
Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07. 1

Evolutionary Computation With GPUs

Pierre Collet

SONIC
Stochastic Optimisation and
Nature Inspired Computing

BFO – LSIIT
Université De Strasbourg

pierre.collet@unistra.fr

Simon Harding

IDSIA
SUPSI, USI

Lugano, Switzerland

Pierre Collet Simon Harding

Organisation of the tutorial
 General scope (P. Collet)

 GPGPU Super-computers
 Clusters of GPGPU machines

 GPU Programming 101 (S. Harding)
 Programming model
 CUDA 101
 Alternatives to Cuda

 EASEA platform (P. Collet)
 Benchmarks and real problems

2

Pierre Collet Simon Harding

Evolution of clock speed

3

Solution for more
powerful CPUs:
multi-core CPUs

Peak at 3.6 GHz
in 2005

Going faster ?

AMD Phenom II X4 940 BE running at 6Ghz
in a bath of liquid nitrogen at -195°C... Pierre Collet Simon Harding

Moore's Law

 Doubling of transistor density every 2 years.

 Will hold until 2029 according to Pat Gelsinger (Intel)

4

1117

Pierre Collet Simon Harding

GPUs are coming fast
 One slide presented at SC’10 by Bland (Oak Ridge):

5
http://computing.ornl.gov/SC10/documents/SC10_Booth_Talk_Bland.pdf

Pierre Collet Simon Harding

Future computers will be massively parallel

 In Nov 2007, the fastest machine was 500 Tflops (212,992 PowerPC 440

cores clocked at 700MHz).
 In Oct 2010, Tianhe-1a is capable of 2.5 Pflops. It is composed of 112

computer cabinets, 12 storage cabinets, 6 communications cabinets, and
8 I/O cabinets, for a total of 3,584 blades, containing 14,336 2.93GHz
CPUs and 3 million 575MHz GPU cores.

 March 2011: Oak Ridge National Lab launches TITAN, a 20 Pflop
machine based on NVIDIA GPU cards.

 Exaflop machines are predicted to appear by 2020, and Zetaflop
machines by 2030.

6

Question : how do you parallelize programs to efficiently
use such machines ?

Pierre Collet Simon Harding

EC and massive parallelism
 Evolutionary Algorithms are generic optimization methods

that are intrinsically parallel.
 They can exploit ANY kind of parallelism (SIMD, SPMD,

MIMD, …)
 EA parallelism scales well (possibly supralinear speedup !)
 Perfect paradigm for Peta and Exascale computing,

provided one can handle 4 levels of parallelism:
 Massive parallelism on one GPU card
 Parallelizing over several GPU cards
 Parallelizing over several GPU machines
 Parallelizing over several clusters of GPU machines

7 Pierre Collet Simon Harding

GPU PROGRAMMING 101

1118

Pierre Collet Simon Harding

Getting started

 We need to learn a bit about the hardware
 Which in turn teaches us something about the software

engineering approaches
 Which in turn leads on to programming GPUs

Pierre Collet Simon Harding

Coming up

 We will primarily look at CUDA
 But will also mention some alternatives:

 Shaders
 Products from GASS, Tidepowrd and Microsoft
 OpenCL

Pierre Collet Simon Harding

GPU Memory

PCI-E bus interface

Device

Host
Pierre Collet Simon Harding

GPU Memory

Multiprocessor Shared
memory

Thread processors

1119

Pierre Collet Simon Harding

Nvidia 480:
•15 multiprocessors
•32 cores per multiprocessor
•480 cores in total
•64Kb Shared memory per multiprocessor
•1.5Gb Global memory

Can you add throughput (bandwidth) ?

Pierre Collet Simon Harding

What is CUDA?

 C/C++ based language for GPGPU programming

 From Nvidia

 Only works on their graphics cards

 But it’s really common in the field...

Pierre Collet Simon Harding

Programming model

 It’s all about threads
 Thousands of threads are OK
 Thread is also called a kernel

 Each core runs a thread
 Threads are bundled together in blocks
 Blocks are bundled together in grids

Pierre Collet Simon Harding

Programming model

 Each thread can see the local memory of that processor
core

 Threads within a block see the same shared memory

 Between blocks, there is the global memory

1120

Pierre Collet Simon Harding

Programming model

 Each thread can calculate an ID using predefined variables
available in the kernel:
 gridDim : Dimensions of the grid in blocks
 blockDim : Dimensions of the block in threads
 blockIdx : Block index within the grid
 threadIdx : Thread index within the block

 Dimensions are defined when the kernels are launched.

Pierre Collet Simon Harding

CUDA 101

 Let’s write a program to add two vectors of numbers
together

 E.g. [0,1,2,3,4] + [5,6,7,8,9] = [5,7,9,11,13]

 Do this in parallel
 Each thread will deal with one index in the vectors

Pierre Collet Simon Harding

CUDA 101

_global__ void add(int *a, int *b, int *c)

CUDA threads don’t
return this way

Means it runs on the
device, and can be
called from the host

We’ll pass pointers
to 2 arrays to add
together – and a
pointer of where to
store the results.

Pierre Collet Simon Harding

CUDA 101

__global__ void add(int *a, int *b, int *c)
{
int index =

threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];
}

1121

Pierre Collet Simon Harding

CUDA 101

 Now we need to get this running...

 Let’s write a main method

Pierre Collet Simon Harding

CUDA 101

int main(void)
{

return 0;
}

Pierre Collet Simon Harding

CUDA 101
int main(void)
{
int DataLength = 2048 * 2048;

int DataSize = DataLength * sizeof(int) ;
int *a, *b, *c; //Pointers for HOST SIDE DATA

a = (int*)malloc(DataSize);
b = (int*)malloc(DataSize);
c = (int*)malloc(DataSize);

//Put some numbers in a and b

Pierre Collet Simon Harding

CUDA 101

// Pointers to the device side data
int *dev_a, *dev_b, *dev_c;

cudaMalloc((void**)&dev_a, DataSize);
cudaMalloc((void**)&dev_b, DataSize);
cudaMalloc((void**)&dev_c, DataSize);

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

1122

Pierre Collet Simon Harding

CUDA 101

int ThreadsPerBlock = 512;
int NumberOfBlocks = DataLength / ThreadsPerBlock;

add<<<NumberOfBlocks, ThreadsPerBlock>>>
(
dev_a, dev_b,

dev_c
);

Pierre Collet Simon Harding

CUDA 101

//Get the results back from GPU memory
cudaMemcpy(

c,
dev_c,
DataSize,
cudaMemcpyDeviceToHost
);

Pierre Collet Simon Harding

CUDA 101

//Tidy up
free(a);
free(b);
free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);

//Exit!
return 0;
}

Pierre Collet Simon Harding

Another CUDA example

 Dot product
 Takes two vectors, returns one value (reduction!)

 Will demonstrate how to synchronise threads, use shared
memory and how to avoid a nasty race condition

1123

Pierre Collet Simon Harding

Another CUDA example

//Define the data size
#define N (2048*2048)

//Define the block size
#define THREADS_PER_BLOCK 512

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot(int *a, int *b, int *c)
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];
atomicAdd(c , sum);

}
}

Pierre Collet Simon Harding

Another CUDA example

__global__ void dot(int *a, int *b, int *c)
{
__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];
atomicAdd(c , sum);

}
}

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot(int *a, int *b, int *c)
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();
if(0 == threadIdx.x) {

int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];
atomicAdd(c , sum);

}
}

1124

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot(int *a, int *b, int *c)
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];
atomicAdd(c , sum);

}
}

Pierre Collet Simon Harding

Another CUDA example
__global__ void dot(int *a, int *b, int *c)
{

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];

atomicAdd(c , sum);
}

}

Pierre Collet Simon Harding

Why atomicAdd?

 Why not c+=sum?
 c+=sum is not safe – race conditions

 Read value at c
 Read value of sum
 Write new value back to c

 With many things happening at once, the values could be
corrupted.

 atomicAdd solves this.

Pierre Collet Simon Harding

CUDA

 This tutorial only provides the real basics.

 Lots more to learn
 Especially if you want highly optimized CUDA

 Lots of resources on line:
 Google is your friend here.

1125

Pierre Collet Simon Harding

Using CUDA from elsewhere

 If you have existing code you want to leverage
 Especially in Java, .net, Python

 Or you just hate programming in C
 Memory management!

 Wrappers maybe the way forward!

Pierre Collet Simon Harding

According to wikipedia

 There are MANY options:

Pierre Collet Simon Harding

Quick note!

 Nvidia also supply BLAS and FFT libraries

 These are also wrapped in other languages
 And in fact can be very easy to use from other languages.

import numpy from pycublas import CUBLASMatrix
A = CUBLASMatrix(numpy.mat([[1,2,3],[4,5,6]],numpy.float32))
B = CUBLASMatrix(numpy.mat([[2,3],[4,5],[6,7]],numpy.float32)
C = A*B print C.np_mat()
(code from Wikipedia)

Pierre Collet Simon Harding

pyCuda
mod = comp.SourceModule("""

__global__ void multiply_them(float *dest, float *a, float
*b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; }

""")

multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(drv.Out(dest), drv.In(a), drv.In(b),

block=(400,1,1))
print dest-a*b

1126

Pierre Collet Simon Harding

pyCuda

 http://mathema.tician.de/software/pycuda

Pierre Collet Simon Harding

GASS CUDA.NET

http://www.hoopoe-
cloud.com/Solutions/CUDA.NET/

 For .net / mono
 Wraps up calls to .cubin files

 i.e. Can load and run functions from precompiled
CUDA kernels

 Has been used for GP

Pierre Collet Simon Harding

jCuda

http://www.jcuda.de/

 Java wrapper
 Again wraps up calling of CUDA functions
 Lots of examples, well supported

Pierre Collet Simon Harding

Don’t like the look of CUDA?

 What else is there that has been used in the EA community
and elsewhere?

1127

Pierre Collet Simon Harding

Cg

 C for graphics
 http://developer.nvidia.com/page/cg_main.html
 Pretty much obsolete technology
 See paper “A Data Parallel Approach to Genetic

Programming using Programmable Graphics Hardware”
by Darren Chitty

Pierre Collet Simon Harding

Cg – D. Chitty

Pierre Collet Simon Harding

Cg – D. Chitty

Pierre Collet Simon Harding

RapidMind

 Obslete
 Company bought up by Intel
 Seems to have moved to new product : Array Building

Blocks
 http://software.intel.com/en-us/articles/intel-array-

building-blocks/
 See “A SIMD Interpreter For Genetic Programming on

Graphics Cards” by W. Langdon and W. Banzhaf

1128

Pierre Collet Simon Harding

Shader programming

 As the name suggests, this is really about graphics
 But it is possible to abuse for computations
 See “Linear Genetic Programming GPGPU on Microsoft’s

Xbox 360” by G. Wilson and W. Banzhaf for an example
using HLSL

Pierre Collet Simon Harding

MS Accelerator

 Research platform
 http://research.microsoft.com/en-us/projects/accelerator/
 .net library for vector maths
 See “Fast Genetic Programming & Developmental

Systems” by S. Harding and W.Banzhaf

Pierre Collet Simon Harding

MS Accelerator

Pierre Collet Simon Harding

GPU.NET

 Commercial product from TidePowerd
 http://www.tidepowerd.com/
 Converts compiled .net code to device code
 See new paper tomorrow in the CIGPU session :

“Implementing Cartesian Genetic Programming Classifiers
on Graphics Processing Units using GPU.NET” by S.
Harding and W. Banzhaf

1129

Pierre Collet Simon Harding

GPU.Net

Pierre Collet Simon Harding

GPU.Net

Pierre Collet Simon Harding

OpenCL

 http://www.khronos.org/opencl/
 Open standard for GPU and parallel programming

 Multivendor
 Diverse hardware (CPU, FPGA, GPU etc)

 See competition entry “CUDA and OpenCL-based
asynchronous PSO” by Y. Nashed et al.

Pierre Collet Simon Harding

OpenCL

 Still relatively unexplored by the community
 Wrappers exist for access from other languages
 Other tech uses it. See WebCL

1130

Pierre Collet Simon Harding

OpenCL

http://opencl.codeplex.com/wikipage?title=OpenCL%20T

Pierre Collet Simon Harding

What does the future hold?

 Who knows?

 Hardware: Intel multiple cores, AMD’s APUs

 Software: TPL, New updates to CUDA, OpenCL

Pierre Collet Simon Harding

Different kinds and levels of parallelism

 Low-level massive parallelism:
 GeForce GTX 580 contains 512 cores running in an

SPMD model :
– One single program (one context).
– Cores grouped by 32, running in SIMD mode, but different

bundles can run on different parts of the code.

 Several cards in one machine : MIMD model.
 High-level parallelism:

 Several machines together (cluster of machines).
 Several clusters together.

59 Pierre Collet Simon Harding

EASEA: an evolutionary platform for massive parallel machines

 First version of EASEA (EAsy Specification of Evolutionary
Algorithms) presented ad EA'99

 2000-2003: EASEA is the programming language of the
DREAM (Distributed Resource Evolutionary Algorithm
Machine).

 2008- EASEA is an evolutionary platform to automatically
parallelize evolutionary algorithms on 4 levels of parallelism:
 parallelization on one GPU card,
 parallelization on several GPU cards,
 parallelization on several heterogeneous machines
 parallelization on several heterogeneous clusters of GPU machines.

 2012 EASEA will run on the French Grid
60

1131

Pierre Collet Simon Harding

Stop ?Stop ?

PopulationPopulation
initialisationinitialisation

SelectionSelection ofof
nn parentsparents

VariationVariation
operatorsoperators
((XoverXover ++
mutation)mutation)

ReplacementReplacement

ParentsParentsParents

GenerationsGenerations

BestBest
IndividualIndividual

W
ea

k
W

ea
k

el
iti

sm
el

iti
sm

evaluationevaluation

C
hi

ld
re

n
C

hi
ld

re
n

cr
ea

tio
n

cr
ea

tio
n

St
ro

ng
St

ro
ng

el
iti

sm
el

iti
sm

evaluationevaluation

Stop ?Stop ?

PopulationPopulation
initialisationinitialisation

SelectionSelection ofof
nn parentsparents

VariationVariation
operatorsoperators
((XoverXover ++
mutation)mutation)

ReplacementReplacement

ParentsParentsParents

Parents+chil
dren

Parents+Parents+chilchil
drendren

GenerationsGenerations

BestBest
IndividualIndividual

W
ea

k
W

ea
k

el
iti

sm
el

iti
sm

evaluationevaluation

C
hi

ld
re

n
C

hi
ld

re
n

cr
ea

tio
n

cr
ea

tio
n

St
ro

ng
St

ro
ng

el
iti

sm
el

iti
sm

evaluationevaluation

evaluationevaluation

evaluationevaluation
evaluationevaluation
evaluationevaluation

Low-level massive parallelism (GPU card)
 EASEA generic parallelization over GPU cards.

61

Parents+chil
dren

Parents+Parents+chilchil
drendren

Pierre Collet Simon Harding

3 cards in the same PC = x3 speedup !

62

Stop ?Stop ?

PopulationPopulation
initialisationinitialisation

SelectionSelection ofof
nn parentsparents

VariationVariation
operatorsoperators
((XoverXover ++
mutation)mutation)

ReplacementReplacement

ParentsParentsParents

Parents+c
hildren

Parents+Parents+cc
hildrenhildren

GenerationsGenerations

BestBest
IndividualIndividual

W
ea

k
W

ea
k

el
iti

sm
el

iti
sm

C
hi

ld
re

n
C

hi
ld

re
n

cr
ea

tio
n

cr
ea

tio
n

St
ro

ng
St

ro
ng

el
iti

sm
el

iti
sm

evaluationevaluation
evaluationevaluation
evaluationevaluation

evaluationevaluation
evaluationevaluation

evaluationevaluation

evaluationevaluation
evaluationevaluation

evaluationevaluation

evaluationevaluation
evaluationevaluation

evaluationevaluation

evaluationevaluation
evaluationevaluation
evaluationevaluationevaluationevaluation

evaluationevaluation
evaluationevaluation

Pierre Collet Simon Harding 63

EASEA : a language that can handle GPGPUs

 EASEA stands for Easy Specification of Evolutionary
Algorithm.

 In order to code an evolutionary algorithm in EASEA, the user
only needs to write (in C) the application-specific code, i.e. :
 Initialisation function (how to initialise the genome)
 Evaluation function (dependent on the problem)
 Crossover operator (how to recombine 2 genomes)
 Mutation operator (how to mutate the genome).

*EASEA is available on Sourceforge: http://sourceforge.net/projects/easea/
Pierre Collet Simon Harding 64

Weierstrass initialisation and evaluation code
\GenomeClass::initialiser :
for(int i=0; i<N; i++) {

Genome.x[i] = random((float)-1,(float)1);
}

\GenomeClass::evaluator :
float res = 0.;
float val[N];
for (int i = 0;i<N; i++) {
val[i] = 0.;
for (int k=0;k<ITER;k++)

val[i] += pow(2.,-k*.25)
*sin(pow(2.,k)*Genome.x[i]);

res += Abs(val[i]);
}
return (res);

1132

Pierre Collet Simon Harding 65

Weierstrass crossover and mutation code
\GenomeClass::crossover :

for (int i=0; i<N; i++) {
float alpha = random(0.,1.);
child->Genome.x[i] = alpha*parent1->Genome.x[i]

+(1.-alpha)*parent2->Genome.x[i];
}

\GenomeClass::mutator :
for (int i=0; i<N; i++)

if (tossCoin(pMutPerGene)){
Genome.x[i]+=SIGMA*random((float)0,(float)1);
Genome.x[i]=MAX(X_MIN,MIN(X_MAX,Genome.x[i]));

}

Pierre Collet Simon Harding 66

Evolutionary Algorithm parameters

 Standard EA parameters need to be provided:
\Default run parameters :
Number of generations : 100
Mutation probability : 1
Crossover probability : 1
Population size : 20000
Genitors selector: Tournament 7
Offspring size : 100%
Competing Parents : 50%
Parents reduce : Deterministic
Final reduce: Deterministic
Elitism : On
Evaluator goal : Minimise

Pierre Collet Simon Harding 67

EASEA compilation and execution

 Then, typing:
$ easea weierstrass -cuda

on the command line will create C++ code for the evolutionary
algorithm, and parallelized C code for the CUDA sdk.

 A makefile is automatically generated, so simply typing:
$ make

will compile for the GPGPU.
 Then, typing:

$./weierstrass
will launch the optimisation of the Weierstrass function on the CPU,

with parallel evaluations on the GPGPU card
 Thanks to CUDA, all GPGPU NVIDIA cards are supported.

Pierre Collet Simon Harding

Island model parallelisation

68

1133

Pierre Collet Simon Harding

Island parallelism

69 Pierre Collet Simon Harding

High-level massive parallelism (island model)

70

Pierre Collet Simon Harding

Many PF machines for Exascale Computing ?

71 Pierre Collet Simon Harding

Benchmark for the island model: Rastrigin

72

1134

Pierre Collet Simon Harding

Island model speedup on Rastrigin-1000

73

20 machines 10 machines 5 machines 1 machine

Linear speedup with the number of machines

Pierre Collet Simon Harding

Weierstrass function (h=0.35, 2 dimensions)

74

Pierre Collet Simon Harding

GTX275 vs Core i7 950 speedup

 GPU/CPU speedup on 1000 dimensions Weierstrass h=0.35.

75 Pierre Collet Simon Harding

Island model on Weierstrass h=0.35 1000 dim

76

1135

Pierre Collet Simon Harding

Island model speedup on Weierstrass h=0.35

77

 Linear speedup until value 525,
where one machine only stalls in a
local optimum (average over 20
runs).

 Beyond, the island model brings
supra-linear speedup, but still in a
linear way (on value 425, speedup of
22 for 5 machines, 45 for 10
machines, 82 for 20 machines)

 Impossible to find values under 425
with one machine only while this is
reached in 10 mn on 20 machines.

 For value 425, the actual speedup
obtained with 20 machines over a
single core of core i7-950 is
160x80=12800 ! 1 day = 35 years !

Pierre Collet Simon Harding

Combining LL and HL massive parallelism

 Zeolite hunt:
 Zeolites are porous crystalline structures

with many applications in industry
made of oxygen atoms around
a silicon or aluminium atom.

 A replication of the unit
structure allows to obtain
the pores.

 Zeolites are used for filtering, catalysis, energy storing,
medicine, absorbing liquids, odours (cat litter), …

78

Pierre Collet Simon Harding

GPU speedup on zeolite problem: ~120

79 Pierre Collet Simon Harding

GPU Islands speedup on zeolite problem

 1, 5, 10 and 20 GPU machines

80

Submission to
Science !

1136

Pierre Collet Simon Harding

EC is ready for EC !

 EC is a generic massively parallel optimization method that
can exploit peta and exascale computing.

 Not rocket science anymore: EASEA regularly runs on 20
machines with 256 cores = 5000 cores on many different
problems (cf. Zeolite problem)

 Developments: new algorithms must be coined for HUGE
populations (100K to 1M individuals on one island).

 New practices must be developed (increasing mutation, dealing
with heterogeneous machines, ALPS-like algorithms, …)

 Current problem: finding large enough problems to get such
machines to heat up.

81 Pierre Collet Simon Harding

More GPU at GECCO

 Tomorrow:
 CIGPU - Computational Intelligence using Consumer

Hardware
 Thursday:

 Parallel Evolutionary Systems
 Friday:

 GPU Competition

82

Pierre Collet Simon Harding

EA,GPU elsewhere

83 Pierre Collet Simon Harding

This work has been sponsored by…

Massively Parallel EC on GPGPUs 84

1137

