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Organisation of the tutorial
 General scope (P. Collet)

 GPGPU Super-computers
 Clusters of GPGPU machines

 GPU Programming 101 (S. Harding)
 Programming model
 CUDA 101
 Alternatives to Cuda

 EASEA platform (P. Collet)
 Benchmarks and real problems
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Pierre Collet Simon Harding

Evolution of clock speed

3

Solution for more 
powerful CPUs:
multi-core CPUs

Peak at 3.6 GHz
in 2005

Going faster ?

AMD Phenom II X4 940 BE running at 6Ghz
in a bath of liquid nitrogen at -195°C... Pierre Collet Simon Harding

Moore's Law

 Doubling of transistor density every 2 years.

 Will hold until 2029 according to Pat Gelsinger (Intel)

4
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GPUs are coming fast
 One slide presented at SC’10 by Bland (Oak Ridge):

5
http://computing.ornl.gov/SC10/documents/SC10_Booth_Talk_Bland.pdf

Pierre Collet Simon Harding

Future computers will be massively parallel

 In Nov 2007, the fastest machine was 500 Tflops (212,992 PowerPC 440 

cores clocked at 700MHz).
 In Oct 2010, Tianhe-1a is capable of 2.5 Pflops. It is composed of 112 

computer cabinets, 12 storage cabinets, 6 communications cabinets, and 
8 I/O cabinets, for a total of  3,584 blades, containing 14,336 2.93GHz 
CPUs and 3 million 575MHz GPU cores.

 March 2011: Oak Ridge National Lab launches TITAN, a 20 Pflop
machine based on NVIDIA GPU cards.

 Exaflop machines are predicted to appear by 2020, and Zetaflop
machines by 2030.

6

Question : how do you parallelize programs to efficiently 
use such machines ?

Pierre Collet Simon Harding

EC and massive parallelism
 Evolutionary Algorithms are generic optimization methods

that are intrinsically parallel.
 They can exploit ANY kind of parallelism (SIMD, SPMD, 

MIMD, …)
 EA parallelism scales well (possibly supralinear speedup !)
 Perfect paradigm for Peta and Exascale computing, 

provided one can handle 4 levels of parallelism:
 Massive parallelism on one GPU card
 Parallelizing over several GPU cards
 Parallelizing over several GPU machines
 Parallelizing over several clusters of GPU machines

7 Pierre Collet Simon Harding

GPU PROGRAMMING 101
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Getting started

 We need to learn a bit about the hardware
 Which in turn teaches us something about the software 

engineering approaches
 Which in turn leads on to programming GPUs

Pierre Collet Simon Harding

Coming up

 We will primarily look at CUDA
 But will also mention some alternatives:

 Shaders
 Products from GASS, Tidepowrd and Microsoft
 OpenCL

Pierre Collet Simon Harding

GPU Memory

PCI-E bus interface

Device

Host
Pierre Collet Simon Harding

GPU Memory

Multiprocessor Shared 
memory

Thread processors
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Nvidia 480:
•15 multiprocessors
•32 cores per multiprocessor
•480 cores in total
•64Kb Shared memory per multiprocessor
•1.5Gb Global memory

Can you add throughput (bandwidth) ?

Pierre Collet Simon Harding

What is CUDA?

 C/C++ based language for GPGPU programming

 From Nvidia

 Only works on their graphics cards

 But it’s really common in the field...

Pierre Collet Simon Harding

Programming model

 It’s all about threads
 Thousands of threads are OK
 Thread is also called a kernel

 Each core runs a thread
 Threads are bundled together in blocks
 Blocks are bundled together in grids

Pierre Collet Simon Harding

Programming model

 Each thread can see the local memory of that processor 
core

 Threads within a block see the same shared memory

 Between blocks, there is the global memory
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Programming model

 Each thread can calculate an ID using predefined variables 
available in the kernel:
 gridDim : Dimensions of the grid in blocks
 blockDim : Dimensions of the block in threads
 blockIdx : Block index within the grid
 threadIdx : Thread index within the block

 Dimensions are defined when the kernels are launched.

Pierre Collet Simon Harding

CUDA 101

 Let’s write a program to add two vectors of numbers 
together

 E.g.  [0,1,2,3,4] + [5,6,7,8,9] = [5,7,9,11,13]

 Do this in parallel
 Each thread will deal with one index in the vectors

Pierre Collet Simon Harding

CUDA 101

_global__ void add( int *a, int *b, int *c )

CUDA threads don’t 
return this way

Means it runs on the 
device, and can be 
called from the host

We’ll pass pointers 
to 2 arrays to add 
together – and a 
pointer of where to 
store the results.

Pierre Collet Simon Harding

CUDA 101

__global__ void add( int *a, int *b, int *c ) 
{
int index = 

threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];
}
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CUDA 101

 Now we need to get this running...

 Let’s write a main method

Pierre Collet Simon Harding

CUDA 101

int main( void ) 
{

return 0;
}

Pierre Collet Simon Harding

CUDA 101
int main( void ) 
{
int DataLength = 2048 * 2048;

int DataSize = DataLength * sizeof(int) ;
int *a, *b, *c; //Pointers for HOST SIDE DATA

a = (int*)malloc(DataSize); 
b = (int*)malloc(DataSize);
c = (int*)malloc(DataSize);        

//Put some numbers in a and b

Pierre Collet Simon Harding

CUDA 101

// Pointers to the device side data
int *dev_a, *dev_b, *dev_c; 

cudaMalloc( (void**)&dev_a, DataSize );
cudaMalloc( (void**)&dev_b, DataSize );
cudaMalloc( (void**)&dev_c, DataSize );

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);
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CUDA 101

int ThreadsPerBlock = 512;
int NumberOfBlocks = DataLength / ThreadsPerBlock;

add<<<NumberOfBlocks, ThreadsPerBlock>>>
(
dev_a, dev_b, 

dev_c
);

Pierre Collet Simon Harding

CUDA 101

//Get the results back from GPU memory
cudaMemcpy(

c, 
dev_c, 
DataSize, 
cudaMemcpyDeviceToHost
);

Pierre Collet Simon Harding

CUDA 101

//Tidy up
free( a ); 
free( b ); 
free( c );
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_c );

//Exit!
return 0;
}

Pierre Collet Simon Harding

Another CUDA example

 Dot product
 Takes two vectors, returns one value (reduction!)

 Will demonstrate how to synchronise threads, use shared 
memory and how to avoid a nasty race condition
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Another CUDA example

//Define the data size 
#define N  (2048*2048)

//Define the block size
#define THREADS_PER_BLOCK 512

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot( int *a, int *b, int *c ) 
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 

if( 0 == threadIdx.x ) {
int sum = 0;
for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];
atomicAdd( c , sum );

}
}

Pierre Collet Simon Harding

Another CUDA example

__global__ void dot( int *a, int *b, int *c ) 
{
__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 

if( 0 == threadIdx.x ) {
int sum = 0;
for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];
atomicAdd( c , sum );

}
}

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot( int *a, int *b, int *c ) 
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 
if( 0 == threadIdx.x ) {

int sum = 0;
for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];
atomicAdd( c , sum );

}
}
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Another CUDA example
__global__ void dot( int *a, int *b, int *c ) 
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 

if( 0 == threadIdx.x ) {
int sum = 0;
for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];
atomicAdd( c , sum );

}
}

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot( int *a, int *b, int *c ) 
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads(); 

if( 0 == threadIdx.x ) {
int sum = 0;
for( int i = 0; i < THREADS_PER_BLOCK; i++ )

sum += temp[i];

atomicAdd( c , sum );
}

}

Pierre Collet Simon Harding

Why atomicAdd?

 Why not c+=sum?
 c+=sum is not safe – race conditions

 Read value at c
 Read value of sum
 Write new value back to c

 With many things happening at once, the values could be 
corrupted.

 atomicAdd solves this.

Pierre Collet Simon Harding

CUDA

 This tutorial only provides the real basics.

 Lots more to learn
 Especially if you want highly optimized CUDA

 Lots of resources on line:
 Google is your friend here.
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Using CUDA from elsewhere

 If you have existing code you want to leverage
 Especially in Java, .net, Python

 Or you just hate programming in C
 Memory management!

 Wrappers maybe the way forward!

Pierre Collet Simon Harding

According to wikipedia

 There are MANY options:

Pierre Collet Simon Harding

Quick note!

 Nvidia also supply BLAS and FFT libraries

 These are also wrapped in other languages
 And in fact can be very easy to use from other languages.

import numpy from pycublas import CUBLASMatrix
A = CUBLASMatrix( numpy.mat([[1,2,3],[4,5,6]],numpy.float32) ) 
B = CUBLASMatrix( numpy.mat([[2,3],[4,5],[6,7]],numpy.float32) 
C = A*B print C.np_mat()  
(code from Wikipedia)

Pierre Collet Simon Harding

pyCuda
mod = comp.SourceModule(""" 

__global__ void multiply_them(float *dest, float *a, float 
*b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; } 

""") 

multiply_them = mod.get_function("multiply_them") 
a = numpy.random.randn(400).astype(numpy.float32) 
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a) 
multiply_them(drv.Out(dest), drv.In(a), drv.In(b), 

block=(400,1,1)) 
print dest-a*b
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pyCuda

 http://mathema.tician.de/software/pycuda

Pierre Collet Simon Harding

GASS CUDA.NET

http://www.hoopoe-
cloud.com/Solutions/CUDA.NET/

 For .net / mono
 Wraps up calls to .cubin files

 i.e. Can load and run functions from precompiled 
CUDA kernels

 Has been used for GP

Pierre Collet Simon Harding

jCuda

http://www.jcuda.de/

 Java wrapper
 Again wraps up calling of CUDA functions
 Lots of examples, well supported

Pierre Collet Simon Harding

Don’t like the look of CUDA?

 What else is there that has been used in the EA community 
and elsewhere?
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Cg

 C for graphics
 http://developer.nvidia.com/page/cg_main.html
 Pretty much obsolete technology
 See paper “A Data Parallel Approach to Genetic 

Programming using Programmable Graphics Hardware”
by Darren Chitty

Pierre Collet Simon Harding

Cg – D. Chitty

Pierre Collet Simon Harding

Cg – D. Chitty

Pierre Collet Simon Harding

RapidMind

 Obslete
 Company bought up by Intel
 Seems to have moved to new product : Array Building 

Blocks
 http://software.intel.com/en-us/articles/intel-array-

building-blocks/
 See “A SIMD Interpreter For Genetic Programming on 

Graphics Cards” by W. Langdon and W. Banzhaf

1128



Pierre Collet Simon Harding

Shader programming

 As the name suggests, this is really about graphics
 But it is possible to abuse for computations
 See “Linear Genetic Programming GPGPU on Microsoft’s 

Xbox 360” by G. Wilson and W. Banzhaf for an example 
using HLSL

Pierre Collet Simon Harding

MS Accelerator

 Research platform 
 http://research.microsoft.com/en-us/projects/accelerator/
 .net library for vector maths
 See “Fast Genetic Programming & Developmental 

Systems” by S. Harding and W.Banzhaf

Pierre Collet Simon Harding

MS Accelerator

Pierre Collet Simon Harding

GPU.NET

 Commercial product from TidePowerd
 http://www.tidepowerd.com/
 Converts compiled .net code to device code
 See new paper tomorrow in the CIGPU session : 

“Implementing Cartesian Genetic Programming Classifiers
on Graphics Processing Units using GPU.NET” by S. 
Harding and W. Banzhaf
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GPU.Net

Pierre Collet Simon Harding

GPU.Net

Pierre Collet Simon Harding

OpenCL

 http://www.khronos.org/opencl/
 Open standard for GPU and parallel programming

 Multivendor
 Diverse hardware (CPU, FPGA, GPU etc)

 See competition entry “CUDA and OpenCL-based 
asynchronous PSO” by Y. Nashed et al.

Pierre Collet Simon Harding

OpenCL

 Still relatively unexplored by the community
 Wrappers exist for access from other languages
 Other tech uses it. See WebCL

1130



Pierre Collet Simon Harding

OpenCL

http://opencl.codeplex.com/wikipage?title=OpenCL%20T

Pierre Collet Simon Harding

What does the future hold?

 Who knows?

 Hardware: Intel multiple cores, AMD’s APUs

 Software: TPL, New updates to CUDA, OpenCL

Pierre Collet Simon Harding

Different kinds and levels of parallelism

 Low-level massive parallelism: 
 GeForce GTX 580 contains 512 cores running in an 

SPMD model :
– One single program (one context).
– Cores grouped by 32, running in SIMD mode, but different

bundles can run on different parts of the code.

 Several cards in one machine : MIMD model.
 High-level parallelism:

 Several machines together (cluster of machines).
 Several clusters together.

59 Pierre Collet Simon Harding

EASEA: an evolutionary platform for massive parallel machines

 First version of EASEA (EAsy Specification of Evolutionary
Algorithms) presented ad EA'99

 2000-2003: EASEA is the programming language of the 
DREAM (Distributed Resource Evolutionary Algorithm
Machine).

 2008- EASEA is an evolutionary platform to automatically
parallelize evolutionary algorithms on 4 levels of parallelism:
 parallelization on one GPU card,
 parallelization on several GPU cards,
 parallelization on several heterogeneous machines
 parallelization on several heterogeneous clusters of GPU machines.

 2012 EASEA will run on the French Grid
60
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Low-level massive parallelism (GPU card)
 EASEA generic parallelization over GPU cards.

61

Parents+chil
dren

Parents+Parents+chilchil
drendren

Pierre Collet Simon Harding

3 cards in the same PC = x3 speedup !
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EASEA : a language that can handle GPGPUs

 EASEA stands for Easy Specification of Evolutionary
Algorithm.

 In order to code an evolutionary algorithm in EASEA, the user 
only needs to write (in C) the application-specific code, i.e. :
 Initialisation function (how to initialise the genome)
 Evaluation function (dependent on the problem)
 Crossover operator (how to recombine 2 genomes)
 Mutation operator (how to mutate the genome).

*EASEA is available on Sourceforge: http://sourceforge.net/projects/easea/
Pierre Collet Simon Harding 64

Weierstrass initialisation and evaluation code
\GenomeClass::initialiser :
for(int i=0; i<N; i++) {

Genome.x[i] = random((float)-1,(float)1);
}

\GenomeClass::evaluator : 
float res = 0.;
float val[N];
for (int i = 0;i<N; i++) {
val[i] = 0.;
for (int k=0;k<ITER;k++) 

val[i] += pow(2.,-k*.25) 
*sin(pow(2.,k)*Genome.x[i]);

res += Abs(val[i]);
}
return (res);
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Weierstrass crossover and mutation code
\GenomeClass::crossover :

for (int i=0; i<N; i++) {
float alpha = random(0.,1.);
child->Genome.x[i] = alpha*parent1->Genome.x[i]

+(1.-alpha)*parent2->Genome.x[i];
}

\GenomeClass::mutator :
for (int i=0; i<N; i++) 

if (tossCoin(pMutPerGene)){
Genome.x[i]+=SIGMA*random((float)0,(float)1);
Genome.x[i]=MAX(X_MIN,MIN(X_MAX,Genome.x[i]));

}

Pierre Collet Simon Harding 66

Evolutionary Algorithm parameters

 Standard EA parameters need to be provided:
\Default run parameters :
Number of generations : 100
Mutation probability : 1
Crossover probability : 1
Population size : 20000
Genitors selector: Tournament 7
Offspring size : 100%
Competing Parents : 50%
Parents reduce : Deterministic
Final reduce: Deterministic
Elitism : On 
Evaluator goal : Minimise  

Pierre Collet Simon Harding 67

EASEA compilation and execution

 Then, typing:
$ easea weierstrass -cuda

on the command line will create C++ code for the evolutionary
algorithm, and parallelized C code for the CUDA sdk.

 A makefile is automatically generated, so simply typing:
$ make

will compile for the GPGPU.
 Then, typing:

$ ./weierstrass
will launch the optimisation of the Weierstrass function on the CPU, 

with parallel evaluations on the GPGPU card
 Thanks to CUDA, all GPGPU NVIDIA cards are supported.

Pierre Collet Simon Harding

Island model parallelisation

68
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Island parallelism

69 Pierre Collet Simon Harding

High-level massive parallelism (island model)

70

Pierre Collet Simon Harding

Many PF machines for Exascale Computing ?

71 Pierre Collet Simon Harding

Benchmark for the island model: Rastrigin

72
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Island model speedup on Rastrigin-1000

73

20 machines 10 machines 5 machines 1 machine

Linear speedup with the number of machines

Pierre Collet Simon Harding

Weierstrass function (h=0.35, 2 dimensions)

74

Pierre Collet Simon Harding

GTX275 vs Core i7 950 speedup

 GPU/CPU speedup on 1000 dimensions Weierstrass h=0.35.

75 Pierre Collet Simon Harding

Island model on Weierstrass h=0.35 1000 dim

76
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Island model speedup on Weierstrass h=0.35

77

 Linear speedup until value 525, 
where one machine only stalls in a 
local optimum (average over 20 
runs).

 Beyond, the island model brings
supra-linear speedup, but still in a 
linear way (on value 425, speedup of 
22 for 5 machines,  45 for 10 
machines, 82 for 20 machines)

 Impossible to find values under 425 
with one machine only while this is
reached in 10 mn on 20 machines.

 For value 425, the actual speedup
obtained with 20 machines over a 
single core of core i7-950 is
160x80=12800 ! 1 day = 35 years !

Pierre Collet Simon Harding

Combining LL and HL massive parallelism

 Zeolite hunt:
 Zeolites are porous crystalline structures

with many applications in industry
made of oxygen atoms around
a silicon or aluminium atom.

 A replication of the unit
structure allows to obtain
the pores.

 Zeolites are used for filtering, catalysis, energy storing,  
medicine, absorbing liquids, odours (cat litter), …

78

Pierre Collet Simon Harding

GPU speedup on zeolite problem: ~120

79 Pierre Collet Simon Harding

GPU Islands speedup on zeolite problem

 1, 5, 10 and 20 GPU machines

80

Submission to
Science !
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EC is ready for EC !

 EC is a generic massively parallel optimization method that
can exploit peta and exascale computing.

 Not rocket science anymore: EASEA regularly runs on 20 
machines with 256 cores = 5000 cores on many different
problems (cf. Zeolite problem)

 Developments: new algorithms must be coined for HUGE 
populations (100K to 1M individuals on one island).

 New practices must be developed (increasing mutation, dealing
with heterogeneous machines, ALPS-like algorithms, …)

 Current problem: finding large enough problems to get such
machines to heat up.

81 Pierre Collet Simon Harding

More GPU at GECCO

 Tomorrow:
 CIGPU - Computational Intelligence using Consumer 

Hardware
 Thursday:

 Parallel Evolutionary Systems
 Friday:

 GPU Competition

82

Pierre Collet Simon Harding

EA,GPU elsewhere

83 Pierre Collet Simon Harding

This work has been sponsored by…

Massively Parallel EC on GPGPUs 84
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