
On the Architecture and Implementation of Tree-based
Genetic Programming in HeuristicLab

Michael Kommenda, Gabriel Kronberger,
Stefan Wagner, Stephan Winkler, and Michael Affenzeller

University of Applied Sciences Upper Austria
School of Informatics, Communication and Media

Softwarepark 11, 4232 Hagenberg, AUSTRIA
{michael.kommenda, gabriel.kronberger,

stefan.wagner, stephan.winkler, michael.affenzeller}
@fh-hagenberg.at

ABSTRACT
This article describes the architecture and implementation of
the genetic programming (GP) framework of HeuristicLab.
In particular we focus on the core design goals, namely ex-
tensibility, usability, and performance optimization and ex-
plain our approach to reach these goals. The overall design,
the encoding, interpretation, and evaluation of programs is
described and code examples are given to explain core as-
pects of the framework. HeuristicLab is available as open
source software at http://dev.heuristiclab.com.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program synthe-
sis; I.2.8 [Problem Solving, Control Methods, and

Search]: Heuristic Methods

General Terms
Design

Keywords
Genetic Programming, Symbolic Regression, HeuristicLab

1. INTRODUCTION
Genetic programming (GP) is a well-established heuris-

tic method for solving optimization problems and an active
research field. A simple variant of tree-based GP can be
implemented in only 500 lines of code [11]. However, it is
not straightforward to implement a generic and flexible GP
framework in an efficient way. Several frameworks have been
developed that provide components and out-of-the-box algo-
rithm implementations for heuristic optimization in general
and, in particular, GP. Prominent examples of heuristic opti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion,July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

mization frameworks with GP support are ECJ [9], Evolving
Objects [2], and Open BEAGLE [1].

Most frameworks are implemented as libraries and provide
only a rudimentary graphical user interface (GUI). Before an
algorithm can be used to solve a given optimization problem,
users often have to build the source, setup the optimization
environment, and manipulate settings in configuration files.
HeuristicLab [12] tries to avoid this by providing as much
functionality as possible as ready-to-use components within
the GUI without sacrificing extensibility.

In this publication the design goals, architecture, and im-
plementation of GP in HeuristicLab are described. Section
2 lists the design principles and gives an overview of the
features of GP in HeuristicLab. Section 3 explains the ar-
chitecture and implementation in detail, in particular the
separation of problem and algorithm implementations. Fur-
thermore, we describe the code for interpretation and fitness
evaluation for symbolic regression solutions in Section 4. Fi-
nally, Section 5 concludes the paper with a summary.

1.1 HeuristicLab
The development of HeuristicLab started in 2002 to pro-

vide an environment for developing and testing heuris-
tic optimization methods. The main motivation was to
build a paradigm-independent, flexible, extensible, and user-
friendly software framework using state-of-the-art program-
ming techniques and concepts that can be used in research
projects and for teaching. C# was chosen as development
language as it provides a reasonable trade-off between de-
velopment and execution efficiency. After several major re-
leases the latest version HeuristicLab 3.3 has been made
available under the GNU General Public License (GPL v3.0)
and can be downloaded at http://dev.heuristiclab.com.

Since version 1.0 HeuristicLab has included tree-based
GP, with a strong focus on symbolic regression and clas-
sification. To comply with the design and architecture of
HeuristicLab 3.3 the previous GP implementation has been
completely rewritten. This new implementation is described
in the following sections.

2. OVERVIEW
The architecture of our GP implementation is based on

the following design considerations which are also central
design goals of the core framework of HeuristicLab.

101

Figure 1: The architecture of the most important compo-
nents of the implementation. The bottom layer displays
encoding specific classes that can be used by problems or
algorithms. Multiple algorithms can be used to solve GP
problems. A problem implementation must provide an eval-
uator; the remaining operators are supplied by the encoding.

2.1 Design Considerations

Separation of Algorithms, Encodings, and Problems
The first design consideration is separation of the algorithm,
the encoding, and the problem (as shown in Figure 1). The
separation of these components allows the reuse of existing
code in various locations. For example, the implementations
of the artificial ant problem [5] and of symbolic regression
both use the same operators provided by the symbolic ex-
pression tree encoding. Since crossover and mutation opera-
tors are provided by the encoding, both tasks can be solved
by all population-based, evolutionary algorithms. Thus, im-
plementing all combinations of algorithms and problems in-
dividually is not necessary.

Extensibility
Another important aspect is that the implementation should
provide operators for tree creation, manipulation, and anal-
ysis described in the literature. However, the framework
must be extensible as it is impossible to provide all features
out of the box and researchers frequently want to use im-
proved operator variants. In HeuristicLab extensibility is
achieved through a plugin-based architecture [13] and algo-
rithm modeling concept. Custom operators can be imple-
mented in separate plugins which are discovered and loaded
during program runtime to inject new functionality. Fur-
thermore, algorithms are represented in a graphical way and
can be modified to allow customization to specific needs.

Reproducibility of Results
Most heuristic algorithms are non-deterministic and rely on
pseudo random number generators (RNG) to find solutions.
Therefore, multiple executions of the same algorithm usually
yield different results. To guarantee the reproducibility of
results it should be possible to specify the seed value for the
RNG. For the same seed value the algorithm must behave
in exactly the same way and yield the same results. Even if
parts of the algorithm are executed in parallel, this principle
must be adhered to.

Efficiency
An important and well-known application of GP is symbolic
regression, thus, special emphasis has been put on the effi-
ciency of the code for symbolic regression in HeuristicLab.
This may be counter-intuitive as a comprehensive GUI is
provided, C# with .NET 4.0 is used as programming lan-

guage, and a costly algorithm abstraction is used to provide
a generic framework. Nevertheless, a large part of the exe-
cution time in symbolic regression is spent on fitness evalua-
tion, which scales linearly with the number of data rows. We
routinely work with rather large datasets comprised of more
than 10, 000 data rows. Thus, the evaluation of symbolic
regression solutions must be as efficient as possible (cf. Sec-
tion 4). In particular, dynamic memory allocation should
be reduced as much as possible to reduce memory pressure.
In managed languages as C#, the overhead of garbage col-
lection can be a performance killer if fitness evaluation is
implemented in a naive way. This is especially important
on multi-core machines where the memory bandwidth can
become the bottleneck for fitness evaluation.

Multi-core Support
The last design principle is that operators should be im-
plemented in a functional programming style and not save
an internal state to ease multi-core parallelization. Using
stateful operators would require locking mechanisms which
would limit the possible performance improvement achieved
by using multiple cores.

2.2 Features

Symbolic Tree Representation
As mentioned previously, the GP implementation in Heuri-
sticLab is based on symbolic expression trees as represen-
tation for evolved programs. This has the advantage that
operators for individual creation, crossover, and manipula-
tion are straightforward and well described in the literature,
for example in [5, 11, 8].

Syntactic Restrictions
The encoding is further enhanced by possibilities to restrict
the space of possible solutions with grammars. A grammar
defines the syntactical structure of trees by specifying which
symbols are allowed at which position. Correctly config-
ured grammars for problems are already provided and can
be manipulated graphically in the user interface. Through
this mechanism it is possible to imitate strongly typed GP
[10], but it is more powerful, for example, it allows the in-
corporation of a-priori knowledge by fixing parts of the trees
which cannot be modified. An exemplary grammar to create
arithmetic expressions to solve a symbolic regression prob-
lem is shown in Figure 3.

Automatically Defined Functions
Automatically defined functions (ADFs) were first described
by John Koza in [6] and allow genetic programming to evolve
reusable subroutines dynamically. HeuristicLab provides ar-
chitecture manipulation operators which create, invoke, and
delete subroutines and also manipulate the arguments of the
subroutines. Through these operators the evolutionary pro-
cess can evolve ADFs if necessary to solve a given problem.

Default Operator Implementations
HeuristicLab provides several standard operators for tree-
based GP, for example full, grow, ramped half-and-half, and
PTC2 for tree creation [11, 8], subtree crossover [5] for child
creation, and replace branch, point mutation, and tree shaker
for tree manipulation. The operators are implemented as

102

Figure 2: Screenshot of the visualization capabilities of Heu-

risticLab showing a symbolic expression model together with
its evaluation.

described in the cited literature, but have been adapted to
support the search space restrictions defined by grammars.

Comprehensive Visualization Capabilities
HeuristicLab provides a comprehensive GUI and visualiza-
tion support, not only for GP. Figure 2 shows exemplary
screenshots including the visualization of a symbolic expres-
sion tree and its evaluation result as a line chart.

Analysis Support
Furthermore the internal algorithm behavior can be assessed
by so-called analyzers, that are executed every iteration.
Analyzers extract information of the population and the al-
gorithm during the runtime. Currently analyzers to extract
the best solution, the distribution of qualities, tree sizes, and
symbol frequencies are provided.

Benchmark Problems
HeuristicLab 3.3.6 includes implementations of the artifi-
cial ant problem, and symbolic regression and classification
problems. To facilitate algorithm and operator compari-
son, HeuristicLab includes a number of difficult artificial
and real-world benchmark problems for genetic program-
ming as of version 3.3.7. These benchmark problems have
been added in reaction to a recent discussion on the GP
mailing list1 where it was stated that GP has a toy problem
problem, as many research papers publish results on simple
toy problems only.

3. ENCODING OF SYMBOLIC EXPRES-
SION TREES

In the following the overall design and implementation of
symbolic expression trees, symbols, and grammars are de-
scribed. The core functionality for handling symbolic ex-
pression trees is provided by the encoding. The encoding
defines the structure of individuals and combines problem-
independent classes that can be reused. All standard meth-
ods for tree creation, manipulation, crossover and compi-
lation are located in the encoding and therefore a newly
implemented problem just has to provide concrete symbols
and methods to evaluate solution candidates. For example,

1http://tech.groups.yahoo.com/group/genetic_
programming/message/5410

in the case of a symbolic regression problem, the evaluator
calculates the error of the model predictions and uses an in-
terpreter to calculate the output of the formula for each row
of the dataset.

Any algorithm that uses recombination and mutation op-
erators to generate new solution candidates, for instance a
genetic algorithm (GA), can be used to solve any problem
using the symbolic expression tree encoding for instance a
symbolic regression problem. A specialized algorithm for
genetic programming with reproduction and crossover prob-
ability is not yet provided but is planned to be added soon.

3.1 Symbolic Expression Trees
The GP system of HeuristicLab is based on a tree repre-

sentation and the most important interfaces are: ISymbo-

licExpressionTree, ISymbolicExpressionTreeNode, and
ISymbol.

The structure of a tree is defined by linked nodes, and
the semantic is defined by symbols attached to these nodes.
The SymbolicExpressionTree is the class for trees and has
properties for accessing its root node, getting its length and
depth, and iterating all tree nodes in a prefix or postfix man-
ner. Starting from the root node, every other node can be
reached, as an ISymbolicExpressionTreeNode has proper-
ties and methods to manipulate its parent, its subtrees, its
symbol and helper methods for applying actions on all sub-
trees. An individual is therefore simply created, by linking
tree nodes and setting the root node of the ISymbolicEx-

pressionTree.
The root node of a tree is per default a node with a spe-

cialized symbol, the ProgramRootSymbol, whose child is a
node with the StartSymbol that tells the interpreter where
the program starts. This convention was introduced as the
usage of ADFs makes it necessary to have multiple program
fragments and ADFs are represented as additional nodes
containing a DefunSymbol, next to the StartSymbol (cf. Sec-
tion 3.3).

3.2 Symbols and Grammars
In addition to the structure of a tree, symbols and gram-

mars are necessary for individual creation. A symbol defines
the semantic of a tree node (how it is interpreted) and spec-
ifies a minimum and maximum arity; terminal symbols have
a minimum and maximum arity of zero. All available sym-
bols must be included in a grammar which defines the set of
valid and well-formed trees. We have chosen to implement
this by defining which Symbols are allowed as child symbol of
other symbols, and at which position they are allowed. For
example, the first child of a conditional symbol must either
be a comparison symbol or a boolean function symbol.

A base class for grammars is provided in the encoding.
Problem-specific grammars should derive from this base
class and configure the grammar rules for the desired tree
structures. This initialization of a arithmetic expression
grammar is shown in Figure 4. Code given in lines 1–10 cre-
ates the symbols and adds them to lists for easier handling.
Afterwards the created symbols are added to the grammar
(lines 12-13) and the number of allowed subtrees is set to two
for all function symbols (lines 14–15). Terminal symbols do
not have to be configured, because the number of allowed
subtrees is automatically set to zero. The last lines define
which symbols are allowed at which position in the tree.
Below the StartSymbol all symbols are allowed (lines 16,17)

103

<expr> := <expr> <op> <expr> | <terminal>

<op> := + | - | / | *

<terminal> := variable | constant

Figure 3: Backus-Naur Form of an arithmetic grammar
defining symbolic expression trees to solve a regression prob-
lem.

1 var add = new Addition();

2 var sub = new Subtraction();

3 var mul = new Multiplication();

4 var div = new Division();

5 var constant = new Constant();

6 var variableSymbol = new Variable();

7 var allSymbols = new List<Symbol>()

8 {add,sub, mul,div,constant,variableSymbol};

9 var funSymbols = new List<Symbol>()

10 {add,sub,mul,div};

11

12 foreach (var symb in allSymbols)

13 AddSymbol(symb);

14 foreach (var funSymb in funSymbols)

15 SetSubtreeCount(funSymb, 2, 2);

16 foreach (var symb in allSymbols)

17 AddAllowedChildSymbol(StartSymbol, symb);

18 foreach (var parent in funSymbols) {

19 foreach (var child in allSymbols)

20 AddAllowedChildSymbol(parent, child);

21 }

Figure 4: Source code for the configuration of the Arith-

meticGrammar formally defined in Figure 3.

and in addition, every symbol is allowed under a function
symbol (Lines 18–21).
Default grammars are implemented and pre-configured for

every problem which can be solved by GP. These grammars
can be modified within the GUI to change the arity of sym-
bols or to enable and disable them.
A typical operator for tree creation first adds nodes with

the RootSymbol and the StartSymbol. Afterwards the Gram-
mar is asked to return a list of allowed symbols, from which
one is randomly chosen and an according tree node is cre-
ated and added. This procedure is recursively applied until
the desired tree size is reached. In addition, the crossover
and mutation operators also adhere to the rules defined by
the grammar resulting in valid and well-formed trees during
the whole algorithm run.

3.3 Automatically Defined Functions
As previously mentioned, the described GP system sup-

ports automatically defined functions (ADFs). ADFs are
program subroutines that provide code encapsulation and
reuse. They are not shared between individuals but have to
be evolved separately in individuals, either by crossover or
mutation events and are numbered according to their posi-
tion below the tree root. The Defun tree node and symbol
define a new subroutine and are used next to the Start-

Symbol directly below the ProgramRootSymbol. ADFs can
be called from any part of the tree by inserting an Invoke-

Function tree node, except from ADFs with a lower index
to prevent infinite recursions and non-stopping programs.
ADFs are created during algorithm execution by the sub-

Figure 5: Creation of an ADF in an artificial ant program.
The dashed lines indicate the cut points in the tree from
which the ADF is created.

routine creator which moves a subtree of an individual into a
subroutine and inserts an InvokeFunctionTreeNode instead
of the original subtree. Furthermore, ADFs can have an ar-
bitrary number of arguments that are used to parameterize
the subroutines. An example for creating an ADF with one
argument is shown in Figure 5. On the left hand side the
original tree describing an artificial ant program is displayed.
Additionally, two cut points for the ADF extraction are in-
dicated by dashed lines. The subtree between the cut points
is added beneath a DefunTreeNode displayed as the newly
defined ADF ADF0 and as a replacement an InvokeFunc-

tionTreeNode is inserted. The subtree below the second cut
point is left unmodified and during interpretation its result
is passed to ADF0 and replaces all occurrences of ARG0.

Altering the structure of a tree to create ADFs is per-
formed by so-called architecture manipulating operators
that can be called in the mutation step. Architecture ma-
nipulating operators for subroutine and argument creation,
duplication, and deletion are provided by the framework.
All of these work by moving parts of the tree to another
location, either in the standard program execution part (be-
low the StartTreeNode) or into an ADF (below the Defun-

TreeNode). For example, the subroutine deletion operator
replaces all tree nodes invoking the affected subroutine by
the body of the subroutine itself and afterwards deletes the
subroutine from the tree by removing the DefunTreeNode.

The combination of architecture altering operators and
tree structure restrictions with grammars is non-trivial as
grammars must be dynamically adapted over time. Newly
defined ADFs must be added to the grammar; however, the
grammar of each single tree must be updated independently
because ADFs are specific to trees. This has led to a de-
sign where tree-specific grammars contain dynamically ex-
tended rules and extend the initially defined static grammar.
The combination of the tree-specific grammar and the static
grammar defines the valid tree structures for this solution
and also for child solutions because grammars are inherited
by child solutions. If no ADFs are allowed in the GP al-
gorithm the tree-specific grammar is always empty since no
symbols are dynamically added during the run.

Architecture manipulating operators automatically up-
date the tree-specific grammar correctly by altering the al-
lowed symbols and their restrictions. This mechanism allows
the execution of crossover and mutation, without even know-
ing if ADFs are present in the current tree and only valid
trees according to the grammar are created.

104

Figure 6: Workflow for calculating the fitness of symbolic regression models.

4. SYMBOLIC REGRESSION MODEL
EVALUATION

In this section we describe the implementation for evalu-
ating symbolic regression models represented as symbolic
expression trees. Symbolic regression is frequently used
as a benchmark task for testing new algorithmic concepts
and ideas. If symbolic regression is applied on large real-
world datasets containing several thousand data rows, per-
formance as well as memory efficiency becomes an important
issue.
The main concepts for the symbolic regression evaluation

in HeuristicLab are streaming and lazy evaluation provided
by constructs of the .NET framework. Figure 6 depicts how
the symbolic expression trees are passed through different
operators for fitness value calculation, which is explained in
the following sections.

4.1 Interpretation of Trees
Evaluators for symbolic regression must calculate the er-

ror of the predicted values produced by the model and the
actual target values. To prevent the allocation of large dou-
ble arrays we implemented an interpreter for symbolic re-
gression models that yields a lazy sequence of predicted val-
ues for a given model, a dataset and a lazy sequence of row
indexes. As a preparatory step the interpreter first compiles
the model represented as a symbolic expression tree down to
an array of instructions. This preparation can be done in a
single pass over all nodes of the tree so the costs are rather
small and the linear instruction sequence can be evaluated
much faster. First of all the nodes of the original tree are
scattered on the heap, while the instruction array is stored
in a continuous block of memory. Additionally, the instruc-
tions have a small memory footprint and consist of a single
byte for the operation code (opcode), a byte for the number
of arguments of the function and an object reference which
can hold additional data for the instruction. As a result the
instruction array is much more cache friendly and the num-
ber of cache misses of the tree interpretation can be reduced.
Another benefit of the compilation step is that simple static
optimizations can be applied (e.g. constant folding).
The interpretation of the instruction array is implemented

with a simple recursive Evaluate method containing a large
switch statement with handlers for each opcode. Figure 7
shows an excerpt of the evaluation method with the handlers
for the opcodes for addition, division and variable symbols.
The recursive evaluation method is rather monolithic and
contains all the code for symbol evaluation. However, the
implementation as a single monolithic switch loop with re-
cursive calls is very efficient as no virtual calls are necessary,
the switch statement can be compiled down to a relative
jump instruction, and the arguments are passed on the run-
time stack which again reduces cache misses.
An alternative design would be to implement a specific

1 double Evaluate(Dataset ds, State state) {

2 var curInstr = state.NextInstruction();

3 switch (curInstr.opCode) {

4 case OpCodes.Add: {

5 double s = Evaluate(dataset, state);

6 for (int i = 1; i < curInstr.nArgs; i++) {

7 s += Evaluate(dataset, state);

8 }

9 return s;

10 }

11 // [...]

12 case OpCodes.Div: {

13 double p = Evaluate(dataset, state);

14 for (int i = 1; i < curInstr.nArgs; i++) {

15 p /= Evaluate(dataset, state);

16 }

17 if (curInstr.nArgs == 1) p = 1.0 / p;

18 return p;

19 }

20 // [...]

21 case OpCodes.Variable: {

22 if (state.row < 0 ||

23 state.row >= dataset.Rows)

24 return double.NaN;

25 var varNode =

26 (VariableTreeNode)curInstr.dynamicNode;

27 var values = ((IList<double>)curInstr.iArg0)

28 return

29 values[state.row];

30 }

31 }

32 }

Figure 7: Excerpt of the evaluation method for symbolic
regression models showing handlers for the addition, division
and variable opcodes.

evaluation method in each symbol class. This would be
the preferable way regarding readability and maintainabil-
ity. However, with this alternative design a costly indirect
virtual call would be necessary for each node of the tree and
for each evaluated row of the dataset.

In addition to the recursive interpreter HeuristicLab also
provides an interpreter implementation that compiles sym-
bolic expression trees to linear code in intermediate language
(IL) which can be directly executed by the .NET CLR using
the Reflection.Emit framework. This interpreter is useful
for large datasets with more than 10, 000 rows as the gener-
ated IL code is further optimized and subsequently compiled
to native code by the framework JIT-compiler. The draw-
back is that the JIT-compiler is invoked for each evaluated
tree and these costs can be amortized only when the dataset
has a large number of rows.

105

1 // [...]

2 case OpCodes.Call: {

3 // evaluate subtrees

4 var argValues = new double[curInstr.nArgs];

5 for (int i = 0; i < curInstr.nArgs; i++) {

6 argValues[i] = Evaluate(dataset, state);

7 }

8 // push on argument values on stack

9 state.CreateStackFrame(argValues);

10

11 // save the pc

12 int savedPc = state.ProgramCounter;

13 // set pc to start of function

14 state.PC = (ushort)curInstr.iArg0;

15 // evaluate the function

16 double v = Evaluate(dataset, state);

17

18 // delete the stack frame

19 state.RemoveStackFrame();

20

21 // restore the pc => evaluation will

22 // continue at point after my subtrees

23 state.PC = savedPc;

24 return v;

25 }

26 case OpCodes.Arg: {

27 return

28 state.GetStackFrameValue(curInstr.iArg0);

29 }

30 // [...]

Figure 8: Code fragment for the interpretation of ADFs and
function arguments.

4.2 Interpretation of ADFs
The interpreter must be able to evaluate trees with ADFs

with a variable number of arguments. The instruction for
calling ADF uses the Call opcode and contains the index of
the ADF to call and the number of arguments of the ADF.
The code fragment for the interpretation of ADFs and func-
tion arguments is shown in Figure 8. First the interpreter
evaluates the subtrees of the Call opcode and stores the re-
sults. Next the interpreter creates a stackframe which stores
the current program counter and the argument values. The
interpreter internally manages a stack of stackframes to sup-
port ADFs that subsequently call other ADFs. After the
stackframe has been created the interpreter jumps to the
first instruction of the ADF. When argument are encoun-
tered while interpreting the ADF instructions the interpreter
accesses the previously calculated argument values which are
stored in the top-most stackframe. Precalculation of argu-
ment values is only possible because symbolic regression ex-
pressions do not have side effects. Otherwise the interpreter
would have to jump back to the subtrees of the call symbol
for each encountered Arg opcode. At the end of the ADF
definition the interpreter deletes the top-most stackframe
with RemoveStackFrame and continues interpretation at the
point after the subtrees of the just evaluated Call opcode.

4.3 Online Evaluation of Programs
The first step for the evaluation of programs is to obtain

the dataset on which the trees have to be evaluated on and
to calculate the rows that should be used for fitness evalu-

1 public IEnumerable<int> SampleRandomNumbers

2 (int start, int end, int count) {

3 int remaining = end - start;

4 var random = new Random();

5 for (int i = 0; i < end && count > 0; i++) {

6 double rand = random.NextDouble();

7 if (rand < ((double)count) / remaining) {

8 count--;

9 yield return i;

10 }

11 remaining--;

12 }

13 }

Figure 9: Selection sampling technique to generate a stream
of numbers containing exactly a specified number of ele-
ments between a given minimum and maximum.

ation. If all samples are to be used, the rows are streamed
as an Enumerable beginning with the start of the training
partition until its end. Otherwise, the row indices to evalu-
ate the tree on, are calculated and yielded by the selection
sampling technique [3], which is shown in Figure 9.

The row indices, together with the dataset and the in-
dividual are passed to the interpreter that in fact returns a
sequence of numbers. Until now no memory is allocated (ex-
cept the space required for the iterators) due to the stream-
ing capabilities of the interpreter and the way of calculat-
ing row indices. But the whole streaming approach would
by pointless if the estimated values of the interpreter were
stored in a data structure for fitness calculation. Therefore,
all fitness values must be calculated on the fly which is done
by OnlineCalculators. Such calculators are provided for
the mean and the variance of a sequence of numbers and
for calculation metrics between two sequences such as the
covariance and the Pearson’s R2 coefficient. Further error
measures are the mean absolute and squared error, as well as
scaled ones, the mean absolute relative error and the normal-
ized mean squared error. OnlineCalculators can be nested;
for example the MeanSquaredErrorOnlineCalculator just
calculates the squared error between the original and es-
timated values and then passes the result to the MeanAnd-

VarianceOnlineCalculator. The code of the MeanAndVari-
anceOnlineCalculator is presented in Figure 10 and in the
Add method it can be seen how the mean and variance are
updated, when new values are added.

The source for calculating the mean squared error of an
individual is shown in Figure 11, where all the parts de-
scribed are combined. First the row indices for fitness cal-
culation are generated and the estimated and original values
obtained (lines 1-3). Afterwards these values are enumerated
and passed to the OnlineMeanSquaredErrorEvaluator that
in turn calculates the actual fitness.

In addition, all operations performed for evaluation are
stateless, which implies no changes are necessary for par-
allel solution evaluation. HeuristicLab uses the task paral-
lel library (TPL) provided by the .NET Framework, that
automatically handles work partitioning, thread scheduling,
and cancellation of threads. As the evaluation must be done
for multiple individuals in a population-based algorithm like
GP, the framework simple spawns an evaluation task for ev-
ery individual. A comparison of different achieved speed ups
using parallelization is shown in the next section.

106

1 public class OnlineMeanAndVarianceCalculator {

2 private double oldM, newM, oldS, newS;

3 private int n;

4

5 public int Count { get { return n; } }

6 public double Mean {

7 get { return (n > 0) ? newM : 0.0; }

8 }

9 public double Variance {

10 get { return (n > 1) ? newS / (n-1) : 0.0; }

11 }

12

13 public void Reset() { n = 0; }

14 public void Add(double x) {

15 n++;

16 if(n == 1) {

17 oldM = newM = x;

18 oldS = newS = 0.0;

19 } else {

20 newM = oldM + (x - oldM) / n;

21 newS = oldS + (x - oldM) * (x - newM);

22

23 oldM = newM;

24 oldS = newS;

25 }

26 }

27 }

Figure 10: Source code of the MeanAndVarianceOnlineCal-

culator.

1 var rows = Enumerable.Range(0,trainingEnd);

2 var estimated = interpreter.GetExpressionValues

3 (tree, dataset, rows).GetEnumerator();

4 var original = dataset.GetDoubleValues

5 (targetVariable, rows).GetEnumerator();

6 var calculator = new OnlineMSECalculator();

7

8 while(original.MoveNext() & estimated.MoveNext()) {

9 double o = original.Current;

10 double e = estimated.Current;

11 calculator.Add(o.Current, e.Current);

12 }

13 double MSE = calculator.MeanSquaredError;

Figure 11: Source code for calculating the mean squared
error between the original values and the estimated values
of an individual.

4.4 Performance
A goal of the presented GP implementation is to make

it as efficient as possible, without sacrificing the benefits of
real-time algorithm analysis in the GUI or overly compli-
cated source code. Therefore, the performance of most GP
related operators is measured and tracked by unit tests. In
addition to performance unit tests, unit tests which exe-
cute a predefined algorithm with a fixed random seed have
been implemented. This allows the detection of algorith-
mic changes and therefore the reproducibility of results is
guaranteed.

Table 1: Operator performance for tree creation, crossover
and tree interpretation on a symbolic regression problem.

Symbolic expression tree Trees / second
Full tree creator 1, 261
Grow tree creator 1, 695
Probabilistic tree creator 502
Subtree crossover 2, 960
Symbolic regression problem Nodes / second
Normal interpreter 26, 664, 077
IL emitting interpreter 14, 233, 213

Operator performance
The performance of operators is measured by executing the
operator multiple times to get an estimate for its execution
time. The operators are tested without any parallelization
support on different symbolic expression trees, as the struc-
ture and size of the trees may also affect the execution time.

Table 1 shows in the top the performance of encoding
specific operators as number of processed trees per second.
The reasons for the differences in the number of created
trees is that the probabilistic tree creator (PTC2 [8]) tries
to create trees of a specific size and its logic is therefore more
complex. Furthermore, the performance of tree creators is
not that important because these are only executed in the
beginning of an evolutionary algorithm.

A more performance critical comparison specific for sym-
bolic regression problems is shown in the lower part. The
performance of two different interpreters is tested on a
dataset containing 1, 000 rows with 1, 000 randomly created
trees consisting of a maximum of 100 nodes which are evalu-
ated three times. The numbers are stated as nodes / second
and thus can only be compared with the number of rows
in the dataset times the population size times the average
tree size. The IL emitting interpreter is slower because it
contains the overhead of compiling the trees into .NETs in-
termediate language (IL) before the interpretation can be
performed (cf. Section 4.1).

Parallelization benefits
HeuristicLab facilitates thread-based parallelization on
multi-core processors for algorithm execution. Algorithms
are modeled as a graph of operators that perform separate
task like selection, crossover, or evaluation. If an operator
is applied multiple times and does not depend on previous
execution results, it can be executed in parallel. By default,
individual creation and evaluation are performed in parallel.

The benefits of using multiple cores have been tested on a
multi-processor machine with eight cores and 32 gigabytes of
RAM. A genetic algorithm with a symbolic regression prob-
lem was executed three times whereby the number of cores
and the number of training samples have been varied. All
other parameters have been fixed of which the most impor-
tant concerning performance are a population size of 500,
100 calculated generations after which the algorithm stops
and a maximum tree size of 100.

Table 2 shows the average and the standard deviation of
the execution times in seconds for different configurations.
The more samples are used the better is the achieved speed
up with multiple cores as the evaluation speed highly de-
pends on this figure. The table also shows that using eight
cores does not really pay off on smaller problem sizes. How-
ever, it is remarkable that if 1, 000 rows are exceeded the

107

Table 2: Average and standard deviation of the execution
times of a genetic algorithm with a symbolic regression prob-
lem in seconds. The number of cores and samples for learn-
ing has been varied to show the parallelization speed up.
Samples 1 Core 2 Cores 4 Cores 8 Cores

100 46.7 (0.7) 35.5 (3.3) 27.6 (0.4) 24.4 (0.2)
500 92.7 (0.4) 57.9 (1.1) 40.8 (0.7) 31.4 (0.3)

1,000 125.4 (0.8) 74.9 (1.1) 46.8 (1.5) 33.6 (0.1)
4,000 413.8 (1.0) 218.1 (1.0) 119.4 (1.0) 70.4 (0.1)

runtime of the algorithm is almost solely dependent on the
tree evaluation. This is indicated, as the execution time
drops linearly if more cores are added.

5. CONCLUSION
The implementation of GP frameworks is not as easy as it

looks in the beginning if efficiency, extensibility and scalabil-
ity are demanded. Especially support for ADFs and strongly
typed GP is complex if provided in a generic way. Heuristic-
Lab achieves these goals by following strict design principles
and utilizing state of the art programming concepts supplied
by the .NET framework. Contrary to most other GP frame-
works, HeuristicLab further provides a comprehensive GUI
that allows algorithm configuration, adaption and results
analysis. The usefulness of HeuristicLab for implementing
and testing new research approach has been demonstrated in
several publication and the GP functionality has been used
for data mining in various domains [7, 4, 14].

6. ACKNOWLEDGEMENTS
A substantial part of the work described in this paper

was done in the Josef-Ressel-Centre Heureka! for heuristic
optimization, which is supported by the Austrian Research
Promotion Agency (FFG).

7. REFERENCES
[1] C. Gagne and M. Parizeau. Open BEAGLE: A new

versatile C++ framework for evolutionary
computations. In Late-Breaking Papers of the 2002
Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 161–168, 2002.

[2] M. Keijzer, J. J. Merelo, G. Romero, and
M. Schoenauer. Evolving Objects: A general purpose
evolutionary computation library. Artificial Evolution,
2310:829–888, 2002.

[3] D. E. Knuth. The art of computer programming,
volume 2 (3rd ed.): seminumerical algorithms.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[4] M. Kommenda, G. K. Kronberger, C. Feilmayr,
L. Schickmair, M. Affenzeller, S. M. Winkler, and
S. Wagner. Application of symbolic regression on blast
furnace and temper mill datasets. In Proceedings of
International Conference on Computer Aided Systems
Theory EUROCAST 2011, pages 305–307, Las
Palmas, Spain, 2011.

[5] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[6] J. R. Koza. Genetic programming II: automatic
discovery of reusable programs. MIT Press,
Cambridge, MA, USA, 1994.

[7] G. Kronberger, S. Fink, M. Kommenda, and
M. Affenzeller. Macro-economic time series modeling
and interaction networks. In Proceedings of the 2011
international conference on applications of
evolutionary computation - Part II,
EvoApplications’11, pages 101–110, Berlin,
Heidelberg, 2011. Springer-Verlag.

[8] S. Luke. Two fast tree-creation algorithms for genetic
programming. IEEE Transactions on Evolutionary
Computation, 4(3):274–283, Sept. 2000.

[9] S. Luke. ECJ: A java-based evolutionary computation
research system, 2002.
http://cs.gmu.edu/ eclab/projects/ecj/.

[10] D. Montana. Strongly typed genetic programming.
Evolutionary computation, 3(2):199–230, 1995.

[11] R. Poli, W. B. Langdon, and N. F. McPhee. A field
guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[12] S. Wagner. Heuristic Optimization Software Systems -
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Institute for Formal Models and Verification,
Johannes Kepler University, Linz, Austria, 2009.

[13] S. Wagner, S. Winkler, E. Pitzer, G. Kronberger,
A. Beham, R. Braune, and M. Affenzeller. Benefits of
plugin-based heuristic optimization software systems.
In Computer Aided Systems Theory EUROCAST
2007, volume 4739 of Lecture Notes in Computer
Science, pages 747–754. Springer Berlin / Heidelberg,
2007.

[14] S. Winkler, M. Affenzeller, W. Jacak, and H. Stekel.
Identification of cancer diagnosis estimation models
using evolutionary algorithms: a case study for breast
cancer, melanoma, and cancer in the respiratory
system. In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation,
pages 503–510. ACM, 2011.

108

