
SofEA, a Pool-Based Framework for Evolutionary
Algorithms using CouchDB

Juan J. Merelo, Antonio M. Mora, Carlos
M. Fernandes

University of Granada
Department of Computer Architecture and

Technology, ETSIIT
18071 - Granada

jmerelo,amorag,cfernandes@geneura.ugr.es

Anna I. Esparcia-Alcázar
S2 Grupo

aesparcia@s2grupo.es

ABSTRACT
This paper studies SofEA, an architecture for distributing
evolutionary algorithms (EAs) across computer networks in
an asynchronous and decentralized way. SofEA is based on
a pool architecture which is implemented using an object
store interacting asynchronously with several clients. The
fact that each client is autonomous leads to a complex be-
havior that will be examined in this paper, so that the design
can be validated, rules of thumb can be extracted and the
limits of scalability found. We will show how, beyond the
usual measures employed in EA, specific measures such as
the number of conflicts across clients can give us hints on
the algorithm behavior, and how implementation details can
change not only the running time, but also the behavior of
the evolutionary algorithm itself. By using these measures
we try to find ideal values for parameters such as the simul-
taneous number of individuals evaluated by a client or the
way these are chosen from the pool.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
G.1.6 [Mathematics of Computing]: NUMERICAL ANAL-
YSIS—Optimization; D.2.8 [Software Engineering]: [Met-
rics complexity measures, performance measures]

Keywords
Cloud Computing, Cloud Storage, Evolutionary Algorithms,
Distributed Algorithms, NoSQL databases, key-value stores,
complex systems

1. INTRODUCTION
Modern computer systems offer the promise of massive

scalability, fault tolerance and self-adaptiveness if only the
algorithm can be properly adapted to it. However, tradi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

tional parallel systems pose several problems that hinder
their scalability.

Master/slave models, for instance, rely on a single server
which is a single-point-of-failure, and are limited by its ca-
pacity and bandwidth. The fact that all clients usually act
synchronously also makes the master/slave more suitable for
installations with similar, or the same, power and limit its
adoption for massive, ad-hoc distributed evolutionary algo-
rithms. However, since they have been used for systems such
as SETI@home [?] indicate that the number of clients can
escalate massively, at least if the clients act in a publish-
subscribe model (with the server sending, not being polled,
by the clients) and do not require much computation to serve
or create requests. This is not always the case in distributed
evolutionary algorithms: if the EA runs on the server, and
evaluation is farmed out to clients (as was done, for instance,
in [?, ?]), scalability is limited; the situation improves if the
evolutionary algorithm is run on the clients [?], using the
server just as a clearinghouse for interchange of immigrants.

However, even with the introduction of a centralized server,
this kind of layout rather corresponds to an island model [?]
where each client is an island. A priori, there are no limits to
scalability, since using either a central server for interchange
of information or creating an ad-hoc network any amount of
islands can participate in an experiment. However, connec-
tivity has limits, bandwidth is not free, and in practice, fixed
topologies are used, which restricts the amount of islands
that can be added and prohibits spontaneous incorporation
of another node. In practice, too, synchronized experiments
are often used, requiring homogeneous networks, and self-
adaptability is not used. A special kind of island models are
the so-called cellular evolutionary algorithms [?], which are
basically single-individual nodes with limited connectivity
to other islands (often only to those around them in a plane
either in a hexagonal or square layout).

These cellular algorithms are well adapted to some spe-
cial problems, but pose the same drawbacks as above: syn-
chronicity and rigid connections. However, since connec-
tions are limited, they have often reached a good speed-up.
The best architectures in this sense are P2P systems such as
EvAg [?], with an emerging connectivity and no centrally is-
sued command; they offer the scalability of cellular genetic
algorithms with excellent fault-tolerance [?]. There is no
problem indeed with the algorithm per se, except that, be-
ing an ad-hoc software system, its adoption is limited and
does not make use of the infrastructure already available.

109

At any rate, EvAg is an excellent system and we only aim to
provide in this paper another alternative for those who are
already acquainted with the tools used in it.

The system described in this paper, SofEA, is a pool based
distributed evolutionary algorithm. It uses a central or repli-
cated pool for storing the population, decoupling the meth-
ods applied to it from its storage. The pool is stored in
CouchDB, a key/store database management system [?],
which in turn leads to a series of design decisions when
implementing the evolutionary algorithm (implementation
always matters [?] if the maximum, or even an acceptable,
performance is to be reached). Our objectives with the de-
sign of this system is to create a distributed evolutionary
architecture that is able to adapt to spontaneous clients
joining, work asynchronously and achieve good speed-ups
without requiring special-purpose hardware. In this paper
we will show the design choices available to us and validate
them through experimental measures on the system itself,
using different configurations.

The rest of the paper is organized as follows: Next section
presents the state of the art in pool-based algorithms and
its particular instantiation for evolutionary algorithms. Our
own version is explained in section ??, which is tested next
in the experimental section (??). Finally, we draw some
conclusions and propose future lines of work in section ??.

2. STATE OF THE ART
In their interesting study of the state of the art in asyn-

chronous evolutionary algorithms, Alba et al. [?] note that
the model should be distinguished the implementation, al-
though, as indicated in the introduction to this paper, there
is a feedback between them in such a way that they must fit
each other. However, we will first look at models, and then
at implementations.

The most popular model of asynchronous distributed algo-
rithms is called A-teams, where A stands for asynchronous
[?, ?, ?]. A-Teams combine different algorithms in closed
loops that share a memory and are a way of specifying data
flow among different methods to solve a problem. A-Teams
are not evolutionary methods but have been successfully ap-
plied in the last decades to a wide variety of problems [?];
their authors have released a toolkit that can be used to im-
plement solutions to different problems. It is interesting to
note that A-Teams include constructors as well as destruc-
tors distributing concerns among different agents which co-
operate to build or ultimately find the solution. Since their
emphasis is in dataflow, they are similar to the more up-
to-date system Meandre [?], a cloud-based dataflow archi-
tecture which is, in particular, used for evolutionary algo-
rithms [?] using a MapReduce framework, that is, a system
in which massive amounts of data are first mapped by ap-
plying a function to them and then the result reduced by
applying a function to the resulting data structure. In this
case, data in the form of a population of individuals that
undergo several transformations along the data pipeline is
mapped to individual computing nodes and then reduced to
proceed to the next stage. In that sense, lately there are
many papers [?] that describe evolutionary algorithms that
use MapReduce frameworks. All these systems are not so
amenable to asynchronous and spontaneous collaboration,
though.

These models can be implemented in many different ways,
but they often refer to a pool from which solutions can be

drawn, improved and put back, or to where newly con-
structed solutions can be shared among all agents partici-
pating in the experiment. Taking then one step down, sev-
eral authors have directly implemented evolutionary algo-
rithms in a pool based architecture, where the basic idea
is to use a store of solutions from which the evolutionary
algorithm draws its individuals, instead of a data structure
that is taken from one method to the next. The first pa-
pers in the 90s used shared memory systems such as Linda
[?]; lately, multi-threaded systems with a shared memory [?]
from which all can read, but is writable only by one of the
threads, and even relational database systems [?] have been
used, acknowledging their capability for avoiding explicit
synchronization and its fault-tolerance, at least to client fail-
ure, providing a persistent storage for population from which
solutions can be, later on, retrieved.

SofEA is an attempt to design a pool-based evolutionary
system that is asynchronous, fault-tolerant and highly scal-
able. In this paper we examine the trade-offs that lead to
the different decisions we have made, and show the system
capabilities. The scaling behavior is not the focus of this
paper, although in other publications [?] we have proved its
limits and made suggestions on how these can be overcome.

3. SOFEA, A COUCHDB-BASED
EVOLUTIONARY ALGORITHM

The reasons for choosing CouchDB over other similar of-
ferings have been explained elsewhere [?], but they boil down
to the presence of all the features we needed (MapReduce
functions, availability of client libraries in several languages,
and good performance). However, using other similar NoSQL
systems will be researched in the future, although we would
like to emphasize that object data stores do not have a stan-
dard API and we would probably need to adapt the model
to each one’s peculiarities.

CouchDB is an key-value store [?] that uses JSON (JavaScript
Object Notation, a text serialization of arbitrary data struc-
tures [?]) as its lingua franca, being able to store any kind
of data structure. Objects can be retrieved by key or range
of keys directly, but complex queries using MapReduce [?]
operations, written by default in JavaScript and called views
can be applied to them. Map operations apply individually
to each element in the database, while reduce are applied to
lists of them organized in key/value pairs. CouchDB uses
a simple REST (Representational State Transfer) API that
can be accessed from the command line or multitude of client
libraries; this API can be used either to access objects di-
rectly or to apply operations on them. Every object in the
database is provided with several additional attributes, the
most important of which will be for us the revision, a ver-
sioning attribute that changes every time an object is mod-
ified; its main part changes by one every update.

Mapping an EA to this system has to take into account its
peculiar features and use them to achieve maximum perfor-
mance, both locally in the server and globally on the system
composed of server and clients; when doing this mapping,
we will have to bear in mind the objectives we put forward
at the beginning: good scalability and leveraging of CPU
power, client autonomy and fault-tolerance.

There are in principle many different ways of implement-
ing a pool-based evolutionary algorithm over CouchDB. The
first choice was to store directly population on it, using

110

clients only for computation so that the setup is more alike
a master/slave model using farming for computation, except
that evaluation as well as the evolutionary algorithm itself
will be done by the clients. Chromosomes will be then ob-
jects, and to ease retrieval, we chose to use the chromosome
itself as key, with the value including the chromosome string,
fitness, and a random constant we will use as part of a prim-
itive partitioning method. Since the chromosome string is
the key, every chromosome will be present only once in the
pool, avoiding repetitions and thus naturally increasing di-
versity.

Revisions are a straightforward way to represent the state
of the chromosome. When it is created, its revision is set
to 1. When it is evaluated and fitness added, revision turns
to 2; it is just natural to use revision 3 as a “dead” state.
Revisions will be, then, used to select chromosomes in one
or other state.

The selection algorithm is an integral part of the evolu-
tionary algorithm. Most selection algorithms work on a
population, or assume that selecting several random chro-
mosomes is an easy operation. In our case, selection will
operate on chromosomes whose fitness has been computed
revision 2, but selecting random chromosomes from it is not
a trivial operation a priori. However, we will use a view that
returns chromosomes ordered by the random number they
include to select just a pre-established amount of them, and
at the same time avoid (although not completely) overlap of
selected chromosomes. At the same time, selection will have
to eliminate the worst chromosomes so that the evolutionary
algorithm is effective.

Elimination of the worst chromosomes will be done on the
first of the several clients that will be used. Since the pop-
ulation is decoupled from the algorithm, we can also decou-
ple selection from the rest so that it operates autonomously,
cutting down the population in revision 2 (with fitness) to
a manageable value. This client is called the reaper, and
for a base population of p, and a r chromosomes in state 2,
eliminates (takes to revision 3).

The rest of the clients can also be independent; there is no
need to loop over selection, reproduction and evaluation; se-
lection has been already detached, and we will do the same.
Detaching reproduction and evaluation has its advantages:
they can be written in different languages looking for the
most efficient implementation or run in different machines
adapted to its purpose. Efficient modern architectures al-
low to run both processes (or both threads) at the same
time without a noticeable effect on the rest of the tasks run-
ning, so that, in effect, they can operate as a pipeline, with
one process (or, obviously, set of processes) applying evolu-
tionary operators while others compute the fitness of previ-
ously generated individuals (and yet another, as seen above,
limits living population). In principle, they will both oper-
ate on a number of individuals selected randomly (as seen
above) from the population. To kick-start each experiment,
all existing documents are deleted and a initial random pop-
ulation is created so that the evaluator(s) can start working
immediately, with the reproducer(s) kicking in a bit after
that.

To make all clients know when the experiment has fin-
ished, a document with a known key is used; this key can
be “solution” when we want to find a specific solution, or
“evaluations” when we want to stop after a number of evalu-
ations have been made. This document is stored in the same

CouchDB as the rest of the chromosomes; since CouchDB
is schema-less, the same database can be used to store all
kinds of objects. In fall, all program logic is either stored as
views in CouchDB or in the clients, which is, for us, a good
reason to use CouchDB instead of other similar systems.

That division among clients meets most of the require-
ments for our system. A client only needs to know the
database address to start adding its capacity to the evolu-
tionary algorithm; if it stops working, the rest of the clients
will continue making the system fault-tolerant if at least
one reproducer, evaluator and reaper are present (and, obvi-
ously, the server). Operation of each client is decentralized
except for the termination condition, that will be checked
when each request is serviced. It can use efficiently available
resources since memory and CPU consumption are small,
with dozens of clients operating at the same time, even in a
single machine. And, finally, we can achieve some speedup
by adding clients, although a trade-off between the number
of simultaneous requests and the number of individuals pro-
cessed in each one must be found; it does not make much
sense if we make a request for every single evaluation, for in-
stance, since servicing it will consume much more time than
doing the evaluation.

In general, then, the model we use is a client-driven (not
data-driven) evolutionary pipeline that is actually imple-
mented using limited-size individual blocks and clients in
different processes. The model does have some problems,
first and foremost the existence of several variables (block
size, number of clients, relation among block sizes for the dif-
ferent clients), but also these problems, which are inherent
in the design:

• Oversupply of chromosomes in revision 1 (non-evaluated).
If the evaluator lags behind just a bit, the reproduc-
ers will create too many chromosomes that will be left
without evaluation.

• Evaluator starvation due to too few chromosomes to
evaluate. The reproducer will always have enough to
work on, except maybe at the beginning of the experi-
ment, since population is never completely eliminated,
just reduced.

• Conflicts: since the block of individuals is selected
randomly, those selected by two clients can overlap.
This will result in a lack of efficiency for the evalua-
tor, and loss of diversity for the reproducer; the first
is unavoidable, but its effect is probably smaller than
keeping tabs and blocking chromosomes already sent
to a client; and the second will affect mainly the evolu-
tionary algorithm, but not greatly, since anyways two
copies of the chromosome cannot be present in the pop-
ulation.

The main task of this paper will be to validate these
choices by evaluating SofEA on a simple problem, OneMax.
Since our objective was mainly to get a grasp of the com-
plexities involved in designing an algorithm adapted to this
platform, we think that the choice of problem is not im-
portant, being the main factor the time needed to compute
the fitness function; eventually we will apply SofEA to other
problems and see whether conclusions drawn from this sim-
ple problem can be extended to them. We will also study
different implementation alternatives by measuring running

111

times (for implementation efficiency) and number of evalua-
tions (average evaluations to solution), to contrast the effect
of implementation choices on the algorithm itself.

For this paper, the clients have been written in Perl and
JavaScript (which has been used also for writing CouchDB
views) and are available with a GPL license from https:

//launchpad.net/sofea.

4. EXAMINING THE BEHAVIOR OF SOFEA

Since clients operate autonomously and asynchronously,
there are parameters at the model and algorithm levels, and
they feed back on each other, some tentative exploratory
analysis will have to be made; first to compute the values for
parameters that yield the best performance, examine the ro-
bustness of the algorithm and finally find out the most signif-
icant measure needed to explain the behavior obtained. All
experimental parameters are as shown in table ?? unless told
otherwise. Experiments were made in a single computer,
an AMD six-core running Ubuntu 11.04 with 16 GBytes of
memory and a SSD disk drive hosting the database. Exper-
iment data and parameters are also available from the URL
mentioned above.

Table 1: Common experiment parameters.
Parameter Value
Repetitions 10
Chromosome size 128
Initial population 128
Termination condition Solution found

4.1 Initial population
Initial population is an implementation parameter; an ini-

tial set of random chromosomes must be supplied so that the
evaluator can start working immediately. Too many of them
will mean too much exploration, while too few of them will
starve the evaluator very soon if the reproducer cannot keep
up with it. We have tested two different quantities: 128 and
256, for a fixed evaluator block size of 128. This parame-
ter should not have a big influence on the algorithm, since
it will just keep the evaluator busy in the first steps of the
experiment. It actually does not, with a median number of
evaluations of 11491 for initial population equal to 128 and
11675 for 256. Differences are not significant as indicated
by Wilcoxon test. However, if we look at the running time
(shown in figure ??) there is a significant difference (at the
95% level, as indicated by the Wilcoxon test), with a median
of 68 seconds (ip = 256) vs. 63 (ip = 128). Since this differ-
ence is not due to the number of evaluations, there must be
other factor that creates it.

Several possible factors were examined: the actual size
of the evaluator packet was essentially the same, indicating
that there was no lack of chromosomes to evaluate. The con-
flicts in the reproducer had no difference either (there was
a significant difference at the 15% level using t-test), and
there was no difference between the sleeping periods spent
by reproducers in both configurations. What was, then, the
origin of the difference? To understand it we plotted the ac-
cumulated population generated by the reproducer, shown
in figure ??, it shows a small, but clear, difference. First
we see that the solid line (representing smaller initial popu-
lation, 128) runs for more steps, even as we know that, on
average, it takes less, so each step takes shorter on average;

Figure 1: Boxplot of running time (in seconds) for
different initial populations.

Figure 2: Accumulated population evaluated for ini-
tial population 256 (black, dashed) and 128 (red or
clear, solid). x axis shows steps, although average
time was smaller for the smaller population. This
plot is the average of 10 experiments.

since we see that, at the beginning of the experiment, more
population is generated when with initial population = 256,
this probably implies that the smaller packet size used does
have a small influence in running time; since there are hun-

112

dreds of steps in each experiment the accumulated effect is
noticeable.

This experiment highlights two issues: first, that running
time can be improved by tuning the chromosome supply,
including the initial one; second, that an online evaluation
of the algorithms must be made by looking at the evolution
of variables such as accumulated population evaluated or
generated, not only at the final values such as total number
of chromosomes generated or evaluated.

However, there are other factors influencing the results;
we will examine next the role of evaluation/reproduction
block size in the results.

4.2 Block size
The division of the population in increasingly small block

sizes should bring increases in speed, since there are more
computing units in the evaluation/reproduction pipeline. Keep-
ing the population (the sum of the block sizes of all clients)
constant, we will increase first the number of evaluators and
reproducers. Results are shown in figure ?? for running

Figure 3: Boxplot of running time, in seconds, for
the 5 evaluated configurations; e indicates the eval-
uator and r the reproducer block size. Number of
clients is equal 64/r or e.

time and ?? for number of evaluations. The only signifi-
cance difference running time-wise is among the e16r64 (4
evaluators with block size=16) and the rest. Although there
seems to be also a small difference in the number of evalu-
ations, once again it is only signification among e16r64 and
the rest.

The first result we would like to point to is that while
evaluation block size is an implementation parameter mainly
(how many individuals we evaluate in one database request),
reproducer block size is rather a model parameter, since dif-
ferent population size will have an influence in the resulting
diversity and thus the number of evaluations needed to so-

Figure 4: Boxplot of number of evaluations for the
5 evaluated configurations; e indicates the evaluator
and r the reproducer block size. Number of clients
is equal 64/r or e.

lution. Smaller populations will give less fit individuals less
chances to reproduce, since it is more likely that the num-
ber of slots available to them will be rounded to 0, and thus
increase selective pressure; bigger populations will be more
diverse. This effect will be counter-balanced by the possible
higher number of conflicts and lack of individuals to process
due to the difference of speed among evaluators and repro-
ducers. In fact, this is quite probably the mechanism that
induces that result; in general, in research not reproduced
here [?] we have proved reproduction is 50% faster, so, in
general, there should be more individuals evaluated than re-
produced. That is the reason why adding more reproducers
just increases the imbalance among reproduction and evalu-
ation. All these causes induce the observed effect: no change
either in evaluations or running time, since reproducers keep
chugging out new individuals that are not evaluated.

However, increasing the number of evaluators does have
an effect, as shown in table ??, which shows running times
and average evaluations to solution for three of the above
examined configurations.

Table 2: Varying block size experiment results. Val-
ues in boldface are both the best and significantly
different.

Configuration Running time Evaluations
E64R64 62.10 11320
E16R64 50.20 8910
E64R16 62.50 11320

4.3 Database partitioning
To avoid having the same individual being evaluated twice,

most approaches partition the space, having every client ac-

113

cessing one, and just one, partition. However, in order to do
that, the number of clients must be known in advance, and
besides no client could be dropped or a part of the space
will be left without evaluation. So, as stated in the descrip-
tion of the algorithm (section ??), one of the choices we
made to partition the set of individuals in a decentralized
fashion was to select the individuals to evaluate based on a
random number. Every individual was assigned a random
number when created. When the client requests a block,
it generates a random number and it retrieves, at most, b
individuals sorted in ascending order and starting with the
one whose random key is the closest one generated. There
are then two reasons why the individuals actually retrieved
will be less than b: one, the number is very high and there
are not enough individuals whose random key is bigger than
the one generated, and second, there simply are not enough
individuals left. This is usually not a problem for the evalu-
ator, since the reproducer is faster, so the main reason will
be the first. However, we cannot simply reduce the range
for random numbers, since it would increase overlap among
retrieved blocks.

Is this really a problem? Yes, increasingly so with block
size, as shown in figure ??. The fact that around 60% of the

Figure 5: Percentage of block size actually retrieved
depending on block size, for evaluator block size
equal to 24, 48 and 96. All differences are signif-
icant.

b = 96 example are retrieved means that, on average, around
50 individuals are actually evaluated, and that before we
take into account conflicts. It does not make a lot of sense
to generate lots of requests to retrieve and evaluate just a few
individuals, so we made a small adjustment to the random
number range. Instead of using the whole random range
from 0 to 1, we took into account the relationship among
the block size b and the base population size p. Although
the available number of individuals to evaluate will usually
be larger, that will give us a rule of thumb of how many we

should expect to be available. The random number was then
generated uniformly in the range [0, 1 − b/p]. This might
have the effect of changing block size for evaluation conflicts,
but since the problem actually shows up when the block size
is bigger, in which case the number of evaluators is small or
even one, we might actually observe an improvement.

We tested this new strategy with the bigger block size,
and the results can be observed in figure ??, which shows
the running time of two different configurations with full
and reduced random range. There is very little difference

Figure 6: Boxplot of running time using the whole
range for random number generation (labeled Pre)
and with adjusted range. Other than that, configu-
rations pre- and post are the same: evaluator block
size 96 and reproducer block size equal to 24 (left)
and 48 (right).

when we change split a reproducer with block size =48 into
two different ones (differences, in fact, are not significant, it
only seems to make result more predictable), but there is a
significant difference when the random generation range is
changed, from an average 73.73s to 52.55, almost 30% im-
provement (E96R24; the other result is not mentioned since
it is not significantly different). The number of evaluations
follow exactly the same pattern: average number of evalua-
tions from 12180 to 9088, which means that the reduction in
running time comes actually from the improvement in the
number of evaluations needed to find the solution. Since
changing the random range is the only alteration, that must
be the reason, but what is the mechanism that creates this
improvement?

Once again, we look at the other measures in figure ??:
number of conflicts in the reproducer. Many conflicts indi-
cate that they are generating all over again the same indi-
viduals, probably due to the fact that the reproductive pool
they are using is the same (due to overlap when retrieving
it, or simply low turnout). This is what we see here: when

114

Figure 7: Boxplot of number of conflicts with full
random range (left) and range dependent on block
size (right). Difference is significant.

the evaluator random range is reduced, the average number
of reproductor’s conflict is reduced from 228.9 to 139.8, al-
most by 40%. A higher number of individuals evaluated in
every request means that the reproductive pool (from where
reproducers pick it) changes faster, leading to a lower num-
ber of conflicts, higher diversity and the lower number of
evaluations (and thus running time) we observe. In fact,
the change of block size retrieved is not so big (although
significant): the median improved from 0.5656 to 0.5223, a
mere 8%, but its cumulative effect was enough to improve
diversity and markedly improve the number of evaluations
needed and running time.

In fact, since increasing the evaluation block size seems
to have beneficial effects on the algorithm (at least with a
single evaluator), we could wonder what would happen if
we used a greedy evaluator that would retrieve all available
non-evaluated individuals and return them evaluated. We
tested that, with surprising results, shown in table ??. Both

Table 3: Fixed block size vs. greedy evaluator
Configuration Running time Evaluations
E96R64 49.5 ± 3 8891 ± 318
Greedy + R64 47 ± 4 10132 ± 786

experiments take pretty much the same time (difference not
significant), but the number of evaluations is much better
for the non-greedy strategy. From the purely computational
point of view, this means that the greedy strategy is sequen-
tially faster; but from the model point of view it results in a
worse algorithm. Besides, a greedy strategy is not compat-
ible with using several evaluators (any additional evaluator
would have, most of the time, nothing to evaluate) and is
less fault tolerant in that sense. The conclusion is here that
a fixed evaluator block size is better, although size matters

and if the number of evaluators is known in advance as big
a size as possible (keeping it under the base population size
is advisable).

5. CONCLUSIONS, DISCUSSION
AND FUTURE WORK

In this paper we have examined design choices in SofEA, a
pool-based distributed evolutionary implemented using CouchDB.
The impact of parameters such as the initial population,
the number of clients and the number of chromosomes pro-
cessed in each request, and how these chromosomes are se-
lected from the population are studied, measuring their ef-
fect on running time and number of evaluations, and, after
explaining the results obtained looking at implementation
measures such as the number of conflicts or the number of
chromosomes effectively processed, current choices for the
algorithm are shown and validated. The underlying result is
also that SofEA shows certain robustness across parameter
values, works asynchronously and can continue working even
if one of several clients stop doing it, since their operation
is independent of each other.

Some other results of this experiment is that adding eval-
uators brings better speed-ups than adding reproducers; one
with a proper block size is enough, and new reproducers do
not have an effect either on running or evaluation time. This
might point to a design flaw that will have be examined in
the future. Adding evaluators whose aggregated population
is smaller than the base population size usually speeds up
the experiment, provided block size it kept between certain
limits (not too small, not too big). Other than that, we
have proved that SofEA can offer the basis for an scalable
(using CouchDB replication), asynchronous, distributed and
fault-tolerant evolutionary algorithm system.

The experiments done here open a good amount of pos-
sibilities. The client type is decided beforehand; since the
clients are served from the database, some intelligence could
be added to it so that it is able to decide which clients
are needed the most, even during the execution of the algo-
rithm. If too many non-evaluated chromosomes are present,
an evaluator can be served; else, a reproducer. The type
of the client can even be changed in running time, and its
parametrization too. Even different algorithms could be run
in each one of them.

It would be interesting to test also the system with more
heavy-duty problems, such as MMDP or p-Peaks. These im-
ply a higher number of evaluations, but also a fitness func-
tion that takes longer to evaluate. Since it also needs a
bigger population (in the canonical GA case, at least; it will
depend, anyways, on the particular problem), we might over-
come some of the hurdles found in this paper and achieve
better speedups.

There is also some room for optimization of the CouchDB
server by reducing the number of heavy-duty requests. Even-
tually, we expect to achieve speeds for the single clients sys-
tem that are competitive with those achieved by a sequential
system. Other features of the system, such as the _changes

feed (a stream of all changes made to the database), could
be used to make the algorithm more reactive to changes in
the population, since this feed contains all changes made to
the database; this would also include the creation of clients
using node.js or other event-based systems.

115

Acknowledgments
This work is supported by projects NEMESIS (TIN2008-
05941) and TIN2011-28627-C04-02 and TIN2011-28627-C04-
01,awarded by the Spanish Ministry of Science and Inno-
vation and P08-TIC-03903 awarded by the Andalusian Re-
gional Government. We would like also to thank reviewers
for their helpful comments.

116

