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ABSTRACT
Exploratory Landscape Analysis (ELA) subsumes a number of
techniques employed to obtain knowledge about the proper-
ties of an unknown optimization problem, especially insofar
as these properties are important for the performance of op-
timization algorithms. Where in a first attempt, one could
rely on high-level features designed by experts, we approach
the problem from a different angle here, namely by using rel-
atively cheap low-level computer generated features. Inter-
estingly, very few features are needed to separate the BBOB
problem groups and also for relating a problem to high-level,
expert designed features, paving the way for automatic algo-
rithm selection.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization, Unconstrained
Optimization; G.3 [Probability and Statistics]: Statistical Com-
puting; I.2.6 [Learning]: Knowledge Acquisition

General Terms
Experimentation, Algorithms, Performance

Keywords
evolutionary optimization, fitness landscape, exploratory land-
scape analysis, BBOB test set, benchmarking

1. INTRODUCTION
The development of evolutionary and related optimization
methods for real-valued problems is still a dynamic research
area as it sees a large number of newly designed algorithms
each year. These are usually evaluated on sets of benchmark
problems such as the CEC’05 (Suganthan et al., 2005) and the

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

BBOB’09/’10 sets (Hansen et al., 2009), and conclusions are
drawn based on majorities (algorithm A outperforms algo-
rithm B on more problems and vice versa) or via consensus
rankings (Mersmann et al. (2010)). However, in many cases,
not much effort is put in detecting the strengths and weak-
nesses of such algorithms in terms of problem properties,
with the notable exception of dimensionality. The CEC’05
benchmark and to an even larger extent the BBOB bench-
mark have been designed to enable exactly that: To find out
which algorithm is good on which problem group. Meanwhile,
the naive belief in a single optimization algorithm that dom-
inates all others even for a certain domain (e.g. multi-modal
problems) has lost ground and the evidence gathered from
experimental analysis leads to another approach: Given that
we possess a good overview over the properties that make a
problem easy or hard for a specific algorithm, we may choose
the ‘right’ algorithm from an ensemble to solve it efficiently.

However, since knowledge about the interaction of prob-
lem properties and algorithm efficiency is incomplete even
for constructed benchmark problems, it is even more diffi-
cult to choose an algorithm for a real-world problem since
for these even less is known about the function. In order to
find the ‘right’ optimization algorithm for such an optimiza-
tion problem, we thus need two things: Improved knowl-
edge about problem properties which capture the difficulty
of an optimization problem for a specific algorithm, and a
method to estimate these properties relatively cheaply.

In this work, we concentrate on the second task, follow-
ing the path termed exploratory landscape analysis (ELA) as
suggested in Mersmann et al. (2010) and Preuss and Bartz-
Beielstein (2011). In addition to the expert designed features
of Mersmann et al. (2010), we suggest a number of low-level
features of functions that can estimated from relativly few
function evaluations. Both feature groups are introduced in
section 2. The latter is first used to predict to which of the five
BBOB problem groups each of the 24 BBOB test functions be-
longs. In order to keep the number of features or rather the
number of necessary function evaluations as low as possi-
ble, we employ a multi-objective evolutionary algorithm (EA)
to simultaneously optimize feature sets according to quality
and cost, with exciting results as presented in section 4. The
required machine learning methods are described briefly in
section 3.

In a second step, we try to relate the low-level features to
the expert designed high-level features of Mersmann et al.
(2010), which poses a much more demanding task. Again, a
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multi-objective EA is used to determine sets of good and not
too expensive features, as demonstrated in section 5. Our
reasoning is that if a human expert is able to select or design
an algorithm suitable for a fixed function given the high-level
features of that function, and if the high-level features can be
predicted by evaluating the function a few times for well cho-
sen parameter settings to estimate the value of the low-level
features, then it should be possible to automatically select a
good algorithm for a fixed function. However, we have yet
to achieve the last step and therefore it is more of a vision to
be worked on further in upcoming works.

To obtain a better idea of the usefulness of the low-level
features, we lastly compare the feature sets resulting from
the two experiments in section 5.2 before concluding.

2. EXPLORATORY LANDSCAPE
ANALYSIS

Exploratory Landscape Analysis originates from the obser-
vation that once a problem is well known, one can employ a
matching optimization algorithm to solve it. However, most
problems encountered in practice (e.g. from the engineer-
ing domain) are poorly understood. It is a common practice
to either run some initial tests with one or more algorithms
and then adapt the algorithm to the problem according to the
obtained results, or to apply a ‘blind’ parameter tuning pro-
cess to do the same automatically. If computing one fitness
evaluation is costly, both approaches are problematic. This
often results in insufficient algorithm comparisons in prac-
tice. We follow a different reasoning by finding interactions
between problem properties and algorithms so that the prob-
lem features defining a specific algorithm’s performance can
be gathered without actually running it. Instead, these prop-
erties are estimated using a small sample of function values
combined with statistical and machine learning techniques.
These provide us with insights into the nature of the prob-
lem and enable us to select a good candidate optimization
algorithm.

This automated knowledge acquisition approach of course
heavily depends on a good feature set. We therefore start
with a short summary of already known expert designed
high-level features, followed by suggesting a new low-level
feature set which constitutes the basis of the experimental in-
vestigation in this work.

2.1 Properties based on Expert Knowledge
Mersmann et al. (2010) discuss eight properties to charac-
terize the complexity of an optimization problem which can
be specified based on expert knowledge of the problem at
hand. However, other interpretations are possible and we do
not assume incontrovertible general acceptance. These prop-
erties are used to characterize the Black-Box Optimization
Benchmarking (Hansen et al., 2009, BBOB) test functions (see
Table 1) and are then compared and contrasted to the per-
formance of the competing optimization algorithms in the
contest.

In addition to the self-explanatory aspect of multi-moda-
lity, the existence of a global structure is an indicator for the
challenges of a given optimization problem. A lack of global
basin structure severely increases the search effort of an algo-
rithm. This holds as well for non-separable problems which
cannot be partitioned into lower-dimensional sub-problems.
Thus, problem separability is an important property as well.

Variable scaling may lead to non-spherical basins of attrac-
tion which require a different behavior of the algorithm in
each dimension especially with focus on algorithm step size.

Search space- and basin size homogeneity both relate to
the overall appearance of the problem. Problem hardness is
surely dependent on the existence of phase transitions in the
search space as well as on the variation of the sizes of all
basins of attractions. On the contrary, a high global to lo-
cal optima contrast, which refers to the difference between
global and local peaks in comparison to the average fitness
level, facilitates the recognition of excellent peaks in the ob-
jective space. The feature characterizing the function land-
scapes plateaus is omitted in this study because the test func-
tion set lacks variation w.r.t. this feature.

Function multim. gl.-struc. separ. scaling homog. basins gl.-loc.

1 Sphere none none high none high none none
2 Ellipsoidal separable none none high high high none none
3 Rastrigin separable high strong none low high low low
4 Bueche-Rastrigin high strong high low high med. low
5 Linear Slope none none high none high none none

6 Attractive Sector none none high low med. none none
7 Step Ellipsoidal none none high low high none none
8 Rosenbrock low none none none med. low low
9 Rosenbrock rotated low none none none med. low low

10 Ellipsoidal high-cond. none none none high high none none
11 Discus none none none high high none none
12 Bent Cigar none none none high high none none
13 Sharp Ridge none none none low med. none none
14 Different Powers none none none low med. none none

15 Rastrigin multi-modal high strong none low high low low
16 Weierstrass high med. none med. high med. low
17 Schaffer F7 high med. none low med. med. high
18 Schaffer F7 mod. ill-cond. high med. none high med. med. high
19 Griewank-Rosenbrock high strong none none high low low

20 Schwefel med. deceptive none none high low low
21 Gallagher 101 Peaks med. none none med. high med. low
22 Gallagher 21 Peaks low none none med. high med. med.
23 Katsuura high none none none high low low
24 Lunacek bi-Rastrigin high weak none low high low low

Table 1: Classification of the noiseless BBOB functions based
on their properties (multi-modality, global structure, separabil-
ity, variable scaling, homogeneity, basin-sizes, global to local con-
trast). Predefined groups are separated by horizontal lines.

2.2 Low-Level Features
We consider six low-level feature classes in this work to char-
acterize the structure of an unknown fitness landscape. The
starting point is a data set of s different decision variable set-
tings Xs with respective objective values Y s generated by a
random Latin hypercube (LH) design covering the decision
space. We will denote the combination of parameter settings
and corresponding function values by Ds = [Xs, Y s]. The
size of the LH desgin increases linearly with the dimension
d of the problem in order to account for the increasing prob-
lem complexity, i.e. the number of initial points is chosen as
s = c · d, where c is a predefined constant.

The basic concepts of the feature classes are described in
the following. It has to be noted that each class contains sev-
eral lower level sub-features which, in each case, can be gen-
erated using the same experimental data pool. All of these 50
sub-features are only briefly summarized here, due to lack of
space (see Table 2 for details)1

Convexity: Two random points from Xs are selected and a
linear combination with random weights is formed. The

1R source code to calculate the features for a given func-
tion can be obtained from http://ptr.p-value.net/
gco10/ela.R. Additional plots and the raw data gener-
ated by these experiments is available from http://ptr.
p-value.net/gco10/suppl.zip.
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difference of the objective value of the new point and the
convex combination of the objective values of the two sam-
pled points is computed. This is repeated 1000 times, and
the average number of instances where the calculated dif-
ference is less than a predefined negative threshold (here
−10−10) related to the number of repetitions estimates the
probability of convexity. Linearity of the function is assumed
in case all absolute differences are smaller than the absolute
value of the specified threshold.
y - Distribution: The distribution of Y s is characterized by

the skewness and kurtosis of the objective function values.
The latter measures the degree of peakedness of the distri-
bution, i.e. reflects whether the distribution is rather flat or
peaked when compared to a normal distribution. The num-
ber of peaks of the distribution is estimated as well as an
indicator for multi-modality.

Levelset: The initial data set Ds is split into two classes by
a specific objective level which works as a threshold. One
possibility is to use the median for this, which will result in
equally sized classes. Other choices studied are the upper
and lower quartiles of the distribution of y. Linear (LDA),
quadratic (QDA) and mixture discriminant analysis (MDA)
are used to predict whether the objective values Y s fall be-
low or exceed the calculated threshold. Multi-modal func-
tions should result in several unconnected sublevel sets for
the quantile of lower values, which can only be modeled by
MDA, but not LDA or QDA. The extracted low-level fea-
tures are based on the distribution of the resulting cross-
validated mean misclassification errors of each classifier.

Meta-Model: Linear and quadratic regression models with
or without interactions are fitted to the initial data Ds. The
adjusted coefficient of determination R2 is returned in each
case as an indicator for model accuracy. Functions with
variable scaling will not allow a good fit of regression mod-
els without interaction effects, and simple unimodal func-
tions might be approximated by using a quadratic model.
In addition, features are extracted which reflect the size re-
lations of the model coefficients.

Local search: A local search algorithm (Nelder-Mead) is start-
ed from a random sample of size N = 50 · d from Ds. The
solutions are hierarchically clustered in order to identify the
local optima of the function. The basin size is approximated
by the number of local searches which terminate in each
identified local optimum. Extracted features are the num-
ber of identified clusters as an indicator for multi-modality
as well as characteristics related to the basin sizes around
the identified local optima reflected by the sizes of the par-
ticular clusters. In addition, summary statistics like the ex-
trema and specific quartiles of the distribution of the num-
ber of function evaluations spent by the local search algo-
rithm runs until termination are computed.

Curvature: For 100 · d points from Ds, the gradient is nu-
merically approximated in each point using Richardson’s
extrapolation method (Linfield and Penny (1989)). Result-
ing features are summary statistics of the Euclidean norm of
the latter as well as of the relations of maximum and min-
imum values of the respective partial derivatives. Further-
more, the same statistics are applied to the condition num-
ber of the numerical approximation of the Hessian (Linfield
and Penny (1989)).
As visualized in Fig. 1 the low-level feature classes cover

different aspects of the defined high-level features. To empir-
ically justify these relationships, the high-level features are
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Figure 1: Relationships between high-level features (grey) and
low-level feature classes (white)

compared to the computed low-level features on the BBOB
test functions. Statistical classification techniques are used
to predict the level of each high-level feature (see Table 1),
e.g. low, medium or high multi-modality, from the values of
the low-level features. Representative results are presented
in section 5.

In addition, in section 4, the five predefined function groups
of the BBOB contest (1. separable, 2. low or moderate con-
ditioned, 3. high conditioned and unimodal, 4. multi-modal
with adequate global structure, 5. multi-modal with weak
global structure) as listed in Hansen et al. (2009) are predicted
based on the low-level features.

3. MACHINE LEARNING METHODS
Modeling: In order to solve the various classification tasks
posed in this article we will always use a random forest as
proposed by Breiman (2001). This model creates an ensem-
ble of unpruned classification trees based on bootstrapped
versions of the training data. Predictions of the individual
trees are aggregated by majority voting. As the following
experiments will be complex and time-consuming enough,
we do not want to burden ourselves with model selection
and therefore choose a classifier which is reliable in the fol-
lowing sense: it can capture nonlinear relationships between
features and classes and is known to exhibit strong perfor-
mance in many applications. Although it might be tunable
for specific problems, its performance usually does not de-
grade drastically if the settings of its hyperparameters are not
optimal. This is in strong contrast to other competitive clas-
sification methods, e.g. SVMs. Finally, it is invariant under
all monotone transformations of the features and therefore
different or irregular scalings constitute no problem for the
forest.

Performance estimation: Although the misclassification
error of the forest can usually be assessed in a computation-
ally cheap and statistically unbiased way by using its internal
out-of-bag bootstrap estimator, we opt here for a different ap-
proach. Since for each instance of a BBOB test function five
identical replications exist, we want to avoid that the classi-
fier simply memorizes the functions it has already seen. We
therefore choose a specific 5-fold cross-validation strategy,
which forces the classifier to generalize to function instances
not seen in the training set. This is ensured by either hav-
ing all replications of a parametrized function completely in
the training or test set (stated differently we “cross-validate
on the BBOB function instances”). Later on we study an even
harder setting by calculating the performance of the classifier

831



Feature group and name Description

Meta-model features:
1 approx.{linear,lineari}_ar2 adjusted R2 of the estimated linear regression model without and with interaction
1 approx.linear_{min,max}_coef minimum and maximum value of the absolute values of the linear model coefficients
2 approx.{quadratic,quadratici}_ar2 adjusted R2 of the estimated quadratic regression model without or with interaction
2 approx.quadratic_cond maximum absolute value divided by minimum absolute value of the coefficients of the quadratic terms in the quadratic model

Convexity features:
3 convex.{linear,convex}_p estimated probability of linearity and convexity
3 convex.linear_dev mean deviation from linearity

y distribution features:
4 distr.skewness_y skewness of the distribution of the function values
4 distr.kurtosis_y kurtosis of the distribution of the function values
4 distr.n_peaks estimation of the number of peaks in the distribution of the function values

Levelset features:
5 levelset.lda_mmce_{10,25,50} mean LDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)
5 levelset.lda_vs_qda_{10,25,50} levelset.lda_mmce_{10,25,50} divided by levelset.qda_mmce_{10,25,50}
6 levelset.qda_mmce_{10,25,50} mean QDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)
7 levelset.mda_mmce_{10,25,50} mean MDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)

Local search features:
8 ls.n_local_optima number of local optima estimated by the number of identified clusters
8 ls.best_to_mean_contrast minimum value of cluster centers divided by the mean value of cluster centers
8 ls.{best,worst}_basin_size proportion of points in the best and worst cluster
8 ls.mean_other_basin_size mean proportion of points in all clusters but the cluster with the best cluster center
8 ls.{min,lq,med,uq,max}_feval 0, 0.25, 0.5, 0.75 and 1 quantile of the distribution of the number of function evaluations performed during a single local search

Curvature features:
9 numderiv.grad_norm_{min,lq,med,uq,max} minimum, lower quantile, median, upper quantile and maximum of the euclidean norm of the estimated numerical gradient
9 numderiv.grad_scale_{min,lq,med,uq,max} minimum, lower quantile, median, upper quantile and maximum of the maximum divided by the minimum of the absolute values of the estimated partial gradients
10numderiv.hessian_cond_{min,lq,med,uq,max}minimum, lower quantile, median, upper quantile and maximum of the maximum divided by the minimum eigenvalue of the estimated hessian matrix

Table 2: Low-level features; summary of sub-features within the feature classes and assignment to feature groups used for
predicting BBOB function groups and high-level function properties by means of the SMS-GA (cf. sections 4 and 5).

using “leave-one-function-out” resampling, which partitions
the observations into 24 test sets corresponding to the BBOB
functions.

Feature selection: Forward search adds features iteratively
to the current set using a resampled estimate of a single per-
formance measure, e.g. misclassification error. We initially
considered this technique, but abandoned it very quickly, as
features will only be chosen w.r.t. their predictive power,
without regard for their computational cost. Instead, we opt
to employ a multi-objective optimization approach, in which
we try to minimize the misclassification rate while also min-
imizing the cost of calculating the active features and the
total number of feature groups used. We use an adapted
SMS-EMOA, as proposed by Beume et al. (2007), for our dis-
crete parameter space. By replacing the simulated binary
crossover and polynomial mutation operators with the well
known uniform binary crossover and uniform mutation op-
erators we obtain the resulting algorithm, which we called
SMS-GA2. It generates not just one set of features, but many
diverse ones with different trade-offs w.r.t. the above three
criteria. The features are combined into feature groups (see
Table 2), and each bit in the genome of the GA represents
one such feature group. The rationale for this is that there
are usually several ELA features which can be derived from
one set of calculations. Therefore the optimization process
can view them as one “feature”, since adding further features
from the feature group will not increase the computational
cost. This also reduces the size of the discrete search space.

Feature selection and all required algorithms of machine
learning were implemented in R using mlr (Bischl, 2011).

4. FEATURE SELECTION FOR
BBOB GROUPS

4.1 Experimental Setup (Problem 1)
A random forest (RF) is used to classify the 24 × 5 × 5 ×
5 = 3000 function instances (# functions × # functions in-

2An R implementation of the SMS-GA can be obtained from
http://ptr.p-value.net/gco10/sms_ga.R

stances × # dimensions × # repetitions) of the BBOB contest
(cf. to Hansen et al. (2009) for details) into the five prede-
fined BBOB groups based on the low-level features described
in section 2.2. Features are selected with the purpose of ex-
tracting the most relevant ones for characterizing the fitness
landscape of a given problem. In order to investigate the in-
fluence of the size s of the initial LH design, nine parallel
computations of the low-level features have been conducted
for all elements of s = {5000, 2500, 1250, 625, 500, 400, 300,
200, 100}. Each low-level feature group based on Ds is en-
coded by one bit which can be active or switched off, result-
ing in a bit string of length 90. Each group name is supple-
mented by the elements of s, the first nine elements of the
bit string encode the features (approx.linear_5000, . . . ,
approx.linear_100).

The three quality criteria for the SMS-GA optimization are
specified as follows: (1) The random forest is cross-validated
on the function instances as described in section 3, and the
MCE is used to evaluate its predictive quality. (2) In case
of extremely time-consuming fitness function evaluations, it
is impossible to evaluate a huge number of sample points
which would rule out the use of e.g. the local search fea-
tures. Thus, the computational complexity of the low-level
features is considered as well. It is reflected by the number of
fitness function evaluations (NFE) required for the computa-
tion of the features. Details are provided in Table 3. (3) Model
complexity is addressed by the number of selected features
(NSF).

All three criteria are linearly transformed to the interval
[0,1] by dividing each of them by its maximal value in or-
der to ensure comparable scales and not to favor a criterion
during the multi-objective optimization.

The SMS-GA is utilized for simultaneously minimizing the
three criteria MCE, NFE and NSF operating on the 90 dimen-
sional bit string as described above. This Pareto front ap-
proximation facilitates the selection of a solution with respect
to available computational resources and time constraints.

Ten runs of the SMS-GA are executed in parallel using a
population size of µ = 20, 2000 fitness evaluations, nadir
point nd = (1, 1, 1), uniform binary crossover with probabil-
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Feature Group Cost of selected bits

convex
∑l

i=1 s̃i + l · 1000
ls

∑l
i=1(s̃i + 50 · d · lsF̄E(si))

numderiv.grad
∑l

i=1 s̃i + l · 100 · d2

numderiv.hessian
∑l

i=1 s̃i + l · 100 · d3

all others
∑l

i=1 s̃i

Table 3: Cost (i.e. NFE) of the selected bits. The vector
s̃ = (s̃1, . . . , s̃l) contains the different initial design sizes
within the selected features; lsF̄E reflects the mean number
of FE of all local searches for the respective initial design;
d equals the dimensionality of the test function.

Figure 2: Plot of the hypervolume dominated by the active pop-
ulation after each function evaluation for the two optimization
problems (10D). The colors denote the different runs of the SMS-
GA.

ity pc = 0.25 and a mutation rate of pm = 0.05. The latter
two parameters are set in accordance with usual recommen-
dations in the GA literature. All members of the archives of
non-dominated solutions are merged and the non-dominated
solutions within this set of points are determined, which rep-
resent the final approximation of the Pareto front of the prob-
lem.

In Mersmann et al. (2010) it was shown that the perfor-
mance of the competing algorithms in the BBOB contest dif-
fers widely for lower (2-3) and higher dimensions (5-20). In
order to analyze the effect of increasing dimension on the se-
lection of the low-level features, the analysis is performed
separately for the decision space dimensions d = (5, 10, 20),
since these are of primary interest for practical applications.

4.2 Results
The combined non-dominated solutions of the 10 runs for
the 10D case are shown in Fig. 4. Looking at the plot, we
see that for the most part features based on small initial de-
signs are chosen. This alone is an encouraging result because
it implies that using just a few function evaluations we can
characterize the 24 BBOB test functions to such an extent, that
we can, in the extreme case, perfectly predict to which BBOB
function group they belong. One surprising aspect is that
for some individuals the chosen feature set seems redundant.
For example, the first solution with a misclassification rate of
0 and a cost of 10−2.4 uses both the convex.(...)_625 and
then convex.(...)_5000 features. We believe that, given
more time, the SMS-GA would likely eliminate one of the
two. From Fig. 2 it becomes obvious that the SMS-GA has not
finally converged with respect to the obtained hypervolume.
We plan to analyze this further. Another important thing to
note is that there appears to be no feature which is required
regardless of the chosen trade-off. Therefore the optimiza-

Figure 3: Scatter plot of two features, selected via forward selec-
tion and cross-validation on the function instances (10D), used to
predict the BBOB function group. The color encodes the function
group (labeled by function_instance) and the dark circles mark
misclassified function instances during the cross-validation.

tion process seems to have generated truly diverse solutions,
not just in the objective space but also in the parameter space.

Fig. 5 visualizes the normalized ranks of important fea-
tures within the BBOB groups, i.e. those features for which
the feature groups are active in at least ten of the solutions
generated by the SMS-GA. Though the rank structures are
not clearly distinguishable in most cases, the highest differ-
ences can be detected for the “levelset” and “approx.linear”
features, especially with respect to the fifth BBOB group. How-
ever, the effect of the problem dimension on the feature val-
ues is observable which justifies the separate analysis for the
different dimensions.

Finally, let us point out that the chosen scenario might re-
sult in an optimistically biased misclassification rate. Given
that we have differently parametrized instances of the same
test function in both the training and test set, the job of ex-
trapolating from the “known” behavior of the training set of
test functions to the “unknown” test functions is much eas-
ier than if we had opted to leave out the whole set of test
instances of a test function in each cross-validation fold. To
illustrate this effect, we can consider a simplification of the
optimization done in this section. We can use simple for-
ward selection, as described in section 3, to find two relevant
features to predict the BBOB function group of a test func-
tion. Fig. 3 shows such a pair of features for the 10D test
functions. We clearly observe that the only misclassified in-
stances, those with a dark circle behind them, are functions
which are close to a cluster of other test function instances.
But looking at the bottom left of the plot, we see an isolated
cluster of test function instances all belonging to test func-
tion 2. If we had completely removed function 2 in the train-
ing phase, how could the classifier possibly know that func-
tions in this region belong to the BBOB function group 1? A
more likely scenario is that functions in this region of the plot
would be assigned to classes 2 or 3. Results in the 5D and
20D case are similar and the same plots as shown here are
provided for these two cases in the supplementary material.
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Figure 4: Bitplot of the overall best solutions (10D). Feature groups which are never selected are not shown to save space. The feature
groups are ordered, from bottom to top, according to how frequently they occur in the solution sets. Each column represents one individual
in the final set of non-dominated solutions. These solutions are again ordered according to the first two objectives. The axis label shows
the MCE (in percent) and the cost (on log10 scale) of the solution. Black dots denote active features, grey dots mean the feature is not park
of the solution vector.

Figure 5: Parallel Coordinate Plot of the 31 features present in at least 10 of the final non-dominated solutions to the problem studied in
section 4. Each line represents one calculation of the features on one BBOB test function instance (red: 5D, green: 10D, blue: 20D). The
x-axis represents the ranks of the feature values within the groups scaled by the overall maximum rank.
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Figure 6: Probabilities of belonging to a final solution of problem
1 and 2 for all feature groups of Fig. 4.

5. FEATURE SELECTION FOR
HIGH-LEVEL FEATURES

In general, knowledge of specific characteristics of the fitness
landscape of a given problem is desired independent from
the BBOB function grouping. More specifically, a direct pre-
diction of function properties as presented in Table 1 such as
e.g. the level of multi-modality has to be provided. Espe-
cially the ability to differentiate between multi-modal prob-
lems with and without global structure will facilitate the se-
lection of an appropriate algorithm for an optimization prob-
lem at hand.

5.1 Experimental Setup (Problem 2)
The experimental setup is very similar to the one of section
4.1. The main difference is that in this case seven different
classification problems are solved in parallel, i.e. the level of
each high-level feature is predicted based on the low-level
feature groups encoded in the 90-dimensional bit string.

The optimization criteria for the SMS-GA remain the same
except for the computation of the misclassification error. The
cross-validated MCE is computed for each of the seven clas-
sification problems, and the maximum of these errors
(MaxMCE) is used as the quality criterion reflecting model
accuracy in the multi-objective optimization problem. There-
fore the optimization goal is to find sets of low-level features
which offer optimal trade-offs for the simultaneous minimiza-
tion of MaxMCE as well as NFE and NSF. Six runs of the
SMS-GA with 1000 evaluations are conducted, and the anal-
ysis is again carried out separately for 5, 10 and 20 dimen-
sions.

5.2 Results and Comparison of Feature Sets
The optimization task posed in this section is much harder
since we are optimizing several classification problems si-
multaneously. This is reflected by the higher MaxMCE of the
final non-dominated individuals. At the same time, by look-
ing at Fig. 4, we see that the number of feature groups per in-
dividual is higher when compared to the problem in the pre-
vious section. Maybe even more surprising is the fact, that
the feature groups used are not necessarily the same ones

Figure 7: Scatter plot of the rank transform of two variables
selected to predict the multi-modality property using leave-one-
function-out. Each test function instance is represented by its
BBOB test function number, its color encodes the multi-modality
class from Tab. 1. The colored circles mark instances which are
misclassified (red: incorrect in two class setting, blue: incorrect in
four class setting, green: incorrect in both settings). Because the
local search feature is equal to one for many of the functions, the
first ≈ 350 ranks should be treated as equal. They are randomly
assigned here to aid in the visualization.

used in the other optimization problem. Since, given a func-
tion’s high-level features, we can deduce the BBOB function
group it belongs to, we would have expected the two solu-
tion sets to be more similar. This can also be seen from Fig. 6,
in which the probabilities of belonging to a final solution for
each feature group of Fig. 4 are visualized for both problems.
Only few feature groups, located close to the main diago-
nal, have roughly equal probability of appearance in the so-
lutions of both problems. The unbalanced number of active
feature groups for both problems becomes obvious as well as
much less points are located below the diagonal than above.
One reason for the large number of active bits in the solu-
tions of problem 2 might be that, again, the SMS-GA has not
converged within the afforded number of function evalua-
tions. Another possibility to further reduce the active bits of
the solutions might be some kind of backward search at the
end or even include such an operator in the GA. One should
also keep in mind that possibly very different feature groups
are helpful in predicting the seven properties.

Additionally, the feature groups with extreme probabilities
are labeled for each problem. Whereas for problem 1 the fea-
tures of the y - distribution group are of higher importance
than the convexity features which is contrary to the situation
in the second problem.

6. DISCUSSION AND OUTLOOK
A crucial aspect in optimization is the ability to identify the
most suitable optimization algorithm for a (black-box) opti-
mization problem at hand. This procedure can be based on
key characteristics of the fitness landscape such as the de-
gree of global structure or the number of local optima, both
of which have proven to have a strong influence on the per-
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formance of different optimizers and allow to differentiate
between them. As those properties are usually unknown for
practical applications, we present an approach to automati-
cally extract low-level features from systematically sampled
points in the decision space. Examples of these are the prob-
ability of convexity, the estimated number of local optima
based on local search techniques or the accuracy of fitted
meta models.

The relevance of the proposed low-level features is proven
by successfully predicting the predefined function groups of
the BBOB’09/10 contest for all function instances based on
the estimated low-level features with only marginal classi-
fication errors. Next to the accuracy of the predictions, the
cost for calculating the features is considered as well as the
model complexity measured by the number of chosen fea-
ture groups. Using multi-objective optimization techniques
the Pareto front of this problem can be approximated, of-
fering different trade-off solutions to choose from. In addi-
tion, and much more relevant for practical applications, a
highly accurate prediction of high-level function features de-
rived from expert knowledge is achieved independently of
the BBOB function groupings. Contrary to our initial expec-
tation, much fewer sample points are required to calculate
the features needed for highly accurate classifications, mak-
ing this approach, to a certain extent, applicable even for ex-
pensive real-world optimization problems.

In future work we will study how the performance of the
optimization algorithms which took part in the BBOB con-
tests relates to the proposed low-level features. The aim is
to identify algorithms which perform well on different sub-
sets of functions or function groups from the test set which
in turn can be characterized by the computed low-level fea-
tures. From there, a generalization to a new optimization
problem should be possible by computing its low-level fea-
tures and selecting the best performing algorithm for these
characteristics in the BBOB competition.

As discussed in section 5, the scenario chosen for our opti-
mization does not have to hold necessarily. It may in fact be
desirable to extrapolate to completely new functions instead
of just new instances of the same test function. We have done
some preliminary work in this direction, using leave-one-
function-out cross-validation. As an example of the results
one can expect here, we again chose the two best variables
to predict the multi-modality feature using a random forest
with forward feature selection. Only the 50 features with
s = 5000 are used, as we disregard their costs in this small
experiment. We both consider the original 4-class problem
and a 2-class version, where we try to predict whether the
multi-modality property is “none” or not. The results for the
5D case are shown in Fig. 7. While we only achieve an ac-
curacy of ≈ 73% on the 4-class problem, we can offer some
insights into why this is the case. Consider, for example, the
function 5. It lies isolated in the bottom left corner of the plot.
We conjecture that there are not enough “similar” functions
in the BBOB test set for the classifier to possibly correctly as-
sign this function to the “no multi-modality” class. On the
other hand, the 2-class problem can be solved with an error
of less than 4%. Surprisingly, using all 50 features in the ran-
dom forest does not really improve the performance for the
4-class problem and even leads to degradation in the 2-class
task.

While it is desirable for a test set used in a benchmarking
setting to be as small as possible, it is a necessary requirement

to have a few generally similar functions in the set from a ma-
chine learning perspective. We feel that finding such a “space
filling” set of test functions is one of the great challenges of
benchmarking. Using the low-level features proposed in this
article as a tool to judge the distribution of the chosen test
functions in the space of all possible test functions might be
a viable way to approach this problem.

A promising perspective would therefore be the extension
of the BBOB test set by functions with specific characteris-
tics so that a more balanced distribution with respect to the
levels of the high-level features is provided. The introduced
low-level features could be used as the basis for a system that
automatically generates test functions with certain desired
properties, e.g. by means of genetic programming. Using
such a system, methods from design of experiments could be
used to systematically sample functions for predefined levels
of the low-level features, resulting in a well balanced set of
test functions. Lastly, the inclusion of real-world benchmark-
ing scenarios is also highly desirable in order to minimize
the gap between artificial test functions and the challenges
of practical optimization tasks.
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