
Benjamin Doerr
Max-Planck-Institut für Informatik

Saarbrücken

Tutorial:
Black-Box Complexity:

From Complexity Theory to Playing Mastermind

Bio-Sketch
 Benjamin Doerr is a senior researcher at the Max Planck Institute for

Informatics and a professor at Saarland University.

 He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from Kiel University.

 Together with Frank Neumann and Ingo Wegener, he founded the theory
track at GECCO and served as its co-chair 2007-2009.

 He is a member of the editorial boards of Evolutionary Computation and
Information Processing Letters.

 His research area includes theoretical aspects of randomized search
heuristics, in particular, run-time analysis and complexity theory.

Objectives of the Tutorial
 This is a tutorial on black-box complexity. This is currently one of the

hottest topics in the theory of randomized search heuristics.

 I shall try my best to..
 tell you on an elementary level what black-box complexity is and how it

shapes our understanding of randomized search heuristics
 give an in-depth coverage of two topics that received much attention in

the last few years
 stronger upper bounds and the connection to guessing games
 alternative black-box models

 sketch several open problems

 Don’t hesitate to ask questions whenever they come up!

Agenda

 Part 1: Black-box complexity: A complexity theory for randomized search
heuristics (RSH)
 Introduction/definition
 Lower bounds for all RSH (example: needle functions)
 Thorn in the flesh: Are there better RSH out there? (example onemax)
 Different black-box models – what is the right difficulty measure?

 Part 2: Tools and techniques (in the language of guessing games)
 From black-box to guessing games
 A general lower bound
 How to play Mastermind
 A new game

 Summary, open problems

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

1079

Timeline
2002Droste, Jansen, Tinnefeld, Wegener. A new framework for

the valuation of algorithms for black-box optimization.
FOGA

2006 Droste, Jansen, Wegener. Upper and Lower Bounds for
Randomized Search Heuristics in Black-Box
Optimization. Theory Comput. Syst. 39

2009Anil, Wiegand. Black-box search by elimination of fitness
functions. FOGA

2010 Lehre, Witt. Black-box search by unbiased variation.
GECCO

2011Doerr, Johannsen, Kötzing, Lehre, Wagner, Winzen. Faster
Black-Box Algorithms Through Higher Arity Operators.

FOGA Doerr, Winzen. Towards a Complexity Theory of
Randomized Search Heuristics: Ranking-Based Black-
Box Complexity. CSRRowe, Vose. Unbiased black box search algorithms.

GECCO
Doerr, Kötzing, Lengler, Winzen. Black-Box Complexities
of Combinatorial Problems. GECCO

Doerr, Kötzing, Winzen. Too Fast Unbiased Black-Box
Algorithms. GECCO Doerr, Winzen. Black-Box Complexity: Breaking the O(n

log n) Barrier of LeadingOnes. EA

2012Doerr, Winzen. Playing Mastermind with constant-size
memory. STACS Doerr, Winzen. Reducing the arity in unbiased black-box

complexity. GECCO

Part 1: Complexity Theory for RSH

 Why a complexity theory for RSH?
 Understand problem difficulty!

 How?
 Black-box complexity!

 What can we do with that?
 General lower bounds, thorn in the flesh

 Different notions of black-box complexity

Why a Complexity Theory for RSH?

 Understand problem difficulty!
 Randomized search heuristics (RSH) like evolutionary algorithms,

genetic algorithms, ant colony optimization, simulated annealing, …
are very successful for a variety of problems.

 Little general advice which problems are suitable for such general
methods

 Solution: Complexity theory for RSH

 Take a similar successful route as classical algorithmics!
 Algorithmics: Design good algorithms and analyze their performance
 Complexity theory: Show that certain things are just not possible
 The interplay between the two areas proved to be very fruitful for the

research on classic algorithms

Algorithms vs. Complexity Theory
for RSH – An Example

 Bottom line: Spanning tree is easy for RSH, the Needle problem not.

Algorithm Analysis: Prove how
a certain algorithm solves a
particular problem.

The (1+1) EA finds a minimum
spanning tree with an expected
number of O(m2 log(m wmax))
fitness evaluations.

Complexity Theory: What can
the best possible algorithm for
this problem do or not.

No RSH can solve the Needle
problem in an expected number
of less than (2n+1)/2 fitness
evaluations.

1080

Reminder: Classic Complexity Theory

 General approach: Complexity (difficulty) of a problem := Performance of
the best algorithm on the hardest problem instance

 Example: “Sorting n numbers needs Θ(n log(n)) pair-wise comparisons.”
 Problem: “Sorting an array of n numbers”
 Instance (input to algorithm): An (unsorted) array of n numbers
 Algorithms: All that run on a Turing machine
 Performance (cost) measure: Number of pair-wise comparisons

 T(A,I) = number of comparisons performed when algorithm A runs
on instance I

 Theorem: “Complexity of sorting = minA maxI T(A,I) = Θ(n log(n)).”

 How does this work for RSH?
 Algorithms = RSHs, Performance = number of fitness evaluations, …

Complexity Theory for RSH

 Algorithms: Randomized search heuristics (RSH)
 may generate solutions and query their fitness
 no explicit access to the problem description
 black-box optimization algorithm

 Performance measure T(A,I) = expected number of fitness evaluations
until algorithm A running on instance I queries an optimum of I

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

“How many search point have to be evaluated to find the optimum.”

BBC: What Can We Do With It?

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 3 uses:
 Measure for problem difficulty [that’s how we designed the definition]
 Universal lower bounds [next slide]
 A thorn in the flesh [next to next slide]

BBC: Universal Lower Bounds

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Follows right from the definition: The black-box complexity is a lower bound
on the performance of any RSH!
 BBC := minA maxI T(A,I) ≤ maxI T(B,I) = performance of B

 Example:
 Theorem [DJTW’02]: The black-box complexity of the needle function

class is (2n+1)/2.
 Consequence: No RSH can solve the needle problem in sub-

exponential time.
 One simple proof replaces several proofs for particular RSH

1081

BBC: A Thorn in the Flesh

 If the black-box complexity is lower than what current best RSH achieve,
you should wonder if there are better RSH for this problem!

 Example: OneMax functions
 for all “bit-strings” z ∈ {0,1}n let
fz: {0,1}n → {0,…,n}; x ↦ “number of positions in which x and z agree”
 all fz have a fitness landscape equivalent to the classic OneMax

function (counting the number of ones in a bit-string).
 Theorem [many, see later]: The black-box complexity of the class of all

OneMax functions is Θ(n / log(n)).
 But: All standard RSH need at least Ω(n log(n)) time!
 Are there better RSH that we overlooked?

 Same motive as in classical theory: n x n matrix multiplication can be done
in time O(n 2.3727), only lower bound is Ω(n 2).

Alternative Black-box Models

 Previous slide: “Are there better RSH?”
 Alternative answer: The black-box model allows too powerful (unnatural)

algorithms.

 Next x slides: Discuss alternative black-box models
 very active research area in the last 3 years
 no definitive answer

 Common theme: Instead of allowing all black-box optimization algorithms,
only regard a restricted class!
 restricted class should include most classic RSH

Alternative 1: Unbiased BBC

 Lehre&Witt (GECCO’10 theory track best paper award):
 allow only unbiased variation operators: treat all bit-positions (1, …, n)

and the two bit-values (0, 1) equally!
 equivalent: if σ is an automorphism of the hypercube, then the

probability that y is an offspring of x1, …, xk must be equal to the
probability that σ(y) is an offspring of σ(x1), … σ(xk)

 Observation: Most RSH are unbiased
 exception: one-point crossover

 Result: The unbiased, mutation-only BBC of OneMax is Θ(n log(n))
 as observed for random local search, (1+1) EA, …

 Anti-result [DKW’11]: Also the TRAPk function has an unbiased, mutation-
only BBC of Θ(n log(n)).
 contrasts the Ω(n k) performance of all classic RSH

 Interesting [DJKLW’11]: Unbiased 2-ary BBC of OneMax: O(n).

Crossover helps?

Alternative 2: Ranking-Based BBC

 D&Winzen (CSR’11), suggested by Niko Hansen: ranking-based
 do not regard the absolute fitness values, but make all decisions

dependent only on how fitnesses of search points compare!
 Observation: Many RSH follow this scheme

 exception: fitness-proportionate selection
 Bad news: OneMax has a ranking-based BBC of Θ(n / log(n))
 Good news: For BinaryValue…

 BBC: log(n)
 ranking-based BBC: Ω(n)
 many RSH: Θ(n log n)

 Open problem: Partition…
 BBC: O(n), heavily exploints absolute fitness values
 Unbiased BBC: Maybe exponential?

1082

Alternative 3: Memory-Restricted BBC

 Droste, Jansen, Wegener (Theor. Comput. Syst. 2006):
 suggest to restrict the memory: store only a fixed number of search

points and their fitness
 inspired by bounded population size
 conjecture: with memory one, the BBC of OneMax becomes the

desired Θ(n log(n))

 D&Winzen (STACS’12): Disprove conjecture.
 Even with memory one, the BBC of OneMax is Θ(n / log (n)).

[I’ll give a proof in the second part of the tutorial]

Summary Alternative BBC Models

 Different models:
 unrestricted (classic)
 unbiased
 ranking-based
 memory-restricted

 None is yet “the ultimate complexity notion” for RSH

 Each expanded our understanding
 what makes a problem hard
 what makes a RSH powerful

 Many open problems…

Summary Part 1

 Black-box complexity (BBC): “Minimum number of search points that have
to be evaluated to find the optimum”
 Expected number of fitness evaluations the best black-box algorithm

needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Uses:
 Measure of problem difficulty
 Universal lower bounds
 Thorn in the flesh

 Particular problem: What is the most useful class of black-box algorithms to
be regarded?

Part 2: Tools and Techniques

Plan for the 2nd part of this tutorial:

 Explain, why BBC and guessing games are almost the same

 Use the language of guessing games to demonstrate some techniques
 Random guessing: The BBC of OneMax or “how to play Mastermind

with two colors?”
 A simple “information theoretic” lower bound
 Clever guessing:

 Mastermind with n colors
[intermediate summary “tools and techniques”]

 Memory-restricted BBC of OneMax = Mastermind with 2 rows

 A game derived from BBC studies

1083

A Formal Definition of BBC

 Optimization problem: A set F of functions f: {0,1}n → ℝ
 Aim is to find the maximum of a given f ∈ F.
 Language:

 An f ∈ F is called an “instance of F”
 {0,1}n “search space”
 x ∈ {0,1}n “search point”

 Example “Maximum Clique”: For each graph G on the vertex set
{1,…,n}, fG(x) is the size of the vertex set represented by x, if this is a
clique in G, and 0 otherwise. F := {fG | G a graph with vertices 1,…,n}.

 A black-box algorithm for F : A randomized algorithm that finds the
maximum of any f ∈ F by asking f-values of search points only (no explicit
access to the instance, e.g., the graph G in the clique example).

A Formal Definition of BBC

 A black-box algorithm for F : A randomized algorithm A that finds the
maximum of any f ∈ F by asking f-values of search points only.

 Performance T(A,f) of A for f ∈ F : Expected time until an x with f(x) =
OPT(f) is queried

 Performance T(A,F) of A on F: maxf ∈ F T(A,f)
 BBC of F: minA T(A,F), where A runs over all black-box algorithms for F

Search
Heuristic

Black-Box =
“Oracle”

x1

f(x1) f

Black-Box
Algorithm

A

[knows the
problem F]

x2

f(x2)

f ∈ F

From BBC to Guessing Games

 Guessing game:
 BlackBox chooses a hidden f ∈ F .
 Algo tries to guess an x with f(x) maximal
 For each incorrect guess, BlackBox tells f(x) to Algo

 Optimal strategy for Algo = optimal black-box algorithm
 Optimal strategy for black-box = “most difficult” f ∈ F
 Optimal number of rounds in the game = BBC(F)

Search
Heuristic

Black-Box

x1

f(x1) fAlgo

x2

f(x2)

f ∈ F Mastermind

 2-player game
 CodeMaker hides a 4-digit 6-color code C.
 CodeBreaker tries to guess it using few

guesses

 Guess: Some color code G

 Answer:
 Number of positions in which C and G

agree (“black answer-pegs” [here: red])
 Number of additional code letters that occur in a

wrong position (“white pegs”)

Classic Guessing Game: Mastermind

n k

1084

2-Color Mastermind = BBC(OneMax)

 OneMax test function: f: {0,1}n → {0,…,n}; x ↦ “number of ones in x”
 easy to find the unique global optimum (1,…,1).
 RLS, (1+1) EA, … do this in Θ(n log n) time.

 (Generalized) OneMax function, OneMax problem:
 For each z ∈ {0,1}n, let
fz: {0,1}n → {0,…,n}; x ↦ “number of bits in which x and z agree”

 All fz have isomorphic fitness landscapes
 OneMax problem: F := {fz | z ∈ {0,1}n}, the set of all OneMax functions

 Observation: Mastermind with the two “colors” 0 and 1 corresponds to the
black-box complexity BBC(F)

Mastermind: 3 (?) Results

 Θ(n / log n) guesses sufficient&necessary for k = 2 (BBC of OneMax)
 Anil, Wiegand: “Black-box search by elimination of fitness functions”.

Foundations of Genetic Algorithms (FOGA) (2009)

 Θ(n log k / log n) for k ≤ n1- ε

 Chvátal: “Mastermind”. Combinatorica (1983)

 Θ(n / log n) for k = 2
 Erdős, Rényi: “On two problems in information theory”. Magyar Tud.

Akad. Mat. Kutató Int. Közl (1963)

Proof: Random Guessing

 CodeBreaker’s strategy:
 Guess Θ(n / log n) random codes.
 Look at all answers.
 With high probability, no secret code other than the true one leads to

these answers [elementary, straight-forward computation]

 Comments:
 Erdős probabilistic method at its best.
 Best possible (apart from constant factors hidden in Θ(…))
 Note: Non-adaptive strategy – questions do not depend on previous

questions and answers.

A General Lower Bound

 [DJW’06, in the language of games] Consider a guessing game such that
 there are s different secrets
 each query has at most k ≥ 2 different answers.
Then the expected number Q of queries necessary to find the secret is at
least (log2(s) / log2 (k)) – 1 = logk(s) – 1.

 Information theoretic view: To encode the secret in binary, you need log2(s)
bits. Each answer can be encoded in log2(k) bits. If Q rounds suffice, Q
log2(k) bits could encode the secret. 1)

 Game-theoretic view: In the game tree, each node has at most k children.
Hence at height Q, there are at most kQ nodes. If s is bigger, then at some
nodes, more secrets are possible. 1)

1) Argument correct for deterministic strategies. For randomized
ones, in addition, Yao’s minimax principle is needed.

1085

Back to 2-Color Mastermind…

 Lower bound: (1 + o(1)) n / log2(n)
 Argument: 2n possible secrets, n +1 possible answers
 general lower bound: log2 (2n) / log2 (n +1) = (1+o(1))n / log2 (n)

 Information theoretic view: “learn at most log2 (n) bits per question”

 Upper bound computed precisely: (2 + o(1)) n / log2 (n)
 Weaker by a factor of 2
 Reason (informal): Typically, a random question yields an answer

between n /2 – Θ(√n)and n /2 + Θ(√n).
 “learn log2 (Θ(√n)) ≈ (1/2) log2 (n) bits per question”

 Big open problem (already mentioned in the Erdős-Rényi paper):
What is the correct bound? Can you ask better questions?

Clever Guessing: Mastermind for k = n?

 Random guessing (Chvátal): Θ(n log(n)) needed and sufficient.

 Informal justification:
 The expected answer to a random question is 1.
 “learn only a constant number of bits per question”.
 Information theory: log(n n)/log(constant) = n log(n) questions

 Can we ask better questions?
 Info-theory argument: We need to “learn more bits per question”
 Problem: For the first question, the expected answer is 1, no matter

what we ask (learn constant number of bits)
 If something works, it must be adaptive: Current question uses previous

answers!

Clever Guessing: First Step

 Story-line so far: Adaptively ask clever questions!
 Difficulty: How to use previous answers?

 One idea (inspired by Goodrich (IPL 2009)):
 If you get the answer “0”, then for each position you know one color that

does not appear there
 basically reduces the number of colors by one
 future questions: only use possible colors
 good news: the answer “0” is not too rare

 for k = n colors, the probability that a random guess gets a
“0”-answer, is (1 – (1/n))n ≈ 1/e ≈ 0.37

Clever Guessing: Reduce the Colors

 Story-line: Adaptively ask clever questions!
 Plan: Get a “0”-answer and get rid of one color per position.

 Lemma: For k colors and n positions, the probability that a random guess
is answered “0”, is (1 – (1/k))n ≥ 4-n /k.

 Rough estimate: Reducing the number of colors from n to 8n / loglog(n)
takes time n 4-n /(8n / loglog(n)) = n (log n)1/2.

 With only 8n / loglog(n) colors possible at each position, a random guess
has an expected answer of loglog(n)/8
 “learn Θ(logloglog(n)) bits” [can be made precise]

 “Theorem”: O(n log(n) / logloglog(n)) questions suffice!

1086

Clever Guessing: Reduce the Colors (2)

 Story-line: Adaptively ask clever questions by reducing the number of
colors (by getting a “0”-answer)
 gains so far: a logloglog(n) factor

 Reducing the number of colors from k to k-1 per position:
 so far: get a “0”-answer after at most 4n /k random guesses
 Example: k = n /100.

 Random guess has an expected answer of 100.
 Time to wait for a “0” is (1+o(1)) e100.
 Waiting for something quite rare

 Better: Partition the n positions into blocks of size n /100 and ask
randomly in each block (fill up the rest with dummy colors)
 expected contribution per block: 1
 waiting time for a “0” in a block: constant

Clever Guessing: Reduce the Colors (3)

 Story-line: Adaptively ask clever questions by reducing the number of
colors.
 So far: Ask randomly and hope for a “0”

 Improved reducing the number of colors from k to k -1:
 Partition the n positions into n/k blocks of roughly equal size.
 For each block:

 Ask random colors in the block, put a dummy color in the rest
 expected waiting time for a “0”: at most 4

 Total expected waiting time: 4 n/k [previously: 4n /k]

 Total time to reduce the number of colors from k to k /2:
 at most (k /2) 4 n / (k /2) = 4n

Clever Guessing: Reduce the Colors (4)

 Story-line: Adaptively ask clever questions.
 Clever color reducing: From k to k /2 colors in 4n queries

 Goodrich 2009: log(n) times halving the colors finds the secret code in
O(n log n) questions [apart from constants, the same bound as Chvátal]

 We [D., Spöhel, Thomas, Winzen]:
 Do the halving trick √log n times
 n / 2√log n colors possible at each position

 Then do random guesses (using only possible colors)
 expected answer: 2√log n

 “learn log(2√log n) = √log n bits per question”
 Theorem: Solve Mastermind with k =n colors in O(n √log n) questions

Intermediate Summary: Methods

 Information theoretic argument:
 If for each query only k different answers exist and if F contains s

functions with distinct unique optima, then the black-box complexity
of F is at least (log2(s) / log2(k)) – 1.

 Random guessing:
 Often, a small number of random guesses together with the answers

received uniquely determine the solution.
 “Information theoretic hand-waiving”: If a random query

typically sees k answers each with probability at least Θ(1/k),
then around log2(s)/ log2 (k) question might suffice.

 Clever guessing: To get a better bound, you have to ask questions that
reveal more information (example: reducing the colors in MasterMind).

1087

A Second Example of “Clever Guessing”

 Original problem: Memory-restricted BBC of OneMax
 Memory-restriction: From one iteration to the next, the BB-algorithm

may only store k search points together with their fitness.
 Conjecture [DJW’06]: For k = 1, the BBC becomes the Θ(n log n) we

know from the (1+1) EA.

 Transfer to guessing games [easy to see]:
 This BBC problem is equivalent to Mastermind with two rows only.

 Theorem [DW’12]: You can win 2-row Mastermind with O(n / log n)
queries.
 Details: next few slides.

 Corollary: The memory-1 restricted BBC of OneMax is Θ(n / log n).

Details: Two Rows Suffice!

 Result: On a board with two rows,
you can still find the secret code
with O(n / log n) guesses!

 Precise rules:
 We start the game with an empty board
 If there is an empty row, CodeBreaker can enter a guess, which will be

answered by CodeMaker
 If there is no empty row, CodeBreaker must empty one of the two rows

and forget the content.

 Theorem: CodeBreaker has a strategy that
 finds the secret code in O(n / log n) rounds
 uses two rows only (all actions depend solely on these rows).

Fewer Rows: Proof Ideas

 Original Mastermind: Guess Θ(n / log n) random codes. Store all guesses
and answers on the board. Think.
 Needs Θ(n / log n) rows.

 3 ingredients of our proof:
 Find parts of the code: Determine Θ(nε) code letters with Θ(nε / log n)

relatively random guesses (ε constant)
 Do this n1- ε times: find the code with Θ(nε / log n) rows.

 Determine such a part with constant number of rows
 Do this n1- ε times: find the code with Θ(1) rows.

 Do everything in two rows

Proof Idea (1): Find Parts of the Code

 Lemma:
 Let B ⊆ [n], |B| = nε. “part”
 Let G1, G2, … be Θ(nε / log n) guesses such that

 Gi is random in positions in B
 All Gi are equal in positions in [n] \ B

 Then with high probability these guesses and answers determine the
secret code in B.

 Argument:
 Basically, we play the game in B (and use the previous proof)
 Only difficulty: The answers we get “are not for B only”, but for the

whole guess
 Same deviation for all guesses

 Some maths: Not a problem, guesses also determine deviation

1088

Proof Idea (2): Same with O(1) Rows

 Plan: Simulate the previous slide in O(1) rows
 Example: Find the first L = Θ(nε / log n) code letters

 B1 := L random letters.
 Guess B1 1…1 in row 1 and learn answer A1.
 Guess B1 A1 1….1 in row 2 and ignore answer
 B2 := L random letters
 Guess B2 1…1 in row 1 and learn answer A2

 Guess B1 A1 B2 A2 1…1 in row 3 and ignore answer
 …

 General:
 Do an honest guess as on the previous slide.
 Use the next guess to store guess+answer+what you learned before.

 Needs 3+ rows: current guess + old storage new storage

“A1”: Suitably encoded
with O(log n) of letters

Proof Idea (3): Two Rows Only

 Difficulty:
 To enter a new guess, one of the two rows must be emptied
 You must store and guess in the same row

 Problem: Storage influences CodeMaker’s answers!
 All control information must also be stored in this one row

 what is the block I’m just optimizing?
 what am I currently doing (guessing, storing, finding the unique

solution, finding the last few letters in a different way…)

 Solution:
 technical.
 read the paper at STACS’12 or arxiv.org/abs/1110.3619.

Summary: Memory-BBC of OneMax

 Result: The complexity of Mastermind remains at Θ(n / log n) guesses
even if we allow only two rows.
 Key proof argument: Clever guesses inspired by random guesses

 Open problems / future work:
 Our proof works for any constant number of colors – what happens for

larger numbers of colors?
 constant factors: “what’s hidden in the Θ(…)”

 does a memory restriction lose us a constant factor?

Finally: A New Guessing Game

 So far: BBC is strongly related to guessing games
 In particular: BBC(OneMax) ≈ Mastermind
 Therefore: Use game theoretic arguments to solve BBC problems

 Now [next few slides]: Use BBC problems to derive a fun game
 LeadingOnes Game

1089

LeadingOnes Test Functions

 Classic test function:
 LeadingOnes: {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | x1 = … = xi = 1}

 “how many bits counted from the left are one”
 Unique optimum (1,…,1)
 “Harder than OneMax”: Each non-optimal solution has only one

superior Hamming neighbor

 LeadingOnes function class LOn:
 Let σ be a permutation of {1,…,n}
 Let z ∈ {0,1}n (“target string”)
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 “how many bits, counted in the order of σ, are as in z
 same fitness landscape as LeadingOnes

The LeadingOnes Game

 Transfer the BBC(LOn) problem into a game:

 CodeMaker: Picks a secret code z and a secret permutation σ

 Round:
 CodeBreaker guesses a bit-string x ∈ {0,1}n
 CodeMaker’s answer: fzσ(x) = “how many code letters in the order of σ

are correct?”

 How many rounds until CodeBreaker guesses the secret code z?

 Practice: Fun to play with n=5 or n=6 [and that’s the message of this slide]
 Theory: next few slides, fun as well, but doesn’t help you play the actual

game

Black-Box Complexity of LeadingOnes

 Reminder: LOn consists of all functions
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 Black-box complexity of LOn, lower bound
 Ω(n), because you need Θ(n) fitness evaluations even if σ = id

 Black-box complexity of LOn, upper bounds
 O(n2), run-time of RLS, (1+1) EA, …
 O(n log(n)): determine “the next bit” with log(n) queries by simulating

binary search (more details next slide)
 Would be a natural lower bound:

 “next bit”-position is a number in {1,…,n}, coding length log(n)
 a typical query teaches you a constant amount of information

 DW (EA’11): O(n log(n) / loglog(n)) is enough…

The BinarySearch Trick

 Assume that you have a solution x with fzσ(x)= k and you know which k bit-
positions are responsible for this. Denote by I the remaining bit-positions.

 While –I– > 1 do

 Choose J ⊆ I with –J– ≈ –I–/2

 Obtain y from x by flipping the bits in J

 If fzσ(y) > fzσ(x) then I := J

 else I := I “ J

 Determines “the next bit” with at most log2(n) fitness queries
 n log2(n) queries suffice to optimize LOn

 How can we do better?

1090

Proving O(n log(n) / loglog(n)): Outline

 Assume that you have a solution x with fzσ(x) = k and you know which k bit-
positions are responsible for this. Denote by I the remaining bit-positions. Let
L := log(n)1/2

 Step 1: Use L2 = log(n) iterations to find a y with fzσ(y) = k + L
 Flip the bits in I with probability 1/L, accept if improvement
 Note: We don’t learn which L bit-positions lead to the improvement!!!

 Step 2: Use log(n)3/2 / loglog(n) queries to determine the L bit-positions
 In y, flip the I-bits with probability 1/L. Do so log(n)3/2 / loglog(n) times.
 Look at all outcomes with fitness k+j and find out bit number k+j+1.
 With high probability, the log(n)3/2 / loglog(n) samples suffice to learn all L

bit-positions

 Step 1+2: log(n)3/2 / loglog(n) fitness evaluations to gain log(n)1/2 bits…

Final Summary

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)
 Note: lower bound on the performance of any EA, ACO, …

 Strongly related to guessing games
 BBC(OneMax) ≈ Mastermind
 BBC(LeadingOnes) ≈ what you should play in the next tutorial

 Techniques:
 Information theory: BBC ≳ log(|SearchSpace|) / log(|fitness_values|)
 Random guesses: Often ≲ log(|SearchSpace|) / log(|typical_answers|)
 Clever guesses: Be creative!

1091

