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Abstract

Cartesian Genetic Programming (CGP) is an increasingly popular and efficient form of 

Genetic Programming that was developed by Julian Miller in 1999 and 2000.

In its classic form, it uses a very simple integer based genetic representation of a program in the form 

of a directed graph. Graphs are very useful program representations and can be applied to many 

domains (e.g. electronic circuits, neural networks). In a number of studies, CGP has been shown to 

be comparatively efficient to other GP techniques. It is also very simple to program.

Since then, the classical form of CGP has been developed made more efficient in various ways. 

Notably, by including automatically defined functions (modular CGP) and self-modification operators

(self-modifying CGP).  SMCGP was developed by Julian Miller, Simon Harding and Wolfgang Banzhaf. 

It uses functions that cause the evolved programs to change themselves as a function of time. 

Using this technique it is possible to find general solutions to classes of problems and 

mathematical algorithms (e.g. arbitrary parity, n-bit binary addition, sequences that provably compute pi 

and e to arbitrary precision, and so on).

The tutorial will cover the basic technique, advanced developments and applications to a variety 

of problem domains.
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�Classic CGP

�Modular CGP

�Self-modifying CGP

�Developmental CGP

�Cyclic CGP

�Applications

�Resources

�Bibliography

Contents
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Genetic Programming

�The automatic evolution of computer programs

• Tree-based, Koza 1992

• Stack-based, Perkis 1994, Spector 1996 onwards 

(push-pop GP)

• Linear GP, Nordin and Banzhaf  1996

• Cartesian GP, Miller 1997

• Parallel Distributed GP, Poli 1996

• Grammatical Evolution, Ryan 1998

• Lots of others…
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Origins of Cartesian Genetic 
Programming (CGP)

�Grew out of work in the evolution of digital 
circuits, Miller and Thomson 1997. First 
actual mention of the term Cartesian Genetic 
Programming appeared at GECCO in 1999.

�Originally, represents programs or circuits as 
a two dimensional grid of program 
primitives.

�This is loosely inspired by the architecture of 
digital circuits called FPGAs (field 
programmable gate arrays)

6

What defines CGP?

� The genotype is a list of integers (and possibly 
parameters)  that represent the program primitives and 
how they are connected together

• CGP represents programs as graphs in which there 
are non-coding genes

�The genes are
• Addresses in data (connection genes)

• Addresses in a look up table of functions

• Additional parameters

�This representation is very simple, flexible and 
convenient for many problems

7

CGP General form

m outputs

node

Note: Nodes in the same column are not allowed to be connected to each other

n inputs Levels-back

r rows

c columns

8

Allelic constraints for directed acyclic 
graphs

All function genes fi must takes allowed function 

alleles: 0  ≤ fi ≤ nf

Nodes connections Cij of a node in column j, and 

levels-back l, must obey (to retain directed acyclicity)

j ≥ l n + (j-l)r ≤ Cij  ≤ n + jr

j < l 0 ≤ Cij ≤ n + jr

Output genes (can connect to any previous node or 

input)

0  ≤ 0i ≤ n + cr -1 
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Types of graphs easily controlled

� Depending on rows, columns and levels-back a wide 
range of graphs can be generated

� When rows =1 and levels-back = columns arbitrary
directed graphs can be created with a maximum 
depth

• In general choosing these parameters imposes the least 
constraints. So without specialist knowledge this is the best 
and most general choice

10

CGP genotype

f0 C0 0 … C0 a … f (c+1)r C(c+1)r  0 … C(c+1)r a O1,…Om

Usually, all functions have as many inputs as the maximum

function arity

Unused connections are ignored

Output genes
function genes

Connection genes

11

Example

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4    2 5  4      2   5  7   3

Encoding of graph as a list of integers (i.e. the 

genotype)

12

Example: Function look up table

The function genes are the addresses in a user-defined 

lookup table of functions

0 +  Add the  data presented to inputs

1 - Subtract the  data presented to inputs

2 *  Multiply data presented to inputs

3 /  Divide data presented to inputs (protected)
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Obtaining the graph

0 0  1    1 0  0     1 3  1    2 0  1    0 4  4    2 5  4       2   5  7   3

Encoding of graph as a list of integers (i.e. the 

genotype)

14

So what does the graph 
represent?

15

What happened to the node whose 
output label is 6?

0 0  1    1 0  0     1 3  1    2 0  1    0  4  4 2 5  4       2   5  7   3

The node was not used so the genes are silent or non-coding

16

The CGP genotype-phenotype map

�When you decode a CGP genotype many 
nodes and their genes can be ignored because 
they are not referenced in the path from 
inputs to outputs

�These genes can be altered and make no 
difference to the phenotype, they are non-
coding

�Clearly there is a many-to-one genotype to 
phenotype map

�How redundant is the mapping?
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A mathematical aside: CGP and 
Stirling numbers

� Assume that a CGP graph has the following parameters

� Number of rows_= 1

� Levels-back = num_cols = n

� Arity of functions = 1

� There is one input

� Assume that the output is taken from the last node

The number of genotypes, G, that have a phenotype of size k(nodes) 

can be shown to obey a recurrence relation obeyed by unsigned 

Stirling numbers of the first kind.

G(n+1, k) = nG(n,k) + G(n, k-1)

18

How many genotypes of length n map 
to a phenotypes of length k?

k

n

13654645362244967284118124109584403209

12832219606759131321306850408

121175735162417647207

115852252741206

1103550245

161164

1323

112

11

987654321

Average number of active nodes in a genotype of length 9 is 2.83

Clearly, with say a genotype of 100 nodes, the number of genotypes that map 

to a phenotype with say about 10 nodes is an astronomical number

19

// L  = MaxGraph.Length

// I   = Number of program inputs

// N = Number of program outputs

bool ToEvaluate[L]

double NodeOutput[L+I]

int NodesUsed[M]

1

// identify initial nodes that need to be evaluated
p = 0

do

ToEvaluate[OutputGene[p]] = true

p = p + 1

while (p < N)

// determine nodes used

p = L-1

q=0

do

if (ToEvaluate[p])

x = Node[p].Connection1

y = Node[p].Connection2

ToEvaluate[x] = true  

ToEvaluate[y] = true

q=q+1

NodesUsed[q]=p;

endif

p = p - 1

while ( p >= 0)

2

// load input data values

p = 0

do

NodeOutput[p] = InputData[p]

p = p + 1

while (p < I)

3

//Execute graph
for  p = I to p < q+I

x = Node[NodesUsed[p]].Connection1 

y = Node[NodesUsed[p]].Connection2

z = Node[NodesUsed[p]].Function

NodeOutput[p] = ComputeNode(NodeOutput[x], NodeOutput[y],z)

endfor

4

Decoding CGP chromosomes is easy

20

Point mutation

� Most CGP implementations only use mutation. 

� Carrying out mutation is very simple. It consists of the 

following steps. The genes must be chosen to be valid alleles

//Decide how many genes to change:num_mutations

while (mutation_counter < num_mutations)

{

get gene to change

if (gene is a function gene)

change gene to randomly chosen new valid function

else if (gene is a connection gene)

change gene to a randomly chosen new valid connection

else

change gene to a new valid output connection

}
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Evolutionary Strategy

�CGP often uses a variant of a simple 
algorithm called (1 + 4) Evolutionary 
Strategy

• However, an offspring is always chosen if it is 
equally as fit or has better fitness than the parent

22

Crossover or not?

� Recombination doesn’t seem to add 
anything (Miller 1999, “An empirical 
study…”)

� However if there are multiple chromosomes 
with independent fitness assessment then it 
helps a LOT  (Walker, Miller, Cavill 2006, 
Walker, Völk, Smith, Miller, 2009)

� Some work using a floating point 
representation of CGP has suggested that 
crossover might be useful (Clegg, Walker, 
Miller 2007)

23

Silent mutations and their effects

Original

24

Silent mutations and their effects

No change in phenotype but it changes the 

programs accessible through subsequent 

mutational change

After silent 

mutation
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Non-silent mutations and their 
effects

Massive change in phenotype is 

possible through simple mutation

Original

26

Non-silent mutations and their 
effects

Massive change in 

phenotype is possible 

through simple mutation

After active 

mutation

27

Neutral search is fundamental to 
success of CGP

�A number of studies have been carried 

out to indicate the importance to 

neutral search 

• Miller and Thomson 2000, Vassilev and 

Miller 2000, Yu and Miller 2001, Miller 

and Smith 2006)

28

Neutral search and the three bit multiplier problem 
(Vassilev and Miller 2000)

Importance of neutral search 

can be demonstrated by 

looking at the success rate in 

evolving a correct three-bit 

digital parallel multiplier 

circuit.

Graph shows final fitness 

obtained in each of 100 runs of 

10 million generations with 

neutral mutations enabled 

compared with disabled neutral 

mutations.
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In CGP, large genotypes and small mutation evolve 
solutions to problems more quickly [Miller and Smith 

2006]

Two-bit multiplier with gate set 

{AND,  OR, NAND, NOR}.

Even 3 parity with gate set 

{AND,  OR, NAND, NOR}.

•However big genotypes does NOT mean big phenotypes 

(programs)….

30

Phenotype length versus genotype length 
(two-bit multiplier)

SEARCH MOST EFFECTIVE 

WHEN 95% OF ALL GENES ARE 

INACTIVE!!

NO BLOAT

Average proportion of active nodes in 

genotype at the conclusion of 

evolutionary run for all mutation rates 

versus genotype length

Average phenotype length for the 

initial  population contrasted with 

the average phenotype length at 

conclusion of evolutionary run 

versus genotype length with 1% 

mutation 

31

Modular/Embedded CGP (Walker, Miller 2004)

� So far have described a form of CGP (classic) that 

does not have an equivalent of Automatically 

Defined Functions (ADFs)

� Modular CGP allows the use of modules (ADFs)

• Modules are dynamically created and destroyed

• Modules can be evolved

• Modules can be re-used

34

Representation Modification 1

�Each gene encoded by two integers in M-

CGP

• Function/module number and node type

• Node index and node output 

– nodes can have multiple outputs
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Representation Modification 2

� M-CGP has a bounded variable length genotype

• Compression and expansion of modules

– Increases/decreases the number of nodes

• Varying number of module inputs

– Increases/decreases the number of genes in a node

36

Modules
� Same characteristics as M-

CGP

• Bounded variable length 

genotype

• Bounded variable length 

phenotype

� Modules also contain 
inactive genes as in CGP

� Modules can not contain 
other modules!

37

Node Types

�Three node types:

• Type 0

– Primitive function

• Type I 

– Module created by compress operator

• Type II 

– Module replicated by genotype point-mutation

�Control excessive code growth

• Genotype can return to original length at any 

time

38

Creating and Destroying a Module

� Created by the compress operator
• Randomly acquires sections of the genotype into a module

– Sections must ONLY contain type 0 nodes

� Destroyed by the expand operator

• Converts a random type I module back into a section of the
genotype
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Module Survival

�Twice the probability of a module being 

destroyed than created

�Modules have to replicate to improve their 

chance of survival

• Lower probability of being removed

�Modules must also be associated with a high 

fitness genotype in order to survive

• Offspring inherit the modules of the fittest parent

40

Evolving a Module I

�Structural mutation

• Add input

• Remove input

• Add output

• Remove output

41

Evolving a Module II

�Module point-

mutation operator

• Restricted version of 

genotype point-

mutation operator

– Uses only primitive 

functions

42

Re-using a Module

� Genotype point-mutation operator

• Modified CGP point-mutation operator

� Allows modules to replicate in the genotype

• Primitive (type 0)  � module (type II)

• Module (type II)  � module (type II)

• Module (type II)  � primitive (type 0)

� Does NOT allow type I modules to be mutated into 
primitives (type 0) or other modules (type II)

• Type I modules can only be destroyed by 
Expand (and are only created by Compress)
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Experimental parameters

� NOTES: ◊ these parameters only apply to Modular 
(Embedded) CGP

� Results heavily dependent on the maximum number of 
nodes allowed. Much better results are obtained when 
larger genotype lengths are used.

44

Even Parity Results
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Digital Multiplier

� Two digital multiplier problems:

• 2-bit and 3-bit

� Function set:

• AND, AND (one input inverted), 
XOR, OR

� Fitness Function:
• Number of phenotype output bits that 

differ from the perfect n-bit digital 
multiplier solution

• Perfect solution has a fitness of zero

� Results are averaged over fifty 
independent runs

ha

a b

z

2x1

ha

c

y

d

2x1

x
w
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Multiplier Results

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

2-bit 3-bit

Multiplier

C
E

CGP M-CGP(5)

0

10,000

20,000

30,000

40,000

50,000

60,000

2-bit

1103



47

Symbolic Regression

� Two problems:
� x6 - 2x4 + x2

� x5 - 2x3 + x

� Function set:
� +, -, *, / (protected)

� Fitness Function:
� Absolute error over all fifty points in the input set

� Solution found when absolute error is within 0.01 of each 
point

� Results averaged over fifty independent runs

*

-

x

1

*

*

Out
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Symbolic Regression Results
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Self-modifying Cartesian 
Genetic programming

�A developmental form of Cartesian 

Genetic Programming (CGP)

• Includes self modification functions.

• ‘General purpose’ GP system 

• Phenotype can vary over time (with 

iteration)

• Can switch off its own self-modification

50

Changes to CGP: relative addressing

�Replaced direct node addressing 

with relative addressing

• Always use 1 row (not rectangular)

• Connection genes say how many 

nodes back

0

1

2

3

1

5

2

4

3

6

0
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Changes to CGP: Inputs

�Replace input calls with a function.

• We call these functions INP, INPP, SKIPINP

�Pointer keeps track of ‘current input’.

• Call to INP returns the current input, and moves 

the pointer to the next input.

�Connections beyond graph are assigned 

value 0.
52

�Removed output nodes. 

�Genotype specifies which nodes are 

outputs.

�If no OUTPUT function then last active 

node is used

• Other defaults are used in situations where the 

number of outputs does not match the number 

required

Changes to CGP: Outputs

53

�Nodes also contain a number of 

‘arguments’.

• 3 floating point numbers

• Used in various self-modification 

instructions

• Cast to integers when required

Changes to CGP: Arguments

54

SMCGP Nodes: summary

�Each node contains:

• Function type

• Connections as relative addresses

• 3 floating point numbers
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SMCGP: Functions

�Two types of functions:

• Computational

– Usual GP computational functions

• Self-modifying

– Passive computational role (see later)

56

Some Self-Modification Functions

Operator Parameters: 

use node address and the 

three node arguments

Function

MOVE Start, End, Insert Moves each of the nodes between 

Start and End into the position 

specified by Insert

DUP Start, End, Insert Inserts copies of the nodes 

between Start and End into the 

position specified by Insert 

DELETE Start, End Deletes the nodes between Start 

and End indexes

CHF Node, New Function Changes the function of a 

specified node to the specified 

function

CHC Node, Connection1, 

Connection2

Changes the connections in the 

specified node

57

SMCGP Execution

�Important first step:

• Genotype is duplicated to phenotype.

• Phenotypes are executed:

� Self modifications are only made to the 

phenotype.

58

Self Modification Process: The To 
Do list

�Programs are iterated.

�If triggered, self modification instruction 

is added to a To Do list.

�At the end of each iteration, the 

instructions on this list are processed.

�The maximum size of the To Do list can 

be predetermined
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Computation of a SM node

�Functions are appended to the To Do list 

if:

• The first input > the second input.

�And:

• The To Do list isn’t too big.

60

Publications using SMCGP

�General Parity Problem (CEC 2009)

�Mathematical Problems (EuroGP 2009, GECCO 2007)

�Learning to Learn (GECCO 2009)

�Generating Arbitrary Sequences (GECCO 2007)

�Computing the mathematical constants 

pi and e (GECCO 2010 in GDS track)

�General adder and many other problems 
(GPEM Tenth Anniversary Special Issue, 2010)

Authors: Harding, Miller, Banzhaf

61

Evolving Parity

�Each iteration of program should produce the 

next parity circuit.

• On the first iteration the program has to solve 2 bit 

parity. On the next iteration, 3 bit ... up to 22 parity

• Fitness is the cumulative sum of incorrect bits

�Aim to find general solution

• Solutions can be proved to general

– See GPEM 2010 paper

�CGP or GP cannot solve this problem as they 

have a finite set of inputs (terminals)

62

Parity results: SMCGP versus CGP and 
ECGP
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Scaling behaviour of SMCGP

64

Evolving pi 

�Iterate a maximum of 10 times

�If program output does not get closer to pi at the 

next iteration, the program is stopped and large 

fitness penalty applied

�Fitness at iteration, i,  is absolute difference of 

output at iteration i and pi

�One input:  the numeric constant 1.

65

Evolving pi: an evolved solution

�An evolved solution

�f(10) is correct to the first 2048 digits of pi

�It can be proved that f(i) rapidly converges to 

pi in the limit as i tends to infinity

66

Further results

�Other mathematically provable results found 
so far:
• Evolved a program that can carry out the bitwise 

addition of an arbitrary number of inputs

• Evolved a sequence that converges to e

�Other results
• Evolved a sequence function that generates the 

first 10 Fibonacci numbers

• Evolved a power function x n

• Bioinformatics classification problem (finite 
inputs)

– SMCGP performed no worse than CGP
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Two dimensional SMCGP (SMCGP2)

Active nodes

output node

�SMCGP2: genes

• Function

• Connections

• Numeric Constant

�Arguments are now 

2 D vectors

• SM size (SMS)

• SM location (SML)

68

SMCGP2: Vector relative addressing and 
Empty nodes

� There are empty nodes are 

represented by X

� The relative address from C to B 

is (2, 1)

• meaning 2 nodes to the left, and one 

node up.

� The relative  address of C to A is 

(4,1). 

� Note how the empty nodes are 

not counted when computing 

how many nodes back to 

connect.

69

SMCGP2: Self Modifying Functions

�Simplified SM function set

• Duplicate section, insert elsewhere.

• Duplicate section, overwrite elsewhere.

• Crop to a section.

• Delete a section.

• Add a row or column.

• Delete a row or column.

• NULL

70

SMCGP2: Solving even-n parity

Time

n = 2 n = 3 n = 4 n = 5

n = 12
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SMCGP:Some observations

�In SMCGP there are implicit

• Loops

• Recursion

• Modules/functions

• Halting (telomeres)

�Also have “partial” loops/recursion

73

Multi-type CGP (MT-CGP)

� Genotype pretty much classic CGP

• Genotype is a (partly connected, feed-forward) graph

• Graph is a list of nodes

– Each node contains:

- Function (from a function set)

- Two connections (to other nodes)

- real number (to use for parameters)

� Handles multiple data types

• So far: reals and vectors

� Adds lots of functionality

• Domain knowledge

� See GECCO2012 paper for more details

74

MT-CGP: Example

75

MT-CGP

�Has a big function set

�Trying to incorporate domain knowledge

• Easy to add new functions to help with a 

particular problem

�Functions deal with multiple data types

• Functions are overloaded 

• Attempts are made at human readable consistency
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Evolving Image Filters with CGP

�Detecting/locating objects with the iCub

cameras

�We do this by evolving image filters that take 

a camera image, and return only the objects 

we are looking for.

Input Target

Evolved

filter

77

Grey

Red

Green

Blue

Hue

Saturation

Luminosity

Image from camera

Split colour image is used as inputs

Evolved

filter

Input data 

78

1 23 OUTINP INP INP

3

-1

-2

4.3

Function

Connection 1

Connection 2

A real number

Genotype representation (like SMCGP 
but no SM functions)

79

NOP LOG TRIANGLES

INP MAX LINES

INPP MIN SHIFTDOWN

SKIP EQ SHIFTUP

ADD GAMMA SHIFTLEFT

SUB GAUSS SHIFTRIGHT

CONST SOBELX SIFTa

MUL SOBELY GABOR

ADDC AVG NORMALIZE

SUBC UNSHARPEN RESCALE

MULC THRESHOLD GRABCUT

ABSDIFF THRESHOLDBW MINVALUE

CANNY SMOOTHMEDIAN MAXVALUE

DILATE GOODFEATURESTOTRACK AVGVALUE

ERODE SQUARES RESCALE

LAPLACE CIRCLES RESIZETHENGABOR

Large Function Set

1111



80

•Fitness = sum of mean square error of pixel values 

between  each input/target

Fitness

81

Evolved Filter code

82

Output

Inputs

Evolved Filter 
Dataflow

83

Things we can do already:

�Generate different filters for other 
objects.

�Find fast running filters.

�Find them quickly.

�Show that filters are robust.

�Transfer code from offline learning 
to yarp module.

• Software emits C# and C++ code

• Running on Windows/Linux/Mac.
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Tea-box filter: demonstration

85

CGP encoded Artificial Neural 
Networks (CGPANN)

� CGP has been used to encode both feed-forward ANNs and 
recursive ANNs. The nodes genes consist of:
• Connection genes (as usual)

• Function genes (two)
– Sigmoid, hyperbolic tangent

• Weights
– Each connection gene carries a real-numbered weight

• Switch genes
– Binary genes that switch off or on the connection

� Applied to Markovian and non-Markovian single and double 
pole-balancing problems
• Shown to outperform all previously published topology and weights 

altering evolutionary ANNS (TWEANNs) (Khan, Khan and Miller 
2010)

� Breast cancer detection (see GECCO 2012 proceedings)

86

Cyclic CGP

�When outputs are allowed to connect to 

inputs through a clocked delay (flip-flop) it is 

possible to allow CGP to include feedback.

�By feeding back outputs generated by CGP to 

an input, it is possible to get CGP to generate 

sequences

• In this way iteration is possible

�There are a couple of recent publications 

using recursion or iteration in CGP (Khan, 

Khan and Miller 2010, Walker, Liu, 

Tempesti,Tyrrell 2010)
87

Applications of CGP
� Digital Circuit Design

• ALU, parallel multipliers, digital filters, analogue circuits

� Mathematical functions
• Prime generating polynomials

� Control systems
• Maintaining control with faulty sensors, helicopter control, general 

control, simulated robot controller

� Image processing
• Image filters

• Mammary Tumour classification

� Bio-informatics
• Molecular Post-docking filters

� Artificial Neural Networks

� Developmental Neural Architectures
• Wumpus world, checkers, maze solving

� Evolutionary Art

� Artificial Life
• Regenerating ‘organisms’

� Optimization problems
• Applying CGP to solve GA problems
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CGP Resources

� Home site:

http://www.cartesiangp.co.uk

� Julian Miller: C implementations of CGP and 
SMCGP available at

http://www.cartesiangp.co.uk

� Simon Harding

http://www.evolutioninmaterio.com

� David Oranchak has implemented CGP in Java. 
Documentation is available at

http://oranchak.com/cgp/doc/

� Cartesian Genetic Programming book
• Published in 2011 by Springer

89

Conclusions

� Cartesian Genetic Programming is a graph based GP 
method capable of representing many computational 
structures

• programs, circuits, neural networks, systems of 
equations…

� Genetic encoding is compact, simple and easy to 
implement and can handle multiple outputs easily.

� The unique form of genetic redundancy in CGP 
makes mutational search highly effective

� The effectiveness of CGP has been compared with 
many other GP methods and it is very competitive

90
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