorithms, the original DE algorithm works with a popula-
tion of candidate solutions randomly generated within the
domain region of the problem, usually described as:

X =
{
x ∈ R

n : xmin
k ≤ xk ≤ xmax

k , k = 1, . . . , D
}

(1)

where xmin
k and xmax

k are respectively the low and upper
limits of each variable and D is the problem dimension, i.e.,
the number of variables in the problem.

We adopt in this paper the notation xg,i,j such that g =
1, . . . , G represents the generation counter; i = 1, . . . , NP
represents the index of the individual in the population; and
j = 1, . . . , D represents the variable index. A given individ-
ual is represented by:

xg,i =
〈
xg,i,1, xg,i,2, xg,i,3, ..., xg,i,D

〉
(2)

New individuals are generated by using the differential mu-
tation. The mutation is based on the difference between
two individuals randomly chosen from the current popula-
tion. This differential vector is multiplied by a constant and
added to a third individual, called base vector (base solu-
tion), leading to the so-called mutant vector:

vg,i = xg,r1 + F (xg,r2 − xg,r3) (3)

where r1 �= r2 �= r3 ∈ {1, . . . , NP} are mutually distinct
random indices, and F is a differential weight, a scale factor
applied to the differential vector. For each xg,i in the pop-
ulation a corresponding mutant solution vg,i is generated.

A trial vector ug,i is produced through recombination of
xg,i and vg,i. In the basic DE algorithm, the discrete re-
combination with probability CR is used, as we can see in
the following scheme:

ug,i,j =

{
vg,i,j , if U[0,1] ≤ CR
xg,i,j , otherwise

(4)

where U[a,b] represents the sampling of a random variable
with uniform distribution in the interval [a, b]. In this way,
F and CR represent control parameters of the algorithm.

Finally, the trial vector ug,i competes with the current so-
lution xg,i based on their objective function evaluations. If
the trial solution is better or equal than the current solution,

it replaces the current solution, otherwise the current solu-
tion survives while the trial one is eliminated, as described
below:

xg+1,i =

{
ug,i if f(ug,i) ≤ f(xg,i)

xg,i otherwise
(5)

Other variants of this basic scheme are presented and dis-
cussed in [18, 13, 6].

2.2 jDE algorithm
In order to avoid the trial-and-error method used for tun-

ing the control parameters, Brest et al. proposed the jDE
algorithm [4]. In jDE, the control parameters F and CR are
encoded into the individual representation, which will have
the following aspect:

xi =
〈
xi,1, xi,2, xi,3, ..., xi,D, Fi, CRi

〉
(6)

Throughout the algorithm execution new control param-
eters Fg+1,i and CRg+1,i are calculated as:

Fg+1,i =

{
Fl + Fu ∗ U[0,1], if U[0,1] < τ1

Fg,i, otherwise
(7)

CRg+1,i =

{
U[0,1], if U[0,1] < τ2

CRg,i, otherwise
(8)

where τ1 and τ2 represent probabilities to adjust control pa-
rameters F and CR, respectively. The authors suggest the
values τ1 = 0.1, τ2 = 0.1, Fl = 0.1 and Fu = 0.9. The new
F takes a value from [0.1, 1.0], and the new CR from [0, 1]
in a random manner. Fg+1,i and CRg+1,i are obtained be-
fore the mutation is performed. In this way they influence
the mutation, crossover and selection operations of the new
vector xg+1,i.

Although jDE has proven to improve the robustness of the
original DE [4], it does not perform a real self-adaptation of
parameters. In jDE there is no learning, since the parame-
ter update equations do not take into account the previous
values, not using the knowledge gained during the search
process. It merely resets the control parameters with prob-
abilities τ1 and τ2. Notice that good values may eventually
be lost.

2.3 SaDE algorithm
The self-adaptive differential evolution (SADE) was first

proposed in [20]. In addition to automatically adapting
the parameters, it also adapts multiple differential mutation
strategies. Those variations are presented and discussed in
[13]. In a recent version of this algorithm presented in [19]
the individual has the following aspect:

xi =
〈
xi,1, ..., xi,D, Fi, CR1

i , CR2
i , CR3

i , CR4
i , p

1
i , p

2
i , p

3
i , p

4
i

〉
(9)

where pki for k = 1, 2, 3, 4 is the probability of using a given
mutation strategy in the generation of the mutant individ-
ual, with

∑4
k=1 p

k
i = 1. As we can see each individual has a

CR for each strategy and a common F for all strategies.
Initially the probabilities pki of each individual are set as

0.25, after LP generations (LP refers to learning period),
these probabilities will be updated at each subsequent gen-
eration based on the success and failure “memories”. For
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example, at the generation G, the probability of choosing
the kth strategy is updated by:

pki,G =
Sk
i,G∑4

k=1 S
k
i,G

(10)

where:

Sk
i,G =

∑G−1
g=G−LP nk

s,G∑G−1
g=G−LP nk

s,G +
∑G−1

g=G−LP nk
f,G

+ 0.01 (11)

Sk
i,G represents the success rate of trial vectors generated

by the kth strategy and it is calculated by means of nk
s,G,

which is the number of trial vectors generated by the kth
strategy that had a better fitness value than their parent,
and nk

f,G, which is the number of trial vectors generated by
the kth strategy that had not a better fitness value than
their parent.

During the first LP generations the control parameter CR
of each strategy is updated as follows:

CRk
i ← CRk

i +N[0,0.1] (12)

where N[a,b] represents the sampling of a random variable
with normal distribution, with mean a and standard devia-
tion b.

During the LP generations the set CRk
s is created. The

set CRk
s is composed by the CRk

i values that generated in-
dividuals which were better than their parents. Once this
set is ready, the CRk

i values are updated as follows:

CRk
i = N[median(CRk

s ),0.1] (13)

Finally, F is updated as follows, notice that the parameter
update is done before the operators application:

Fi = N[0.5,0.3] (14)

The main contribution of this approach, is the use of mul-
tiple mutation strategies, what has proven to be beneficial
[20, 3, 19]. However, the mechanism chosen to select be-
tween strategies takes into account only the number of better
solutions created by a specific strategy. This can be a poor
measure once it does not see the “amount of improvement”
generated.

Other points that should be highlighted in this approach
are:

• The proposed mechanism adds at least four new pa-
rameters in the algorithm, the standard deviations in
equations (12)-(14) and the mean value in (14). Al-
though the authors have presented them as fixed val-
ues, their influence is not known in the search process.

• As in jDE, the mechanism adopted to vary F can de-
stroy good parameter values and it is not based on
learning or previous values;

• It has just one F shared by all strategies. Given that
the vectors distribution and sizes generated by each
strategy are different it seems intuitive to have differ-
ent values of F for each one.

2.4 DESAP algorithm
The Differential Evolution with Self-adapting Population

(DESAP) was proposed in [25]. It has the self-adaptation of
the population size, given by the parameter NP , as its main

characteristic. As well as the parameter CR a new parame-
ter M is also self-adapted. The individual representation is
shown bellow:

xi =
〈
xi,1, xi,2, xi,3, ..., xi,D,Mi, CRi, NPi

〉
(15)

In each generation, each individual xi enters a phase called
by the author as recombination. In this phase the control
parameters and the problem variables are varied by means
of differential mutation, see (3), with probability CRi. F is
maintained fixed at the value 1.0 throughout the algorithm
execution.

After recombination, the individual xi enters a mutation
phase with probability Mi, in which the control parameters
and problem variables are varied by means of perturbations
with normal distribution.

The DESAP algorithm has a real self-adaptive mechanism
to update the control parameters. It takes into account the
previous values and learns gradually, good parameter values.
However the following cons may be highlighted:

• The control parameters are updated after the execu-
tion of the operators, with this, if a good solution is
generated the parameters that will be disseminated on
the population are not the parameters that generated
that solution, what can create good solutions with poor
encoded parameters, as reported in [7];

• The NP parameter does not seem to be a good can-
didate for self-adaptation, once its contribution for an
isolated individual fitness is irrelevant, which means
that this parameter can not be evaluated implicitly by
the selection operator;

• There is no adaptation of the parameter F , to which
the DE performance is very sensitive as shown in [5].

3. SAMDE: PROPOSED ALGORITHM
With the goal of improving DE robustness and adapt-

ability to a bigger set of problems, without the need of ex-
pensive trial-and-error tests to set control parameters and
learning strategies and in order to improve the existent“self-
adaptive”1 DE algorithms, here we present the Self-adaptive
Mutation Differential Evolution (SaMDE), which makes use
of multiple mutation strategies, and uses differential evolu-
tion itself to self-adapt both the control parameters and the
odds of choosing a particular mutation strategy. First of all,
in SaMDE, individuals have the following aspect:

xi =
〈
xi,1, ..., xi,D, V 1

i , ..., V
k
i , F 1

i , CR1
i , ..., F

k
i , CRk

i

〉
(16)

where xi,d are the problem variables, k is the number of
different mutation strategies, V k

i ∈ [0, 1] corresponds to a
value attributed to the kth strategy (this will be used for
the strategy selection), F k

i ∈ [0.1, 1] and CRk
i ∈ [0, 1.0] are

the control parameters related to the kth strategy.
In the population initialization, the problem variables and

parameters are chosen randomly. Then for each individual,
first the values V are updated with differential mutation as
follows:

V k
i = V k

r1 + F ′(V k
r2 − V k

r3) (17)
1As discussed in the previous section, some approaches are
not truly self-adaptive. Some methods actually employ
adaptive mechanisms or are based on randomly resetting
parameters.
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With the updated V s , the strategy that will be applied on
the current individual is chosen by means of the roulette
wheel algorithm, where strategies with bigger values of V
are more likely to be chosen.

Once the winner strategy w, w ∈ {1, 2, .., k}, is selected
their related values Fw and CRw are also updated by dif-
ferential mutation, as follows:

Fw
i = Fw

r1 + F ′(Fw
r2 − Fw

r3) (18)

CRw
i = CRw

r1 + F ′(CRw
r2 − CRw

r3) (19)

Then the algorithm continues normally, operating the mu-
tation with the winner strategy and doing the traditional
recombination and selection steps. Notice that only the con-
trol parameters of the winner strategy should be updated, as
they are the only ones to contribute to the trial solution fit-
ness. F ′ = U[0.7,1] in all cases. Although F ′ is an additional
parameter of the self-adaptive mechanism, the performance
of the algorithm is not very sensitive to this parameter in
the indicated range, as shown in the results. For sake of
clarity a pseudo-code of SaMDE is presented in Algorithm
1.

Algorithm 1: SaMDE

1 Initialize population;
2 while ¬ stop condition do
3 for each individual do
4 Select a new F ′ ∈ [0.7, 1];

5 Update(V 1
i , . . . , V

k
i );

6 for Each Strategy k do
7 V k

i = V k
r1 + F ′(V k

r2 − V k
r3) ;

8 end
9 Select a Strategy (w) by Roullete Wheel;

10 Update winner strategy parameters;
11 Fw

i = Fw
r1 + F ′(Fw

r2 − Fw
r3);

12 CRw
i = CRw

r1 + F ′(CRw
r2 −CRw

r3);
13 Apply the selected mutation strategy using Fw

i ;
14 Perform Recombination with CRw

i ;
15 Apply Selection;

16 end

17 end

Due to their search diversity, four mutation strategies were
selected here, they are the same selected in [19] and are
described below:

1. rand/1 It is the original differential mutation (see [23]),
usually demonstrates slow convergence speed and bears
stronger exploration capability [19].

vt,i = xt,r1 + F (xt,r2 − xt,r3) (20)

2. best/1 Usually has the fastest convergence speed and
performs well when solving unimodal problems (see
[13]).

vt,i = xt,best + F (xt,r2 − xt,r3) (21)

3. rand/2 In this strategy, the statistical distribution of
the summation of all two-difference vectors have a bell
shape, that is generally regarded as a better pertuba-
tion mode [19].

vt,i = xt,r1 + F (xt,r2− xt,r3) + F (xt,r4 − xt,r5) (22)

4. current-to-rand/1 It is a rotation-invariant strategy.
Its efectiveness has been verified when it was applied
to solve multi-objective optimization problems [11].

vt,i = xt,i + F (xt,r1 − xt,i) + F (xt,r2 − xt,r3) (23)

In order to keep the updated control parameters in the
boundaries, the mechanism proposed in [21] was used. In
this mechanism the amount of violation is reflected back to
the bound, as can be seen in the following equation.

x =

{
2× xlow − x if x < xlow

2× xupp − x if x > xupp
(24)

where x represents the updated control parameter, xlow and
xupp are the lower and the upper bounds, respectively.

The SaMDE algorithm employs different mutation strate-
gies and self-adapts all its important control parameters.
The population size is fixed and the parameters are updated
before they are used for generating new solutions. This al-
lows the operators to be influenced by the new updated pa-
rameter values, allowing them to be indirectly evaluated by
the selection operator.

Furthermore differently from jDE, SaMDE presents learn-
ing capability, using the “knowledge” obtained during the
search process to adapt control parameters and the use of
mutation strategies. All this is done by introducing only one
new parameter, F ′, which seems to be easy to set as will be
seen in Section 4.1.

In the next two sections we provide two types of experi-
mental results. The goal of the following experiment is to
provide a picture of SaMDE behavior. In Section 5 compar-
ative tests are performed in a benchmark of functions.

4. SAMDE BEHAVIOR
For these experiments, commonly used test functions were

chosen from literature [5, 12, 20, 19] (see, Appendix A).
Functions f1 to f3 are unimodal, functions f4 to f6 are mul-
timodal and the number of local optima grows exponentially
with the number of dimensions. They all have the number
of dimensions D equal to 30. The global maximum of f4 is
−12569.5, and the minimum of all other functions is 0.

SaMDE algorithm was executed 30 times in each function
with a stop criterion of 3000 generations for the unimodal
functions and 6000 for the multimodal functions. The pop-
ulation size was set to 100 individuals. The goals here are:
(i) evaluate the sensitivity of the algorithm to the parameter
F ′ used for the self-adaptation and (ii) show the variation
of the mutation strategies during the optimization process.

4.1 Study of the parameter F ′

Here are presented the averages of the best values found in
the 30 independent executions by SaMDE algorithm, vary-
ing the parameter F ′ in equations (17), (18) and (19). Table
1 shows the results for the unimodal functions and Table 2
shows the results for the multimodal functions.

As can be seen, in general, higher values of F ′ (F ′ ∈
[0.7, 1.0]) lead to better results, possibly because small val-
ues of F ′ reduce the capacity of adapting parameters, by
diminishing the effect of the perturbations applied to cur-
rent values. Based on these experiments, we have decided to
vary F ′ only between 0.7 and 1 in the proposed algorithm.
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Values of F’ f1 f2 f3

0.1 2.16 2.59 203.09
0.2 0.38 2.05 57.95
0.3 1.59E-29 1.01 2.98E-14
0.4 2.36E-122 0.63 1.77E-19
0.5 2.41E-156 0.16 2.98E-23
0.6 2.73E-162 0.04 6.21E-28
0.7 1.35E-157 2.20E-30 9.95E-30
0.8 1.34E-154 3.43E-47 1.14E-29
0.9 1.62E-146 2.53E-54 1.43E-31
1.0 1.05E-143 1.17E-61 8.15E-31

Table 1: Averages of the best value found in the
unimodal functions by varying F ′.

Values of F’ f4 f5 f6

0.1 -9478.40 63.259 0.1568
0.2 -9384.40 55.246 0.1226
0.3 -9431.60 47.157 0.0432
0.4 -9835.30 48.554 0.0232
0.5 -9750.80 45.801 0.0066
0.6 -9905.40 46.133 0.0179
0.7 -9867.30 41.722 0.0086
0.8 -10120.00 40.694 0.0095
0.9 -10418.00 40.694 0.0054
1.0 -10332.00 38.206 0.0167

Table 2: Averages of the best value found in the
multimodal functions by varying F ′.

4.2 Self-adaptation of the parameters V

This section illustrates the variation of strategies over the
optimization process. For a given generation, the number of
executions of each strategy was taken, then the average of
the 30 independent runs was ploted.

In Figures 1 and 2, the V k, k = 1, ..., 4 refers to each mu-
tation strategy, in the following sequence: rand/1, see (20);
best/1, see (21); rand/2, see (22); and current-to-rand/1,
see (23).

Figure 1 shows the variation in the unimodal functions. As
was expected, there was a predominance of the best/1 strat-
egy, usually known in the literature as the best option for
this kind of function. This result indicates that the proposed
mechanism is able to identify the best mutation strategy for
a given problem.

Figure 2 shows the variation in the multimodal functions.
Although the best mutation strategy is not clear it is impor-
tant to notice that the algorithm is able to switch to others
mutation strategies during its execution. Additionally the
results indicate that the best stategy changes throughout
the various stages of the optimization process.

5. COMPARATIVE TESTS
This section presents comparative results between the self-

adaptive algorithms SaMDE and jDE and the original DE
with fixed parameters (F = 0.5 and CR = 0.9 as sug-
gested in [3]) on BBOB-2010 – the Real-Parameter Black-
Box Optimization Benchmark: noisyless functions presented
at the Genetic and Evolutionary Computation Conference

(a) Function f1

(b) Function f2

(c) Function f3

Figure 1: Avereged percentage of selection of each
mutation strategy for unimodal function.

(GECCO) 2010, and described in [9]. The experimental pro-
cedure is detailed in [8]. It must be remarked that in order to
perform a fair comparison, the various algorithms have been
run with the same population size fixed in 100 individuals.
The choice of jDE for comparison was based on the results
presented in [14], in which jDE presented the best results
in most test problems when compared with other modified
structures of DE. Versions of jDE with multiple mutation
strategies (see [3]) were not implemented, because no auto-
matic mechanism for choosing between strategies was pre-
sented.

Figure 3 depicts the empirical cumulative distribution of
runtimes2 (RTs) of each algorithm on all functions f1-f24,
grouped by number of dimensions (D). For each function
with a given dimension, different target precision values3

2Runtime (RT) is the number of function evaluations until
the optimal solution (with a certain precision) was reached.
3The target precision value Δft = ftarget − foptimun .
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(a) Function f4

(b) Function f5

(c) Function f6

Figure 2: Avereged percentage of selection of each
mutation strategy for multimodal function.

are use within the range Δft ∈ [10, 10−8]. Each graph in
Figure 3 shows the proportion of solved problems, in a given
dimension, by the runtime. For more detailed information
about the graphs see [10].

As can be seen, SaMDE had the best performance of the
three tested algorithms regardless of the dimensions. It was
able to improve DE performance, in all groups of tests, solv-
ing a higher number of problems with a smaller RT. Al-
though jDE and DE have had a similar performance among
them, jDE seems to improve DE in problems with higher
dimensions.

Despite still having a timid performance compared to the
state-of-the-art algorithms (see, [1]), the experiments illus-
trate that the proposed approach for self-adapting the pa-
rameters of DE is promising and indeed improves the per-
formance of the basic DE and jDE.

6. CONCLUSION
In this paper, a new Self-Adaptive Differential Evolution

which aims at preserving the essential characteristics of self-
adaptation is presented. The proposed approach uses multi-
ple mutation strategies and in addition to self-adapting the
control parameters F and CR for the different strategies, it
also self-adapts the chance of using a particular mutation
strategy.

The experiments on well known test functions indicate
that the proposed approach has a good potential in learning
parameters and switching to a particular mutation strat-
egy. On the comparative results the proposed algorithm
presented the best performance on the tested functions. The
self-adaptation of the mutation strategies and its parameters
has shown to be beneficial to the algorithmic performance.
In addition, the use of a unique mutation strategy seems to
be inadequate once the best one dynamically changes during
in the optimization process.

In future work, the authors intend to implement a local
search method in order to make SaMDE performance com-
parable to the state-of-the-art algorithms. The authors also
intend to run tests in noisy functions to analyze SaMDE
behavior in this kind of problem.

7. ACKNOWLEDGMENTS
The authors would like to thank the Universidade Fed-

eral de Ouro Preto by courtesy structure and the follow-
ing Brazilian agencies for the financial support: the Na-
tional Council for Scientific and Technological Development
(CNPq) and the Research Foundation of the State of Minas
Gerais (FAPEMIG).

8. REFERENCES
[1] A. Auger, S. Finck, N. Hansen, and R. Ros. BBOB

2010: Comparison Tables of All Algorithms on All
Noiseless Functions. Technical Report RT-388,
INRIA, 09 2010.

[2] L. S. Batista, F. G. Guimarães, and J. A. Ramı́rez. A
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APPENDIX

A. TEST FUNCTIONS

f1(x) =

D∑
i=1

x2
i , xi ∈ [−100, 100] (25)

f2(x) =
D∑
i=1

|xi|+
D∏
i=1

|xi| , xi ∈ [−10, 10] (26)

f3(x) =
D∑
i=1

(
i∑

j=1

xj

)2

, xi ∈ [−100, 100] (27)

f4(x) =
D∑
i=1

−xi sin(
√
|xi|) , xi ∈ [−500,−500] (28)

f5(x) =
D∑
i=1

(x2
i−10 cos(2πxi)+10) , x1 ∈ [−5.12, 5.12] (29)

f6(x) =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos

(
xi√
i

)
+ 1 , xi ∈ [−600, 600]

(30)
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