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Biological Inspiration: The Immune System of Vertebrates

“The immune system recognizes infection and
induces protective responses.” [28]

Main Tasks

• Immunological recognition

• Immune effector functions

• Immune regulation

• Immunological memory
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Artificial Immune Systems are. . .

• a model of the natural immune system
if you are interested in the natural immune system

• computational systems inspired by the natural immune system
with natural applications in anomaly detection & classification

if you are interested in solving a classification problem

• nature-inspired algorithms using the natural immune system
as metaphor for problem-solving

if you are interested in solving difficult problems

• nature-inspired randomised search heuristics
like many others, e. g., evolutionary algorithms, ACO, SA, . . .

if you are interested in randomised search heuristics

• a fascinating area of research
in any case

Good News We cover all these aspects. ( structure governed by this)
2
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Adaptive Immunity – Immunological Recognition

• Naïve lymphocytes: not yet involved in an immune response

• Carry antigen receptors of single specificity

• Receptor diversity due to
• Random recombination of gene fragments from several libraries
• Somatic hypermutation to increase antigen-antibody affinity

• Become active due to interaction with antigenic stimulus

• Recognition based on complementarity between binding region
of receptor and epitope of antigen on molecular level

• Antigens may present several epitopes

• Require co-stimulatory signals

• B cell receptor interacts directly while T cell receptor requires
preprocessing and presenting by other cells

7
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Multilayer Structure of the Immune System
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(reproduced from [6, 31])
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Clonal Selection Theory (1) [2]

• Describes basic properties of adaptive immune response

• Only cells recognizing an antigen proliferate and differentiate
into effector cells

• B cells
• Subject to somatic hypermutations
• B effector cells secrete antibodies

• T cells
• Not subject to mutation
• T effector cells secrete lymphokine

• B cell clonal selection similar to natural selection

• Learning through increasing population size and affinity

• Immune repertoire evolved from a random base to reflection
of actual antigenetic environment

8
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Innate vs. Adaptive Immunity
Innate Immunity

• Non-specific response against large number of bacteria

• Same in all “normal” individuals; mainly constant over lifetime

• First line of defense:
Controls infection before adaptive immune response kicks in

• Initiates and controls adaptive immune response

• Dendritic cells form bridge between innate/adaptive immunity

Adaptive Immunity

• Specific and preventive immune response

• Mediated by lymphocytes in the lymph nodes

• Two main types: B cells and T cells

• Presence of antibodies reflects infections the individual has
been exposed to

• Develops immunological memory

• Described by the Clonal Selection Theory
6
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Immunological Memory and Cross-Reactive Response
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Clonal Selection Theory (2) [2]
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Immune Network Theory [25]
• Remember Clonal Selection Theory

Immune system =̂ set of discrete cells and molecules originally
at rest; triggered only by a foreign antigenic stimulation

• Now different perspective Immune Network Theory
Immune system =̂ regulated network of cells and molecules
that recognize one another even in the absence of antigens

• Network is autonomous, self-regulated and aims at
maintaining a specific range of activity

• Immune tolerance, learning and memory as inherent global
properties

Paratope

Idiotope

Antibody

Antigen

. . .
Activation

Supression

(reproduced from [6, 31])
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Affinity Maturation
• Diversity via somatic hypermutations, receptor editing and

newcomer cells
• Non-functional and harmful anti-self specifities are eliminated
• Variants with higher affinity dominate immune response and

enter immune memory
• Some low affinity cells enter repertoire to maintain diversity
• Hypermutations

• Point mutations allow for exploring local regions
• On average one mutation per cell division; rapid accumulation

of mutations
• Short burst of somatic hypermutation followed by a pause to

allow for selection and clonal expansion
• Regulation of the hypermutation process by selection

depending on receptor affinity
• Receptor editing

• Instead of clonal deletion development of new receptors
• Allows for larger steps through the landscape

10
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Self-Nonself Discrimination
Consider crude, unrealistic, partly misleading example

self

nonself samplesdetectors
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Danger Theory [27]

Idea Immune system rather detects danger than nonself

Danger zone

Damaged cell

Danger signal

Stimulation
Match,
but too
far awayNo match

(reproduced from [31])
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Simple Negative Selection Algorithm

Problem formal formulation
Input finite alphabet Σ, string space Σl,

training set S ⊆ Σl of self strings
Output set of detectors D that match only self

by means of a partial match of length r

Algorithm works in two phases (outline)
Learning randomly generate detectors

keep those that do not match any s ∈ S
Detection mark everything that matches some d ∈ D

as nonself
(early algorithm, see e. g., Forrest et al. (1994) [11])

Fact very inefficient (for different types of detectors)
(see e. g., Stibor et al. (2004) [30])

16
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Artificial Immune Systems as Classifiers

Remember artificial immune systems
inspired by natural immune system
 ‘perform self-nonself discrimination

and react accordingly’ most natural application

Observation self-nonself discrimination
=̂ two-class classification problem

Fact many different AIS for this task
based on different immune principles

Today consider three examples

• negative selection (inspired by self-nonself discrimination)

• receptor density algorithm (inspired by T cell signalling)

• dendritic cell algorithm (inspired by the danger theory)
14
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Receptor Density Algorithm

Motivation two-class classification performed by T cells
depending on history

Basis model of T cell receptor called receptor
having a state c, position p, negative feedback n,
a negative feedback barrier β, length l > β
reacts to input u by
updating the position (adding u, subtracting n),
increasing negative feedback for positions above β,
decaying negative feedback otherwise
combining receptors spatially in form of a grid
with a stimulation kernel function
yields receptor density algorithm
(for details see Owens (2010) [29])
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Efficient Negative Selection

Algorithm outline, main ingredients
use prefix trees as main data structure
efficiently build finite automaton to represent detectors
(note: no explicit detector set)
construction of automaton works in time O(|S| · l · r)
classification works in time O(l)
(for details see Elberfeld, Textor (2011) [10])

Lesson Learned immune metaphor useful for ideas
algorithmic implementation following the IS
may be very far from optimal
immune-ideas can be implemented efficiently
using ‘classical’ algorithmic ideas

17
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Dendritic Cell Algorithm

Motivation danger theory specifically dendritic cells
model immune systems responds to danger/safe signals

(does not perform self-nonself discrimination)

Basis model of dendritic cells being either immature,
semi-mature or mature, having a lifespan
processing input classified as either danger, safe or PAMP,
computes two values:
DCM, indicating the amount of processed information,
K, indicating the classification as normal or anormal
a collection of such cells (with different lifespans) forms
dendritic cell algorithm performing classification
(for details see Greensmith (2007) [12])
fully formalised, simplified deterministic version
deterministic dendritic cell algorithm available
(for details see Gu (2011) [13])

20
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More Modern AIS-Approaches to Classification

Remember self-nonself discrimination
based on a simplistic understanding of the immune system
can be implemented efficiently
using clever algorithms/data structures

Fact many more AIS-approaches to classification exist
based on different aspects of immunology
too many to cover all here

Today two current approaches
based on different immunological theories
current =̂ both considered and further developed
in current publications

1 based on T cell signalling: receptor density algorithm

2 based on danger theory: dendritic cell algorithm

18
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Mutation in Artificial Immune Systems (2)

Contiguous Hypermutations
Idea Perform mutations with probability r ∈ (0, 1] only in
contiguous region.

1 Choose hotspot p ∈ {0, . . . , n − 1}, length ℓ ∈ {0, 1, . . . , n}.
p = 8, ℓ = 4

0 1 2 3 4 5 6 7 8 9 wrapping around

0 1 2 3 4 5 6 7 8 9 not wrapping around

2 Choose two hotspots a, b ∈ {0, . . . , n − 1}.
a = 8, a = 5

0 1 2 3 4 5 6 7 8 9

23
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Artificial Immune Systems as Optimisers

Remember most natural application
=̂ classification, pattern recognition, IT security

Observation some algorithms also suitable for optimisation tasks

In particular clonal selection and immune network theory

Consider minimsation/maximisation of
pseudo-Boolean functions f : {0, 1}n → R or
real-valued functions f : Rn → R

Observation structure similar to evolutionary algorithms
concrete implementation very different

Today characteristics and concrete algorithms

• Mutation and Metadynamics in AIS

• Clonal Selection Algorithms:
CLONALG, B-Cell Algorithm, opt-IA

• Immune Network: opt-aiNet
21
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Mutation in Artificial Immune Systems (3)

Hypermutation with Mutation Potential

• Idea Determine number of local mutation steps during a
single hypermutation

• Different classes: static, inversely proportional, proportional

• Example for some constant c ∈]0, 1[, minimisation
Mc(v) = ⌈(1 − fbest/v) · c · n⌉

• Variants for the hypermutation of x ∈ {0, 1}n:
tabu, stop at first constructive mutation

1 Set y := x. Set v := f(x).
2 Repeat the following Mc(v) times:

• If tabu = 0 select i ∈ {1, . . . , n} uniformly at random
else select i ∈ {1, . . . , n} uniformly at random, i not
previously chosen.

• y[i] := 1 − y[i]
• If fcm = 1 and f(y) < f(x) Then break

24
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Mutation in Artificial Immune Systems (1)

Usually Mutations at high rate  Hypermutations

Inverse Fitness-“Proportional” Hypermutation

• Idea Apply mutations with lower mutation rate to good
search points

• Usually Normalised fitness value f̂ ∈ [0, 1] used

• Using optimal function value fopt: f̂(x) = f(x)/fopt

• Using best known function value fbest: f̂(x) = f(x)/fbest

• Examples for some parameter ρ ∈ R
+, maximisation

• CLONALG pm = exp(−ρ · f̂)

• opt-aiNet pm = (1/ρ) · exp(−f̂)

• Remark
In continuous optimisation pm equals the mutation strength

22
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The B-Cell Algorithm (BCA) [26]

Parameters µ: population size λ: offspring population size

1. Initialisation Create an initial population P = {x1, x2, . . . , xµ}.
2. Clonal Selection and Expansion

For all i ∈ {1, 2, . . . , µ}:
a) Create λ clones of xi and place them in a clonal pool

Ci = {y1
i , . . . , yλ

i }.
b) Select j ∈ {1, . . . , λ} uniformly at random:

Flip each bit of yj
i with probability pm.

c) For all j ∈ {1, . . . , λ}:

Apply somatic contiguous hypermutation to yj
i .

3. Selection for Replacement
For all i ∈ {1, 2, . . . , µ}:

If min{f(y1
i ), . . . , f(yλ

i )} ≤ f(xi):

Replace xi by some randomly chosen yj
i with minimal f -value.

4. Stopping If stopping criterion not met continue at line 2.

27
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Metadynamics in Artificial Immune Systems
Sometimes Worst search points replaced by new random ones

Popular mechanism: Ageing

• Idea Increase diversity by removing old and non-improving
search points

• General implementation
• Assign age to each search point
• Increase age in each round
• If new search point improves over parent

Then Assign age 0 to new search point
Otherwise Inherit age of parent

• Optional Fill up population with new random search points

• Variants for some parameter τmax

• Static Pure Ageing:
remove search points older than τmax

• Stochastic Ageing:
remove each search point with probability 1 − 2−1/τmax

25
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opt-IA [3, 4, 5]

Parameters µ: population size λ: offspring population size
H, M: flags for mutation operators

1. Initialisation Create an initial population P = {x1, x2, . . . , xµ}.
2. Clonal Selection and Expansion

For all i ∈ {1, 2, . . . , µ}:

a) Create λ clones of xi and place them in a clonal pool Ci = {y1
i , . . . , yλ

i }.
b) For all j ∈ {1, . . . , λ}:

If (H) Then Apply hypermutation with mutation potential to yj
i  CH

i .
Else CH

i = ∅.

If (M) Then Apply contiguous hypermutations to yj
i  CM

i .
Else CM

i = ∅.
3. Metadynamics Apply aging to P , CH

i , and CM
i .

4. Selection for Replacement
Set P = P ∪ CH

1 ∪ . . . ∪ CH
µ ∪ CM

1 ∪ . . . ∪ CM
µ .

If |P | ≥ µ Then Keep the µ best search points from P ,
breaking ties u.a.r. and removing duplicates.

Else Keep all search points in P ; fill up P with random points.
5. Stopping If stopping criterion not met continue at line 2.

28
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CLONALG [8]

Parameters µ: population size d: selection pressure
β: offspring population size factor

1. Initialisation Create an initial population P = {x1, x2, . . . , xµ}.
2. Clonal Selection and Expansion

For all i ∈ {1, 2, . . . , µ}:
a) Create ⌊βµ⌋ clones of xi and place them in a clonal pool

Ci = {y1
i , . . . , y

⌊βµ⌋
i }.

b) For all j ∈ {1, . . . , ⌊βµ⌋}:

Apply inversely fitness-proportional hypermutation to yj
i .

3. Selection for Replacement
Keep the µ best search points from P ∪ C1 ∪ . . . ∪ Cµ,
breaking ties uniformly at random.

4. Metadynamics
Replace d search points with lowest fitness by new random ones.

5. Stopping If stopping criterion not met continue at line 2.

Variants 1. Non-elist selection for replacement
2. Keep best search point from xi ∪ Ci for all i ∈ {1, . . . , µ}

26
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Analysing Artificial Immune Systems
Why?

Because ‘gaining a better understanding’

• of general limitations (black-box complexity)
• of behaviour in typical situations (example functions)

• of impact of specific operators (operators in (1+1)-frame)
• of parameter settings (simple algorithms with 1 parameter)

• for particular problem classes (classes of functions;
combinatorial optimisation problems)

Because ‘design of better randomised search heuristics’

• know when not to apply
• have an idea of when to apply

• have an idea of ‘good’ operators
• have an idea of ‘good’ parameter values

• have an idea of what kind of RSH
• . . .

31
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opt-aiNet [7]

Parameters µ: initial population size λ: offspring population size
σ : affinity threshhold δ : average fitness threshold
d : selection pressure

1. Initialisation Create an initial population P = {x1, x2, . . . , xµ}.
2. Clonal Selection and Expansion

For all i ∈ {1, 2, . . . , µ}:

a) Create λ clones of xi and place them in a clonal pool Ci = {y1
i , . . . , yβµ

i }.

b) For all j ∈ {1, . . . , λ}: Apply inversely fitness-proportional mutation to yj
i .

c) For all i ∈ {1, 2, . . . , µ}: Keep the best search point from xi ∪ Ci.
3. Network Dynamics

If change of average normalised fitness less than δ
Then Calculate pairwise affinity d(xi, xj) of all search points.

If d(xi, xj) < σ Then remove worse search point. Update µ.
Else continue at line 2

4. Metadynamics Introduce ⌊dµ⌋ new search points in the network.
5. Stopping If stopping criterion not met continue at line 2.

Variants Non-elist selection for replacement
Remark Population size not fixed during optimisation

29
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Analysing Randomised Search Heuristics – What?
Observation most important efficiency

=̂time
Measuring time in randomised search heuristics

counting what advantage disadvantage remark

computation steps very precise very tedious rarely done
(see [22])

function eval. often good enough not exactly time very common
easier to handle still tedious

rounds convenient inprecise very common
can be misleading

Usually count X until optimum found
=̂ optimisation time (RV  expectation . . . )

Sometimes count X until good enough solution found
=̂ approximation time (RV  expectation . . . )

Alternative analyse solution quality after X
=̂ fixed budged compuation (RV  expectation . . . )
(see [23]) 32
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Analysing Artificial Immune Systems as Optimisers

Observation artificial immune systems as optimisers
are randomised search heuristics used for optimisation
just as evolutionary algorithms, ant colony optimisation,
particle swarm optimisation, simulated annealing,
iterated random local search, . . .

Consequence AIS as optimisers should be considered
the same way as other RSH as optimisers
=̂ applied as other RSH

analysed as other RSH

Fact analysis of RSH as optimisers is ‘big topic’
yesterday morning black-box complexity Benjamin Doerr

yesterday morning drift analysis Per Kristian Lehre

yesterday afternoon bio-inspired computation Frank Neumann

in combinatorial optimization & Carsten Witt

later today theory of swarm intelligence Dirk Sudholt
30
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Analysing Contiguous Hypermutations

Method

• Insert mutation operator in (1+1)-framework.
 study of effects in isolation

• Prove general observations.
 knowledge of general properties

• Compare with (1+1) EA (with mutation probability 1/n) on
well-known example functions.
 assessment of effects under well-known circumstances

• Find examples with extremely differing performance.
 clear understanding of benefits and drawbacks

Observation method not unique to contiguous hypermutations
but generally applicable for study of operators

35
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Analysing Randomised Search Heuristics

Artificial Immune Systems?
Yet another class of Randomised Search Heurisitcs?
Why should I care?

Facts artificial immune systems offer

• useful alternative design paradigm for RSHs

• have different operators with different properties
 useful in different situations

• can be a simpler and at least equally efficient alternative to
crossover-based EAs

Now

• overview of three different types of AIS-specific mutation

• considering ageing as example for a ‘meta-dynamic’

• example of a complete AIS in combinatorial optimisation

33
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Results About Contiguous Hypermutations (Part 1)

General Observation ∀f with unique global optimum :

E
(
TCHM1,no w.,f

)
= Ω(n)

E
(
TCHM1,w.,f

)
= Ω

(
n2
)

E (TCHM2,f ) = Ω
(
n2
)

due to probability of final mutation
(all bounds tight)

Comparison for OneMax(x) =
n∑

i=1
x[i]

E
(
T(1+1) EA,OneMax

)
= Θ(n log n)

E
(
TCHM1,no w.,OneMax

)
= O

(
n2 log n

)

E
(
TCHM1,w.,OneMax

)
= Θ

(
n2 log n

)

E (TCHM2,OneMax) = Θ
(
n2 log n

)

due to difficulty of making 1-bit improvements
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Contiguous Hypermutations

Remember (here with r = 1)
1 location, no wrapping 1 location, wrapping 2 locations

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

.5

1

.5

1

.5

1

Prob
(
ith bit mutated

)
Prob

(
ith bit mutated

)
Prob

(
ith bit mutated

)

biased towards end unbiased biased towards middle

E (#mut. bits) = n
3

+ 1
6

E (#mut. bits) = n
2

E (#mut. bits) = n
3

+ 2
3n

expect large mutations expect large mutations expect large mutations

n−2
n−1

2n−1

n−2
n−1

2n−1

n−2
n−1

2n−1

Prob
(
only ith bit mut.

)
Prob

(
only ith bit mut.

)
Prob

(
only ith bit mut.

)

1-bit mut. rather unlikely 1-bit mut. rather unlikely 1-bit mut. rather unlikely

34
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Summary Contiguous Hypermutations

• difficulties with flipping single bits
 bad at locating optima precisely
⇒ combine with other operators if locating optima precisely
matters

• in expectation mutate Θ(n) bits
 advantages when huge mutations are needed
⇒ worth a try when hill-climbing not effective

• some variants with strong positional bias
 advantages/disadvantages depending on function
⇒ only use variants with positional bias if known facts about
objective function make that appear useful

• all noticeable effects rely on r ≈ 1
 even r = 1 − ε (ε > 0 constant) not useful
⇒ use r = 1 − o(1), e. g., r = 1 − 1/n

(for details see Jansen/Zarges (2011) [18])
39
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Results About Contiguous Hypermutations (Part 2)

Comparison for LeadingOnes(x) =
n∑

i=1

i∏
j=1

x[j]

E
(
T(1+1) EA,LeadingOnes

)
= Θ

(
n2
)

E
(
TCHM1,no w.,LeadingOnes

)
= O

(
n2
)

E
(
TCHM1,w.,LeadingOnes

)
= Θ

(
n2 log n

)

E (TCHM2,LeadingOnes) = Θ
(
n2 log n

)

since only position of left-most flipping bit matters

Comparison for n · LeadingOnes(x) − OneMax(x), init. in 0n

E
(
T(1+1) EA,LeadingOnes

)
= Θ

(
n2
)

E
(
TCHM1,no w.,LeadingOnes

)
= O(n)

E
(
TCHM1,w.,LeadingOnes

)
= O

(
n2 log n

)

E (TCHM2,LeadingOnes) = Θ
(
n2
)

since sequence of 0-bits at end only significant advantage
if improving mutations easy to find 37
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Hypermutations with Mutation Potential

Remember Hypermutation(x) (for x ∈ {0, 1}n, minimise f)

1 number of mutations steps m(f(x)) :=
⌈(

1 − fopt

f(x)

)
· c · n

⌉

2 Repeat m times
If tabu=false then select i ∈ {1, 2, . . . , n} u. a. r.
Else select i ∈ {1, 2, . . . , n} not previously chosen u. a. r.

3 local mutation: x[i] := 1 − x[i]

Consider four variants

• MPno tabu, blind (as above, tabu=false)

• MPtabu, blind (as above, tabu=true)

• MPno tabu (tabu=false, evaluate and stop at first
improvement)

• MPtabu (tabu=true, evaluate and stop at first improvement)

40
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Results About Contiguous Hypermutations (Part 3)

Demonstrate very large performance difference
to demonstrate understanding of benefits and drawbacks

CLOBb,k(x) = n ·
(

k∑
h=1

n/(bk)∑
i=1

i·b∏
j=1

x

[
(h − 1) · (n/k) + j

])
− OneMax(x)

Example with n = 24, k = 3, b = 2

x = 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1

CLOB2,3(x) = 24 · (1 + 1 + 2) − 17 = 79

Comparison for CLOBb,k (with n/(k · b) ∈ N, l := n/k)

E
(
T(1+1) EA,CLOBb,k

)
= Θ(k · lb · (l/b + log k))

E
(
TCHM,CLOBb,k

)
= O

(
n2 log n

)
(all 3 variants)

since length of block does not matter
38
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Results About Hypermut. with Mutation Potential (Part 3)

OPT

0n

1n

n/2

local opt.

SP 1i0n−i

Results for f with γ = Θ(1)

E
(
T(1+1) EA,f

)
= 2Ω(n) (even with high probability)

due to ‘large distance’
E (TMPtabu,f ) = O

(
n3
)

due to Θ
(
n2 log n

)
to reach 0n,

O
(
n3
)

to reach 1n, O(n) for drifting down

43
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Results About Hypermut. with Mutation Potential (Part 1)

Comparison for ZeroMin(x) = n + 1 − OneMax(x)

E
(
T(1+1) EA,ZeroMin

)
= Θ(n log n)

E
(
TMPno tabu, blind,ZeroMin

)
= 2Ω(n)

(even with high probability)

E
(
TMPtabu, blind,ZeroMin

)
= 2Ω(n)

(even with high probability)
due to drift to middle (due to blindness)

E (TMPno tabu,ZeroMin) = Θ
(
n2 log n

)

E (TMPtabu,ZeroMin) = Θ
(
n2 log n

)

due to additional evaluations
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Summary Hypermutations with Mutation Potential
• blind variants difficulties locating specific points
 bad at locating optima precisely
⇒ combine w. other operators if precise hits matter

• blind variants performs mostly blind random walk
 hardly ever useful
⇒ if used at all, only in combination with other operators

• first improvement version can do local search (less efficient)
 no replacement for local search/standard bit mutations
⇒ prefer local search if you want local search

• first improvement version can locate remote optimal regions
 useful for such objective functions
⇒ use as costly alternative to local search/standard bit
mutation if such properties are suspected

• depends heavily on actual function values
 sensitive with respect to trivial transformations
⇒ prefer rank-based variants

(for details see Jansen/Zarges (2011) [19]) 44

Introduction Natural IS AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Results About Hypermut. with Mutation Potential (Part 2)

Show large difference with example function f using
short path SP =

{
1i0n−i | 0 ≤ i ≤ n

}

optima OPT = {x | ZeroMin(x) < n/4, dist(x, SP) ≥ γn}
(γ = ω(1/n), γ < 3/20)

f(x) =





3n − ZeroMin(x) if x /∈ (SP ∪ OPT)

2n − i if x ∈ SP

1 if x ∈ OPT

OPT

0n

1n

n/2

local opt.

SP 1i0n−i

42
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Results About Inverse Fitness-“Prop.” Hypermut. (Part 2)
Remember CLONALGopt inefficient even with ρ = ln n

How is this possible in practice?
• under-estimating opt improves (see CLONALGbest)
• OneMax not necessarily realistic
• bad performance empirically only for rather large values of n

Think
0 nn/2

(n/2) ± √
n n − n/ ln n

n − ln n

n = 105

0 nn/2

(n/2) − √
n (n/2) +

√
nn − n/ ln n

n − ln n

n = 10

0 nn/2

(n/2) ± √
n n − n/ ln n

n − ln n

n = 102

0 nn/2

(n/2) ± √
n n − n/ ln n

n − ln n

n = 103
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Inverse Fitness-“Proportional” Hypermutations

Remember

Normalisation opt f̂(x) = f(x)/fopt ∈ [0, 1]

best f̂(x) = f(x)/fcurrent best ∈ [0, 1]

Mutation probabilities CLONALG e−ρf̂(x)

opt-aiNet e−f̂(x)/ρ

resulting in four variants

• CLONALGopt

• CLONALGbest

• opt-aiNetopt

• opt-aiNetbext

45

Introduction Natural IS AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Summary Inverse Fitness-“Proportional” Hypermutations

• can be very inefficient in simple situations
 e. g., bad at hill climbing
⇒ use only when needed

• using ‘current best’ appears superior to ‘optimal value’ for
normalisation
 populations useful
⇒ prefer population-based approaches and ‘current best’ for
normalisation

• CLONALG very sensitive with respect to ρ
 very bad performance easy to achieve
⇒ prefer opt-aiNet

• only analytical results for OneMax

 most points open
⇒ investigate more

(for details see Zarges (2008), (2009), (2011) [32, 33, 34])
48

Introduction Natural IS AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Results About Inverse Fitness-“Prop.” Hypermut. (Part 1)

Results for OneMax

E
(
T(1+1) EA,OneMax

)
= Θ(n log n)

E
(
TCLONALGopt,OneMax

)
= 2Ω(n) for ρ = O(1)

(even with high prob.) since mutation probability too large

E
(
TCLONALGopt,OneMax

)
= 2Ω(n) for ρ = Ω(n)

(even with high prob.) since mutation probability too small

E
(
TCLONALGopt,OneMax

)
= 2Ω(n.5−ε) for ρ = ln n

(even with high prob.)
but O(n log n) once OneMax(x) = n − O(n/ log n)
E (TCLONALGbest,OneMax) = Θ(µn + n log n) for ρ = ln n
using population of size µ

E
(
Topt-aiNetopt,OneMax

)
= 2Ω(n) for ρ = 1

(even with high prob.) since mutation probability too large

E
(
Topt-aiNetopt,OneMax

)
= Θ(n log n) for ρ = Θ(n)
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Parameter Study: The Maximal Age
Note maximal age τmax

must not be too small

0
n

1
n

1
i
0

n−i

global optimum

τmax = o
(
nk log n

)

 very inefficient
τmax = ω

(
log n(nk + µ log n)

)

 efficient

Note maximal age τmax

must not be too large

opt.

local opt.
local opt.

long path 3n/4

2n/3

< k1

k1

k2

τmax = Ω
(
log n(nk1 + µ log n)

)

 very inefficient
τmax = O

(
nk1−k2

)
and

τmax = ω
(
log n(n2 + µn log n)

)

 efficient

See appropriate range for τmax can be extremely narrow

τmax = o
(
nk log n

)
or τmax = Ω

(
nk1 log n

)
 very inefficient

τmax = ω
(
nk log n + µn log n

)
and τmax = O

(
nk1−k2

)
 efficient

(for details see Horoba, Jansen, Zarges (2009) [15]) 51

Introduction Natural IS AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Metadynamics in Artificial Immune Systems

Remember metadynamics influence behaviour of algorithm
in a more global way
 more difficult to analyse than an operator
Example ageing

Remember ageing
has parameter maximal age τmax

comes in different variants (static pure, stochastic, . . . )
depends non-trivially on implementation details

Remember method for analysis/work programme

• insert in simple algorithmic framework

• prove general observations

• compare with known algorithms on known problems

• find extreme examples to understand benefits and drawbacks
49
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Comparing Ageing Variants
Static Pure Ageing
new search points get age 0
if they improve
superior in local optima

0
n

1
n

1
i
0

n−i
0

i
1

n−i

k

Evolutionary Ageing
new search points get age 0
always
superior on plateaus

0
n

0
n

1
n

1
n (optimum)

1
i
0

n−i
1

i
0

n−i
0

i
1

n−i

Combine both into genotypic ageing
‘new search points get age 0 unless they are copy or worse’
combines advantages, good on plateaus and at local optima

(for details see Jansen, Zarges (2011) [20])
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A Simple Framework for Ageing

• use population of µ search points
Reason ageing only effective in populations

• increase age of all search points deterministically in each round
Reason most commonly used ageing variant

• create only one new search point per round, using a well
understood variation operator
Reason introduce as little other complexity as possible

• implement ageing variant as simple as possible
Static Pure Ageing
1. new search point gets age 0 in case of an improvement,
otherwise inherits age.
2. remove all search points exceeding τmax; fill population
with new random search points as needed

50

1071



Introduction Natural IS AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Paying Attention to Details (cont.)

Ageing Variants replace worst search point and among those

1 a random one

2 one with min. age distance from new one

3 one with most frequent age

4 one with rarest age

1 E (T ) = 2Ω(n) even with high probability

2 E (T ) = O
(
(µ + (n/ log µ)) · (τmax + n2 + µn log n)

)

E (T ) = Ω
(
(1 + n/(µ log µ)) · (τmax + n2 + µn log n)

)

3 Θ
(
(1 + n/(µ log µ)) · (τmax + n2 + µn log n)

)

4 E (T ) = 2Ω(n) even with high probability

(for details see Jansen, Zarges (2011) [21])
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Understanding Specific Benefits

Observation ageing performs restarts in a complicated way
And nothing more?

Idea ageing can perform partial restart
e. g, useful when crossover combines new and old search points

0n

1n

n/41n/403n/4

3n/4

n/2

n/3

1n/40n/41n/2

1n/40n/4q

(for details see Jansen, Zarges (2010) [17])
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Summary Ageing

• ageing adds new dynamics and new capabilities
 increased potential at the price of additional parameter
⇒ use with care

• ageing very sensitive with respect to maximal age
 difficult to set additional parameter
⇒ perform careful parameter study

• different ageing variants have different capabilties
 no ‘one size fits all’ solution
⇒ try different variants

• ageing very sensitive with respect to implementation details
 algorithmic details need to be reported precisely
⇒ pay attention to details, communicate choices precisely

56
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Paying Attention to Details
Remember keep algorithmic framework as simple as possible

since every bit of complexity complicates things a lot

Still pay close attention to each (innocent looking) detail
since it may be very important

Now one small example in the context of ageing

Remember one new search point per round
replacing one of the µ other search points
if it is not worse than the worst and none died of age

Which one is replaced?

Obvious Answers one worst search point and among those

1 a random one

2 one with min. age distance from new one

3 one with most frequent age

4 one with rarest age

And this makes a difference? 54
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VC Encodings

Encoding for graph G = (V, E) with V = {v0, v1, . . . , vn−1}
Search space S = {0, 1}n

x ∈ S induces V (x) = {vi ∈ V | x[i] = 1}
minimise fitness f : S → N0 with

f(x) =

{
|V (x)| if V (x) is VC

(n + 1) · |{e ∈ E | e ∩ V (x) = ∅}| otherwise

Observation Mapping vi ↔ x[i] completely arbitrary
∀Permutation π: vi ↔ x[π(i)] possible

Fact Most results for EAs based on π = id
unrealistic in practice

Idea Use ordering heuristic

59

Introduction Natural IS AIS as Classifiers AIS as Optimisers Analysing AIS Conclusion & References

Analysing the B-Cell Algorithm

Recall

1. Initialisation Create an initial population P = {x1, x2, . . . , xµ}.
2. Clonal Selection and Expansion

For all i ∈ {1, 2, . . . , µ}:
a) Create λ clones of xi and place them in a clonal pool Ci = {y1

i , . . . , yλ
i }.

b) Select j ∈ {1, . . . , λ} uniformly at random:

Flip each bit of yj
i with probability 1/n.

c) For all j ∈ {1, . . . , λ}:
Select p ∈ {0, 1, . . . , n − 1} and l ∈ {0, 1, . . . , n} uniformly at random.
For i := 0 to l − 1 do

Set x[(p + i) mod n] := 1 − x[(p + i) mod n].
3. Selection for Replacement

For all i ∈ {1, 2, . . . , µ}:

If min{f(y1
i ), . . . , f(yλ

i )} ≤ f(xi):

Replace xi by some randomly chosen yj
i with minimal f -value.

4. Stopping If stopping criterion not met continue at line 2.
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Ordering Heuristic for VC [16]

Ideas Construct permutation π of nodes.
Group nodes with many common neighbours.
Favor nodes with large degree.

Algorithm

Start with a random node with minimal degree.
Repeat

mc = maximal number of common neighbours
md = maximal degree
If mc > md

Choose random node with maximal number of neighbours.
Otherwise choose random node with maximal degree.

until all nodes are chosen

π(vi) position in order of selection

60
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The Vertex Cover Problem (VC)

Input undirected Graph G = (V, E)
Output smallest subset V ′ ⊆ V covering all edges, i. e.

V ′ ⊆ V with ∀e ∈ E : e ∩ V ′ 6= ∅

Example

Facts:

• “classic” NP hard optimisation problem

• simple 2-approximation algorithm

• no 1.3606-approximation (if P 6= NP)
(no (2 − ε)-approximation under stronger assumptions)
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Summary Vertex Cover

• BCA alternative without crossover to EAs

• Ordering heuristic for encoding instead of “cheating” possible

• Known analyses for EAs reproducible for BCA

• On complete bipartite graph more efficient than (1+1) EA;
only slightly more inefficient than (1+1) EA with restarts

• On amplified complete bipartite graphs considerably more
efficient than mutation-based EAs

• No need for crossover and population on example graph

• Difficult to find hard instances with “bad approximation ratio
with high probability”

• BCA alternative to EAs with respect to efficiency;
easier to analyse

63
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Overview: Results for the B-Cell Algorithm [16]

Graph class BCA with λ = O(1) EA

εn nodes

(1 − ε)n nodes

O
(
µn2 log n

)
Ω(nεn) without restarts,
O(n log n) with restarts

l connected copies

O
(
µn2 (l + log n)

)
2Ω(n) with restarts

O
(
µn3

)
2Ω(n) without crossover,
O
(
µ2n/pc

)
with c’over,

pc ≤ 1/ (µ
√

n log n),
µ ≥ n1+ε
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The Longest Common Subsequence Problem

Input m sequences X1, X2, . . . , Xm ∈ Σ∗

Output common subsequence Y
with ∀Y ′ ∈ Σ∗ : Y ′ is common subsequence ⇒ |Y ′| ≤ |Y |

Examples

• Finite alphabet Σ: Σ = {0, 1}, Σ = {A, C, G, T}
• Finite sequences ∈ Σ∗: X1 = ACT GT GCAA

• Subsequences of a sequence:
AGT A of ACT GT CAA

Facts

• General case is NP hard

• In P with fixed m

• Solvable using dynamic Programming in O

(
m ·

m∏
i=1

|Xi|
)
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Limits of the BCA [16]

Obvious BCA not always efficient since VC NP-hard

On which instances does the BCA yield bad approximation ratios?

Idea “complete bipartite graph + large plateau”
εn nodes

(1 − ε)n nodes

Observation2εn many neighboured covers of same size
 one of them reached with probability Ω(ε)

Observation At most (3/2)-approximation for “amplified” instance
(in polynomial time, with high probability)
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LCS Fitness Functions (2)

Remember X1, X2, . . . , Xm ∈ Σ∗

o. B. d. A. |X1| = min {|Xi| | i ∈ {1, 2, . . . , m}} =: n

1 fmax(y) = MAX(y) − (|Y (y)| − MAX(y))

with MAX(y)

= min

{
max

{
k | Y (y)[1]Y (y)[2] · · · Y (y)[k] is subsequence

of Xi
} | i ∈ {1, 2, . . . , m}

}

2 fLCS(y) = LCS(y) − (|Y (y)| − LCS(y))

with LCS(y) = max

{
|Z| | Z is subsequence

of all {Y (y), X1, X2, . . . , Xm}
}
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LCS Encodings

Given X1, X2, . . . , Xm ∈ Σ∗

o. B. d. A. |X1| = min {|Xi| | i ∈ {1, 2, . . . , m}} =: n

Search Space S = {0, 1}n

Interpretation of potential solution Y (y) for y ∈ {0, 1}n

is concatenation of X1[i] with y[i] = 1
Example X1 = AGT AT , X2 = ACT GT GCAA  n = 5

y1 = 10010  Y (y1) = AA
y2 = 00111  Y (y2) = T AT
y3 = 11110  Y (y3) = AGT A

Observations

• natural binary encoding with fixed length

• all feasible solutions representable

• some infeasible solutions representable
65
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Overview: Results for the B-Cell Algorithm [24]

Instance BCA EA
EMAX:
X1 = 0(8/32)n1(24/32)n

X2 = 1(24/32)n0(5/32)n1(13/32)n

ELCS:
X1 = 0(24/40)n1(16/40)n

X2 = 1n0(13/40)n

random init.:
success prob. in t steps
t · e−Ω(n)

det. init., µλ = ω(n log n):
expected opt. time

O
(
µλn2 log n

)
;

also with high prob.

random init.:
success prob. in t steps
t · e−Ω(n)

deterministic init.:
success prob. in t steps
t · e−Ω(n)

AMAX:
ε > 0 const, l := ⌈(3/ε) − (1/2)⌉
X1 = 0(1/l)n1((l−1)/l)n

X2 = 1((l−1)/l)n 0(5/(8l))n 1((4l−3)/(8l))n

ALCS:
ε > 0 const, l := ⌈(5/(2ε)) − (5/4)⌉
X1 = 0((l+1)/(2l+1))n1(l/(2l+1))n

X2 = 1n0((14l+5)/(16l+8))n

random init.:
success prob. in t steps
t · e−Ω(n)

det. init., µλ = ω(n log n):
expected opt. time

O
(
µλn2 log n

)
;

also with high prob.

random init.:
success prob. for (2 − ε)
approx. in t steps
≤ t · e−Ω(n)

deterministic init.:
success prob. for (2 − ε)
approx. in t steps
≤ t · e−Ω(n)
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LCS Fitness Functions (1)

Remember X1, X2, . . . , Xm ∈ Σ∗

o. B. d. A. |X1| = min {|Xi| | i ∈ {1, 2, . . . , m}} =: n
For potential solutions Y (y) with y ∈ {0, 1}n

k(y) = |{Xi | Y (y) is subsequence of Xi}|

fJH(y) =





3000 (|Y (y)| + 30k(y) + 50)
falls |Y (y)| = n

and k(y) = m

3000 (|Y (y)| + 30k(y))
falls |Y (y)| < n

and k(y) = m

−1000 (|Y (y)| + 30k(y) + 50) · (m − k(y))
falls |Y (y)| = n

and k(y) < m

−1000 (|Y (y)| + 30k(y)) · (m − k(y))
falls |Y (y)| < n

and k(y) < m
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Conclusions
Artificial Immune Systems are

• models of the natural IS =̂tool for research in immunology

• heuristic approach to classification based on an example of
complex classification from nature

• randomised search heuristics capable of optimisation
• based on a quite different natural metaphor (compared to EAs)
• an alternative approach to optimisation, with different

characteristics and capabilities
• an alternative solution if your favourite approach fails

• randomised search heuristics like many others
• another field of study, worthy of analysis just like

EAs/ACO/PSO/. . .
• another example of a complex class of RSHs

=̂ another opportunity to study differences and similarities
hopefully some day leading to useful taxonomy

• a fascinating area of research
71
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Summary Longest Common Subsequence

• Another comparison of EAs and AIS on a combinatorial
optimisation problem

• Reconsideration of previous analyses for EAs

• EAs and BCA with random initialisation very inefficient

• EAs do not benefit from deterministic initialisation with empty
solutions

• B-Cell algorithm clearly benefits from deterministic
initialisation

• Further example where AIS excel EAs
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Summary

We have seen overviews and introductions of

• the natural immune system

• application of AIS as classifiers

• application of AIS as optimisers

• analysis of AIS as optimisers

all as invitation to

• learn more about AIS

• apply AIS

• explore and understand AIS
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