
Benjamin Doerr
Max-Planck-Institut für Informatik

Saarbrücken

Tutorial:
Black-Box Complexity:

From Complexity Theory to Playing Mastermind

Bio-Sketch
 Benjamin Doerr is a senior researcher at the Max Planck Institute for

Informatics and a professor at Saarland University.

 He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from Kiel University.

 Together with Frank Neumann and Ingo Wegener, he founded the theory
track at GECCO and served as its co-chair 2007-2009.

 He is a member of the editorial boards of Evolutionary Computation and
Information Processing Letters.

 His research area includes theoretical aspects of randomized search
heuristics, in particular, run-time analysis and complexity theory.

Objectives of the Tutorial
 This is a tutorial on black-box complexity. This is currently one of the

hottest topics in the theory of randomized search heuristics.

 I shall try my best to..
 tell you on an elementary level what black-box complexity is and how it

shapes our understanding of randomized search heuristics
 give an in-depth coverage of two topics that received much attention in

the last few years
 stronger upper bounds and the connection to guessing games
 alternative black-box models

 sketch several open problems

 Don’t hesitate to ask questions whenever they come up!

Agenda

 Part 1: Black-box complexity: A complexity theory for randomized search
heuristics (RSH)
 Introduction/definition
 Lower bounds for all RSH (example: needle functions)
 Thorn in the flesh: Are there better RSH out there? (example onemax)
 Different black-box models – what is the right difficulty measure?

 Part 2: Tools and techniques (in the language of guessing games)
 From black-box to guessing games
 A general lower bound
 How to play Mastermind
 A new game

 Summary, open problems

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

1079

Timeline
2002Droste, Jansen, Tinnefeld, Wegener. A new framework for

the valuation of algorithms for black-box optimization.
FOGA

2006 Droste, Jansen, Wegener. Upper and Lower Bounds for
Randomized Search Heuristics in Black-Box
Optimization. Theory Comput. Syst. 39

2009Anil, Wiegand. Black-box search by elimination of fitness
functions. FOGA

2010 Lehre, Witt. Black-box search by unbiased variation.
GECCO

2011Doerr, Johannsen, Kötzing, Lehre, Wagner, Winzen. Faster
Black-Box Algorithms Through Higher Arity Operators.

FOGA Doerr, Winzen. Towards a Complexity Theory of
Randomized Search Heuristics: Ranking-Based Black-
Box Complexity. CSRRowe, Vose. Unbiased black box search algorithms.

GECCO
Doerr, Kötzing, Lengler, Winzen. Black-Box Complexities
of Combinatorial Problems. GECCO

Doerr, Kötzing, Winzen. Too Fast Unbiased Black-Box
Algorithms. GECCO Doerr, Winzen. Black-Box Complexity: Breaking the O(n

log n) Barrier of LeadingOnes. EA

2012Doerr, Winzen. Playing Mastermind with constant-size
memory. STACS Doerr, Winzen. Reducing the arity in unbiased black-box

complexity. GECCO

Part 1: Complexity Theory for RSH

 Why a complexity theory for RSH?
 Understand problem difficulty!

 How?
 Black-box complexity!

 What can we do with that?
 General lower bounds, thorn in the flesh

 Different notions of black-box complexity

Why a Complexity Theory for RSH?

 Understand problem difficulty!
 Randomized search heuristics (RSH) like evolutionary algorithms,

genetic algorithms, ant colony optimization, simulated annealing, …
are very successful for a variety of problems.

 Little general advice which problems are suitable for such general
methods

 Solution: Complexity theory for RSH

 Take a similar successful route as classical algorithmics!
 Algorithmics: Design good algorithms and analyze their performance
 Complexity theory: Show that certain things are just not possible
 The interplay between the two areas proved to be very fruitful for the

research on classic algorithms

Algorithms vs. Complexity Theory
for RSH – An Example

 Bottom line: Spanning tree is easy for RSH, the Needle problem not.

Algorithm Analysis: Prove how
a certain algorithm solves a
particular problem.

The (1+1) EA finds a minimum
spanning tree with an expected
number of O(m2 log(m wmax))
fitness evaluations.

Complexity Theory: What can
the best possible algorithm for
this problem do or not.

No RSH can solve the Needle
problem in an expected number
of less than (2n+1)/2 fitness
evaluations.

1080

Reminder: Classic Complexity Theory

 General approach: Complexity (difficulty) of a problem := Performance of
the best algorithm on the hardest problem instance

 Example: “Sorting n numbers needs Θ(n log(n)) pair-wise comparisons.”
 Problem: “Sorting an array of n numbers”
 Instance (input to algorithm): An (unsorted) array of n numbers
 Algorithms: All that run on a Turing machine
 Performance (cost) measure: Number of pair-wise comparisons

 T(A,I) = number of comparisons performed when algorithm A runs
on instance I

 Theorem: “Complexity of sorting = minA maxI T(A,I) = Θ(n log(n)).”

 How does this work for RSH?
 Algorithms = RSHs, Performance = number of fitness evaluations, …

Complexity Theory for RSH

 Algorithms: Randomized search heuristics (RSH)
 may generate solutions and query their fitness
 no explicit access to the problem description
  black-box optimization algorithm

 Performance measure T(A,I) = expected number of fitness evaluations
until algorithm A running on instance I queries an optimum of I

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

“How many search point have to be evaluated to find the optimum.”

BBC: What Can We Do With It?

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 3 uses:
 Measure for problem difficulty [that’s how we designed the definition]
 Universal lower bounds [next slide]
 A thorn in the flesh [next to next slide]

BBC: Universal Lower Bounds

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Follows right from the definition: The black-box complexity is a lower bound
on the performance of any RSH!
 BBC := minA maxI T(A,I) ≤ maxI T(B,I) = performance of B

 Example:
 Theorem [DJTW’02]: The black-box complexity of the needle function

class is (2n+1)/2.
 Consequence: No RSH can solve the needle problem in sub-

exponential time.
 One simple proof replaces several proofs for particular RSH 

1081

BBC: A Thorn in the Flesh

 If the black-box complexity is lower than what current best RSH achieve,
you should wonder if there are better RSH for this problem!

 Example: OneMax functions
 for all “bit-strings” z ∈ {0,1}n let
fz: {0,1}n → {0,…,n}; x ↦ “number of positions in which x and z agree”
 all fz have a fitness landscape equivalent to the classic OneMax

function (counting the number of ones in a bit-string).
 Theorem [many, see later]: The black-box complexity of the class of all

OneMax functions is Θ(n / log(n)).
 But: All standard RSH need at least Ω(n log(n)) time!
 Are there better RSH that we overlooked?

 Same motive as in classical theory: n x n matrix multiplication can be done
in time O(n 2.3727), only lower bound is Ω(n 2).

Alternative Black-box Models

 Previous slide: “Are there better RSH?”
 Alternative answer: The black-box model allows too powerful (unnatural)

algorithms.

 Next x slides: Discuss alternative black-box models
 very active research area in the last 3 years
 no definitive answer

 Common theme: Instead of allowing all black-box optimization algorithms,
only regard a restricted class!
 restricted class should include most classic RSH

Alternative 1: Unbiased BBC

 Lehre&Witt (GECCO’10 theory track best paper award):
 allow only unbiased variation operators: treat all bit-positions (1, …, n)

and the two bit-values (0, 1) equally!
 equivalent: if σ is an automorphism of the hypercube, then the

probability that y is an offspring of x1, …, xk must be equal to the
probability that σ(y) is an offspring of σ(x1), … σ(xk)

 Observation: Most RSH are unbiased
 exception: one-point crossover

 Result: The unbiased, mutation-only BBC of OneMax is Θ(n log(n))
 as observed for random local search, (1+1) EA, …

 Anti-result [DKW’11]: Also the TRAPk function has an unbiased, mutation-
only BBC of Θ(n log(n)).
 contrasts the Ω(n k) performance of all classic RSH

 Interesting [DJKLW’11]: Unbiased 2-ary BBC of OneMax: O(n).

Crossover helps?

Alternative 2: Ranking-Based BBC

 D&Winzen (CSR’11), suggested by Niko Hansen: ranking-based
 do not regard the absolute fitness values, but make all decisions

dependent only on how fitnesses of search points compare!
 Observation: Many RSH follow this scheme

 exception: fitness-proportionate selection
 Bad news: OneMax has a ranking-based BBC of Θ(n / log(n)) 
 Good news: For BinaryValue…

 BBC: log(n)
 ranking-based BBC: Ω(n)
 many RSH: Θ(n log n)

 Open problem: Partition…
 BBC: O(n), heavily exploints absolute fitness values
 Unbiased BBC: Maybe exponential?

1082

Alternative 3: Memory-Restricted BBC

 Droste, Jansen, Wegener (Theor. Comput. Syst. 2006):
 suggest to restrict the memory: store only a fixed number of search

points and their fitness
 inspired by bounded population size
 conjecture: with memory one, the BBC of OneMax becomes the

desired Θ(n log(n))

 D&Winzen (STACS’12): Disprove conjecture.
 Even with memory one, the BBC of OneMax is Θ(n / log (n)).

[I’ll give a proof in the second part of the tutorial]

Summary Alternative BBC Models

 Different models:
 unrestricted (classic)
 unbiased
 ranking-based
 memory-restricted

 None is yet “the ultimate complexity notion” for RSH

 Each expanded our understanding
 what makes a problem hard
 what makes a RSH powerful

 Many open problems…

Summary Part 1

 Black-box complexity (BBC): “Minimum number of search points that have
to be evaluated to find the optimum”
 Expected number of fitness evaluations the best black-box algorithm

needs to query the optimum of the hardest instance.
 minA maxI T(A,I)

 Uses:
 Measure of problem difficulty
 Universal lower bounds
 Thorn in the flesh

 Particular problem: What is the most useful class of black-box algorithms to
be regarded?

Part 2: Tools and Techniques

Plan for the 2nd part of this tutorial:

 Explain, why BBC and guessing games are almost the same

 Use the language of guessing games to demonstrate some techniques
 Random guessing: The BBC of OneMax or “how to play Mastermind

with two colors?”
 A simple “information theoretic” lower bound
 Clever guessing:

 Mastermind with n colors
[intermediate summary “tools and techniques”]

 Memory-restricted BBC of OneMax = Mastermind with 2 rows

 A game derived from BBC studies 

1083

A Formal Definition of BBC

 Optimization problem: A set F of functions f: {0,1}n → ℝ
 Aim is to find the maximum of a given f ∈ F.
 Language:

 An f ∈ F is called an “instance of F”
 {0,1}n “search space”
 x ∈ {0,1}n “search point”

 Example “Maximum Clique”: For each graph G on the vertex set
{1,…,n}, fG(x) is the size of the vertex set represented by x, if this is a
clique in G, and 0 otherwise. F := {fG | G a graph with vertices 1,…,n}.

 A black-box algorithm for F : A randomized algorithm that finds the
maximum of any f ∈ F by asking f-values of search points only (no explicit
access to the instance, e.g., the graph G in the clique example).

A Formal Definition of BBC

 A black-box algorithm for F : A randomized algorithm A that finds the
maximum of any f ∈ F by asking f-values of search points only.

 Performance T(A,f) of A for f ∈ F : Expected time until an x with f(x) =
OPT(f) is queried

 Performance T(A,F) of A on F: maxf ∈ F T(A,f)
 BBC of F: minA T(A,F), where A runs over all black-box algorithms for F

Search
Heuristic

Black-Box =
“Oracle”

x1

f(x1) f

Black-Box
Algorithm

A

[knows the
problem F]

x2

f(x2)

f ∈ F

From BBC to Guessing Games

 Guessing game:
 BlackBox chooses a hidden f ∈ F .
 Algo tries to guess an x with f(x) maximal
 For each incorrect guess, BlackBox tells f(x) to Algo

 Optimal strategy for Algo = optimal black-box algorithm
 Optimal strategy for black-box = “most difficult” f ∈ F
 Optimal number of rounds in the game = BBC(F)

Search
Heuristic

Black-Box

x1

f(x1) fAlgo

x2

f(x2)

f ∈ F Mastermind

 2-player game
 CodeMaker hides a 4-digit 6-color code C.
 CodeBreaker tries to guess it using few

guesses

 Guess: Some color code G

 Answer:
 Number of positions in which C and G

agree (“black answer-pegs” [here: red])
 Number of additional code letters that occur in a

wrong position (“white pegs”)

Classic Guessing Game: Mastermind

n k

1084

2-Color Mastermind = BBC(OneMax)

 OneMax test function: f: {0,1}n → {0,…,n}; x ↦ “number of ones in x”
 easy to find the unique global optimum (1,…,1).
 RLS, (1+1) EA, … do this in Θ(n log n) time.

 (Generalized) OneMax function, OneMax problem:
 For each z ∈ {0,1}n, let
fz: {0,1}n → {0,…,n}; x ↦ “number of bits in which x and z agree”

 All fz have isomorphic fitness landscapes
 OneMax problem: F := {fz | z ∈ {0,1}n}, the set of all OneMax functions

 Observation: Mastermind with the two “colors” 0 and 1 corresponds to the
black-box complexity BBC(F)

Mastermind: 3 (?) Results

 Θ(n / log n) guesses sufficient&necessary for k = 2 (BBC of OneMax)
 Anil, Wiegand: “Black-box search by elimination of fitness functions”.

Foundations of Genetic Algorithms (FOGA) (2009)

 Θ(n log k / log n) for k ≤ n1- ε

 Chvátal: “Mastermind”. Combinatorica (1983)

 Θ(n / log n) for k = 2
 Erdős, Rényi: “On two problems in information theory”. Magyar Tud.

Akad. Mat. Kutató Int. Közl (1963)

Proof: Random Guessing

 CodeBreaker’s strategy:
 Guess Θ(n / log n) random codes.
 Look at all answers.
 With high probability, no secret code other than the true one leads to

these answers [elementary, straight-forward computation]

 Comments:
 Erdős probabilistic method at its best.
 Best possible (apart from constant factors hidden in Θ(…))
 Note: Non-adaptive strategy – questions do not depend on previous

questions and answers.

A General Lower Bound

 [DJW’06, in the language of games] Consider a guessing game such that
 there are s different secrets
 each query has at most k ≥ 2 different answers.
Then the expected number Q of queries necessary to find the secret is at
least (log2(s) / log2 (k)) – 1 = logk(s) – 1.

 Information theoretic view: To encode the secret in binary, you need log2(s)
bits. Each answer can be encoded in log2(k) bits. If Q rounds suffice, Q
log2(k) bits could encode the secret. 1)

 Game-theoretic view: In the game tree, each node has at most k children.
Hence at height Q, there are at most kQ nodes. If s is bigger, then at some
nodes, more secrets are possible. 1)

1) Argument correct for deterministic strategies. For randomized
ones, in addition, Yao’s minimax principle is needed.

1085

Back to 2-Color Mastermind…

 Lower bound: (1 + o(1)) n / log2(n)
 Argument: 2n possible secrets, n +1 possible answers
 general lower bound: log2 (2n) / log2 (n +1) = (1+o(1))n / log2 (n)

 Information theoretic view: “learn at most log2 (n) bits per question”

 Upper bound computed precisely: (2 + o(1)) n / log2 (n)
 Weaker by a factor of 2
 Reason (informal): Typically, a random question yields an answer

between n /2 – Θ(√n)and n /2 + Θ(√n).
 “learn log2 (Θ(√n)) ≈ (1/2) log2 (n) bits per question”

 Big open problem (already mentioned in the Erdős-Rényi paper):
What is the correct bound? Can you ask better questions?

Clever Guessing: Mastermind for k = n?

 Random guessing (Chvátal): Θ(n log(n)) needed and sufficient.

 Informal justification:
 The expected answer to a random question is 1.
 “learn only a constant number of bits per question”.
 Information theory: log(n n)/log(constant) = n log(n) questions

 Can we ask better questions?
 Info-theory argument: We need to “learn more bits per question”
 Problem: For the first question, the expected answer is 1, no matter

what we ask ( learn constant number of bits )
 If something works, it must be adaptive: Current question uses previous

answers!

Clever Guessing: First Step

 Story-line so far: Adaptively ask clever questions!
 Difficulty: How to use previous answers?

 One idea (inspired by Goodrich (IPL 2009)):
 If you get the answer “0”, then for each position you know one color that

does not appear there
 basically reduces the number of colors by one
 future questions: only use possible colors
 good news: the answer “0” is not too rare

 for k = n colors, the probability that a random guess gets a
“0”-answer, is (1 – (1/n))n ≈ 1/e ≈ 0.37

Clever Guessing: Reduce the Colors

 Story-line: Adaptively ask clever questions!
 Plan: Get a “0”-answer and get rid of one color per position.

 Lemma: For k colors and n positions, the probability that a random guess
is answered “0”, is (1 – (1/k))n ≥ 4-n /k.

 Rough estimate: Reducing the number of colors from n to 8n / loglog(n)
takes time n 4-n /(8n / loglog(n)) = n (log n)1/2.

 With only 8n / loglog(n) colors possible at each position, a random guess
has an expected answer of loglog(n)/8
 “learn Θ(logloglog(n)) bits” [can be made precise]

 “Theorem”: O(n log(n) / logloglog(n)) questions suffice!

1086

Clever Guessing: Reduce the Colors (2)

 Story-line: Adaptively ask clever questions by reducing the number of
colors (by getting a “0”-answer)
 gains so far: a logloglog(n) factor 

 Reducing the number of colors from k to k-1 per position:
 so far: get a “0”-answer after at most 4n /k random guesses
 Example: k = n /100.

 Random guess has an expected answer of 100.
 Time to wait for a “0” is (1+o(1)) e100.
 Waiting for something quite rare 

 Better: Partition the n positions into blocks of size n /100 and ask
randomly in each block (fill up the rest with dummy colors)
 expected contribution per block: 1
 waiting time for a “0” in a block: constant

Clever Guessing: Reduce the Colors (3)

 Story-line: Adaptively ask clever questions by reducing the number of
colors.
 So far: Ask randomly and hope for a “0”

 Improved reducing the number of colors from k to k -1:
 Partition the n positions into n/k blocks of roughly equal size.
 For each block:

 Ask random colors in the block, put a dummy color in the rest
 expected waiting time for a “0”: at most 4

 Total expected waiting time: 4 n/k [previously: 4n /k] 

 Total time to reduce the number of colors from k to k /2:
 at most (k /2) 4 n / (k /2) = 4n

Clever Guessing: Reduce the Colors (4)

 Story-line: Adaptively ask clever questions.
 Clever color reducing: From k to k /2 colors in 4n queries

 Goodrich 2009: log(n) times halving the colors finds the secret code in
O(n log n) questions [apart from constants, the same bound as Chvátal]

 We [D., Spöhel, Thomas, Winzen]:
 Do the halving trick √log n times
 n / 2√log n colors possible at each position

 Then do random guesses (using only possible colors)
 expected answer: 2√log n

 “learn log(2√log n) = √log n bits per question”
 Theorem: Solve Mastermind with k =n colors in O(n √log n) questions 

Intermediate Summary: Methods

 Information theoretic argument:
 If for each query only k different answers exist and if F contains s

functions with distinct unique optima, then the black-box complexity
of F is at least (log2(s) / log2(k)) – 1.

 Random guessing:
 Often, a small number of random guesses together with the answers

received uniquely determine the solution.
 “Information theoretic hand-waiving”: If a random query

typically sees k answers each with probability at least Θ(1/k),
then around log2(s)/ log2 (k) question might suffice.

 Clever guessing: To get a better bound, you have to ask questions that
reveal more information (example: reducing the colors in MasterMind).

1087

A Second Example of “Clever Guessing”

 Original problem: Memory-restricted BBC of OneMax
 Memory-restriction: From one iteration to the next, the BB-algorithm

may only store k search points together with their fitness.
 Conjecture [DJW’06]: For k = 1, the BBC becomes the Θ(n log n) we

know from the (1+1) EA.

 Transfer to guessing games [easy to see]:
 This BBC problem is equivalent to Mastermind with two rows only.

 Theorem [DW’12]: You can win 2-row Mastermind with O(n / log n)
queries.
 Details: next few slides.

 Corollary: The memory-1 restricted BBC of OneMax is Θ(n / log n).

Details: Two Rows Suffice!

 Result: On a board with two rows,
you can still find the secret code
with O(n / log n) guesses!

 Precise rules:
 We start the game with an empty board
 If there is an empty row, CodeBreaker can enter a guess, which will be

answered by CodeMaker
 If there is no empty row, CodeBreaker must empty one of the two rows

and forget the content.

 Theorem: CodeBreaker has a strategy that
 finds the secret code in O(n / log n) rounds
 uses two rows only (all actions depend solely on these rows).

Fewer Rows: Proof Ideas

 Original Mastermind: Guess Θ(n / log n) random codes. Store all guesses
and answers on the board. Think.
 Needs Θ(n / log n) rows.

 3 ingredients of our proof:
 Find parts of the code: Determine Θ(nε) code letters with Θ(nε / log n)

relatively random guesses (ε constant)
 Do this n1- ε times: find the code with Θ(nε / log n) rows.

 Determine such a part with constant number of rows
 Do this n1- ε times: find the code with Θ(1) rows.

 Do everything in two rows

Proof Idea (1): Find Parts of the Code

 Lemma:
 Let B ⊆ [n], |B| = nε. “part”
 Let G1, G2, … be Θ(nε / log n) guesses such that

 Gi is random in positions in B
 All Gi are equal in positions in [n] \ B

 Then with high probability these guesses and answers determine the
secret code in B.

 Argument:
 Basically, we play the game in B (and use the previous proof)
 Only difficulty: The answers we get “are not for B only”, but for the

whole guess
 Same deviation for all guesses

 Some maths: Not a problem, guesses also determine deviation 

1088

Proof Idea (2): Same with O(1) Rows

 Plan: Simulate the previous slide in O(1) rows
 Example: Find the first L = Θ(nε / log n) code letters

 B1 := L random letters.
 Guess B1 1…1 in row 1 and learn answer A1.
 Guess B1 A1 1….1 in row 2 and ignore answer
 B2 := L random letters
 Guess B2 1…1 in row 1 and learn answer A2

 Guess B1 A1 B2 A2 1…1 in row 3 and ignore answer
 …

 General:
 Do an honest guess as on the previous slide.
 Use the next guess to store guess+answer+what you learned before.

 Needs 3+ rows: current guess + old storage  new storage

“A1”: Suitably encoded
with O(log n) of letters

Proof Idea (3): Two Rows Only

 Difficulty:
 To enter a new guess, one of the two rows must be emptied
 You must store and guess in the same row

 Problem: Storage influences CodeMaker’s answers!
 All control information must also be stored in this one row

 what is the block I’m just optimizing?
 what am I currently doing (guessing, storing, finding the unique

solution, finding the last few letters in a different way…)

 Solution:
 technical.
 read the paper at STACS’12 or arxiv.org/abs/1110.3619.

Summary: Memory-BBC of OneMax

 Result: The complexity of Mastermind remains at Θ(n / log n) guesses
even if we allow only two rows.
 Key proof argument: Clever guesses inspired by random guesses

 Open problems / future work:
 Our proof works for any constant number of colors – what happens for

larger numbers of colors?
 constant factors: “what’s hidden in the Θ(…)”

 does a memory restriction lose us a constant factor?

Finally: A New Guessing Game

 So far: BBC is strongly related to guessing games
 In particular: BBC(OneMax) ≈ Mastermind
 Therefore: Use game theoretic arguments to solve BBC problems

 Now [next few slides]: Use BBC problems to derive a fun game 
 LeadingOnes Game

1089

LeadingOnes Test Functions

 Classic test function:
 LeadingOnes: {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | x1 = … = xi = 1}

 “how many bits counted from the left are one”
 Unique optimum (1,…,1)
 “Harder than OneMax”: Each non-optimal solution has only one

superior Hamming neighbor

 LeadingOnes function class LOn:
 Let σ be a permutation of {1,…,n}
 Let z ∈ {0,1}n (“target string”)
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 “how many bits, counted in the order of σ, are as in z
 same fitness landscape as LeadingOnes

The LeadingOnes Game

 Transfer the BBC(LOn) problem into a game:

 CodeMaker: Picks a secret code z and a secret permutation σ

 Round:
 CodeBreaker guesses a bit-string x ∈ {0,1}n
 CodeMaker’s answer: fzσ(x) = “how many code letters in the order of σ

are correct?”

 How many rounds until CodeBreaker guesses the secret code z?

 Practice: Fun to play with n=5 or n=6 [and that’s the message of this slide]
 Theory: next few slides, fun as well, but doesn’t help you play the actual

game

Black-Box Complexity of LeadingOnes

 Reminder: LOn consists of all functions
 fzσ : {0,1}n → {0,…,n}; x ↦ max{i ∈ {0,…,n} | xσ(1) = zσ(1), …, xσ(i) = zσ(i)}

 Black-box complexity of LOn, lower bound
 Ω(n), because you need Θ(n) fitness evaluations even if σ = id

 Black-box complexity of LOn, upper bounds
 O(n2), run-time of RLS, (1+1) EA, …
 O(n log(n)): determine “the next bit” with log(n) queries by simulating

binary search (more details next slide)
 Would be a natural lower bound:

 “next bit”-position is a number in {1,…,n}, coding length log(n)
 a typical query teaches you a constant amount of information

 DW (EA’11): O(n log(n) / loglog(n)) is enough…

The BinarySearch Trick

 Assume that you have a solution x with fzσ(x)= k and you know which k bit-
positions are responsible for this. Denote by I the remaining bit-positions.

 While –I– > 1 do

 Choose J ⊆ I with –J– ≈ –I–/2

 Obtain y from x by flipping the bits in J

 If fzσ(y) > fzσ(x) then I := J

 else I := I “ J

 Determines “the next bit” with at most log2(n) fitness queries
 n log2(n) queries suffice to optimize LOn

 How can we do better?

1090

Proving O(n log(n) / loglog(n)): Outline

 Assume that you have a solution x with fzσ(x) = k and you know which k bit-
positions are responsible for this. Denote by I the remaining bit-positions. Let
L := log(n)1/2

 Step 1: Use L2 = log(n) iterations to find a y with fzσ(y) = k + L
 Flip the bits in I with probability 1/L, accept if improvement
 Note: We don’t learn which L bit-positions lead to the improvement!!!

 Step 2: Use log(n)3/2 / loglog(n) queries to determine the L bit-positions
 In y, flip the I-bits with probability 1/L. Do so log(n)3/2 / loglog(n) times.
 Look at all outcomes with fitness k+j and find out bit number k+j+1.
 With high probability, the log(n)3/2 / loglog(n) samples suffice to learn all L

bit-positions

 Step 1+2: log(n)3/2 / loglog(n) fitness evaluations to gain log(n)1/2 bits…

Final Summary 

 Black-box complexity: Expected number of fitness evaluations the best
black-box algorithm needs to query the optimum of the hardest instance.
 minA maxI T(A,I)
 Note: lower bound on the performance of any EA, ACO, …

 Strongly related to guessing games
 BBC(OneMax) ≈ Mastermind
 BBC(LeadingOnes) ≈ what you should play in the next tutorial 

 Techniques:
 Information theory: BBC ≳ log(|SearchSpace|) / log(|fitness_values|)
 Random guesses: Often ≲ log(|SearchSpace|) / log(|typical_answers|)
 Clever guesses: Be creative!

1091

