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ABSTRACT

Evolutionary Computation techniques and other metaheuris-
tics have been increasingly used in the last years for solving
many real-world tasks that can be formulated as optimiza-
tion problems. Among their numerous strengths, a major
one is their natural predisposition to parallelization.

In this paper, we introduce libCudaOptimize, an open
source library which implements some metaheuristics for
continuous optimization: presently Particle Swarm Opti-
mization, Differential Evolution, Scatter Search, and So-
lis&Wets local search. This library allows users either to
apply these metaheuristics directly to their own fitness func-
tion or to extend it by implementing their own parallel op-
timization techniques. The library is written in CUDA-C to
make extensive use of parallelization, as allowed by Graphics
Processing Units.

After describing the library, we consider two practical case
studies: the optimization of a fitness function for the auto-
matic localization of anatomical brain structures in histolog-
ical images, and the parallel implementation of Simulated
Annealing as a new module, which extends the library while
keeping code compatibility with it, so that the new method
can be readily available for future use within the library as
an alternative optimization technique.

Categories and Subject Descriptors

I.2.5 [Artificial Intelligence]: Programming Languages
and Software; D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries

General Terms

Algorithms, Design
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1. INTRODUCTION
In the last decades, several metaheuristics have been de-

veloped (among others, Particle Swarm Optimization (PSO)
[6], Differential Evolution (DE) [16], Ant Colony Optimiza-
tion (ACO) [3], Scatter Search (SS) [5], . . . ) and applied to a
large variety of problems and fields. To facilitate the use of
Evolutionary Computation (EC) methods in optimization
problems, several software environments or libraries have
been developed, like HeuristicLab [20], Matlab Optimiza-
tion Toolbox [17], CILib [13], jMetal [4] or JCLEC [19].
Recently, these metaheuristics have also been developed on
Graphics Processing Units (GPU) [8, 10], fully exploiting
their intrinsic parallelism and obtaining significant speedups
(up to 30 times) compared to single thread CPU implemen-
tations. However, no open-source software has been released
to easily take advantage of this aspect.

The main idea behind our work is to offer a user the chance
to apply metaheuristics as simply and fast as possible to his
own problem of interest, exploiting the parallelization op-
portunities offered by modern GPUs as much as possible.
To the best of our knowledge, there are no software tools
in which the entire optimization process, from exploration
operators to function evaluation, is completely developed on
the GPU, and allows one to develop both local and global
optimization methods. Only in the last years, some pack-
ages, like ParadisEO [9], have started to use GPUs to speed
up their algorithms, however, as it stands, this is limited
to parallel data access during fitness evaluation, while the
method itself is still executed sequentially. Also, the GPU
implementations so far in ParadisEO are strictly limited to
local optimization/search methods.

We present libCudaOptimize, a GPU-based open source
library that allows users to run their methods in parallel
to optimize a fitness function, introduce a new optimization
algorithm, or easily modify/extend existing ones. In the
first case, the only thing one needs to do is to write the new
fitness function in C++ or CUDA-C, while in the second
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and third cases, one can take advantage of the framework
offered by the library to avoid the need to go deep into basic
implementation issues, especially regarding parallel code.

libCudaOptimize is expected to be used by users who
have, at least, a basic knowledge of C++. Although no
explicit understanding of CUDA-C or even of metaheuris-
tics is required it is very useful anyway, nonetheless, one
can use this library just by writing a C++ fitness function
and launching one of the optimization techniques already
implemented (to date PSO, DE, SS and Solis&Wets local
search (SW) [15]). This allows one to:

• implement commonly successful techniques with lim-
ited efforts;

• easily compare the results obtained by running differ-
ent techniques on different functions;

• analyze the effects of changing values of the parame-
ters which regulate the behavior of the optimization
techniques on user-defined problems;

• run high-dimensional optimization experiments on con-
sumer level hardware, thanks to the efficient CUDA-C
parallel implementation.

The remainder of this work is organized as follows: in
section 2 libCudaOptimize is described, then the operations
needed to start working with the library are presented in
section 3, followed by two case studies in section 4 and by
conclusions in section 5.

2. THE PACKAGE

2.1 Implemented Methods
In the present version, the library implements three dif-

ferent global optimization methods (PSO, DE and SS) and
one local search technique (SW), which was added to demon-
strate that the possibilities of this tool may go beyond the
implementation of population-based metaheuristics.

2.1.1 Particle Swarm Optimization

Particle Swarm Optimization [6] is a bio-inspired opti-
mization algorithm based on the simulation of the social
behavior of bird flocks. In the last fifteen years PSO has
been applied to a very large variety of problems [14] and
numerous variants of the algorithm have been presented [1].

During the execution of PSO a set of particles moves
within the function domain searching for the optimum of
the function (best fitness value). The motion of each par-
ticle is driven by the best positions visited so far by the
particle itself and by the entire swarm (gbest PSO) or by
some pre-defined neighborhood of the particle (lbest PSO).
Consequently, each particle relies both on “individual” and
on “swarm” intelligence, and its motion can be described by
the following two simple equations which regulate the posi-
tion and the velocity updates:

Pn(t) = Pn(t− 1) + vn(t)

vn(t) = w · vn(t− 1)

+ c1 · rand() · (BPn − Pn(t− 1))

+ c2 · rand() · (BLPn − Pn(t− 1))

where Pn(t) and vn(t) are the position and velocity of the
nth particle in iteration t; c1, c2 and w (inertia factor) are

positive constants, rand() returns random values uniformly
distributed in [0, 1], BPn is the best-fitness position visited
so far by the particle and BLPn is the best-fitness position
visited so far by any particle of a neighborhood of the par-
ticle (which may be as large as the current swarm: in this
case, this position would be the global best).

In particular, the PSO version implemented in this library
is the same described in [10]: an lbest PSO relying on a ring
topology with two neighbors and constant inertia factor.

2.1.2 Differential Evolution

Differential Evolution [16] recently gained credit as one of
the most successful evolutionary algorithms. DE perturbs
the current population members with the scaled differences
of other individuals. Every element of the population acts
as a parent vector and, for each of them, a donor vector is
created. In the basic version of DE, the donor vector for the
ith parent (Xi) is generated by combining three random and
distinct elements Xr1, Xr2 and Xr3. The donor vector Vi is
calculated as:

Vi = Xr1 + F · (Xr2 −Xr3)

where F (scale factor) is a parameter that strongly influ-
ences DE’s performances and typically lies in the interval
[0.4, 1]. After mutation, every parent-donor pair generates
an offspring (called the trial vector) by means of a crossover
operation. Cr is called crossover rate and appears as one
of the control parameters of DE, like F . This trial vector is
then evaluated and, if its fitness is better than the parent’s,
it will eventually replace it.

The library offers the choice between the two most com-
monly used kinds of crossover (binomial, also called uniform,
and exponential). With respect to mutation schemes [2],
DE/rand/1 (explained above), DE/best/1, and DE/target-
to-best/1 are available.

2.1.3 Scatter Search

Scatter Search [5] is a population-based algorithm in which
a systematic combination between solutions (instead of a
randomized one, as usually happens in EC) taken from a
smaller pool of evolved solutions named the reference set R
(usually around ten times lower than typical EC population
sizes). R is drawn from a randomly initialized population,
and it is composed of:

• a Best Set comprising the |B1| individuals of the initial
population having the best fitness function;

• a Diverse Set with the |B2| farthest individuals from
the Best Set (with |R| = |B1|+ |B2|).

New offspring is generated by combining elements of the
two sets. After this step, a local search is performed to im-
prove the offspring and the two sets are eventually updated
by including the best and the most diverse elements, respec-
tively. If, after an iteration, no elements are replaced in R,
a new population is created and the individuals that are the
most distant from the Best Set are used to replace the Di-
verse Set. These operations are repeated until a stopping
criterion is met.

The current implementation of SS in this library uses the
BLX-α crossover as combination method, Solis&Wets as an
improvement technique, while, for the update, two strategies
are allowed: the former preserves only the best solutions, the
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latter preserves both the best ones and the most diverse ones
with respect to R.

2.1.4 Solis&Wets local search

Solis&Wets local search method [15] is a randomized hill-
climber with adaptive step size. Each step starts at a point
x. A perturbation p is randomly chosen from a Gaussian
distribution with standard deviation ρ. If either x + p or
x− p has a better fitness than x, a move to the best point is
performed and a success is recorded, otherwise the position
does not change and a failure is recorded. After N+ consec-
utive successes ρ is increased, for getting faster to the local
optima, while after N− failures in a row, ρ is consequently
decreased.

In the library, SW starts with a different ρ for every solu-
tion, that equals half the distance to the nearest neighbor.
The user can set the parameters N+ and N−.

2.2 General-Purpose Computation
on Graphics Hardware

General-purpose programming on GPU (GPGPU) is the
way of using a graphic card, which typically handles compu-
tations only for computer graphics and gaming, to execute
applications traditionally managed by the Central Process-
ing Unit (CPU).

CUDATM (Compute Unified Distributed Architecture) is
a GPGPU environment, that includes a parallel computing
architecture and programming model, developed by nVIDIATM.
This programming model requires the problem under con-
sideration be partitioned into sub-problems, that are solved
independently in parallel by blocks of threads. In turn, each
sub-problem is also partitioned into finer pieces, that can
be solved cooperatively in parallel by all threads within the
same block. Blocks are organized into a one-dimensional,
two-dimensional, or three-dimensional grid of thread blocks,
as illustrated in Figure 1.

In particular, nVIDIATM CUDA-C [11] is an extension
of the C language for the development of GPUs routines
(called kernels), which, when called, are executed N times
in parallel by N different CUDATM threads. Kernels are run
on the device (GPU) while the rest of the code runs on the
host (CPU). It is also important to notice that in CUDATM,
host and devices have separate memory spaces and, in or-
der to execute a kernel, the programmer needs to explicitly
allocate memory on the device and, if needed, transfer data
from and back to the host. This is the main bottleneck
which is encountered: to optimize code for speed the pro-
grammer should reduce as much as possible the amount of
these transfers.

Regarding the programming model, and in order to under-
stand the implementation details and the case studies under
consideration, there are four variables particularly useful for
users who want to deeply dig into the library:

• gridDim, that stores the dimensions of the grid as spec-
ified during kernel invocation;

• blockIdx, that refers to the block index within the
grid;

• blockDim, that contains the dimensions of the block,
and

• threadIdx, that stores the thread index within the
block.

Figure 1: Grid of Thread Blocks [11].

Each of these variables is a dim3, a data type of CUDA-C
that represents a three-dimensional vector, whose elements
can be accessed as the elements x, y and z.

2.3 Implementation details
libCudaOptimize is entirely written in C++ and CUDA-

C and relies on two classes: IOptimizer and SolutionSet

(see Figure 2). The former is an abstract class that includes
all methods used for evolving a set of solutions (or popu-
lation/swarm, where every particular solution is an individ-
ual/particle, depending on the used terminology), for setting
evolution parameters and a reference to the set (it can evolve
more than one set in parallel), represented by an instance
of the class SolutionSet. Every different metaheuristic is
implemented as a sub-class of IOptimizer. All these classes
(see some examples at the bottom of Figure 2) have methods
that allow a user to set the parameters of the metaheuristic.
Moreover, most of the relevant parameters can be passed to
the optimizer at the moment of its instantiation.

The class SolutionSet represents one or more sets of solu-
tions and can be accessed in the user-defined fitness function,
where it is used to access the elements of the population and
to update their fitnesses after evaluation. There are meth-
ods that allow users to access the solutions, and their corre-
sponding fitnesses, both on the device and the host. In this
way, the user can employ these information both on C++
and CUDA-C function easily.

3. RUNNING THE LIBRARY
In this section we will briefly describe the operations needed

to install the library and to start working with it.

3.1 How to install it
libCudaOptimize has been tested onWindows 7 and Ubuntu

Linux, using graphics cards with compute capability (CC)
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Figure 2: UML diagram. For every class, the most important methods are shown.

ranging from 1.3 to 2.1. GPUs with lower CC impose some
limitations to the use of the library due to hardware limits:
e.g. using a GPU with CC 2.0 or higher, the limit on the
dimensions of a solution is 1024, while with a GPU with CC
1.3 this limit is lowered to 512.

In order to install libCudaOptimize, the following steps
should be followed:

1. Download from the project webpage on Sourceforge
(http://sourceforge.net/p/libcudaoptimize/) the pack-
ages: libCudaOptimize, the proper library, and testLibCu-
daOptimize, a small program which tests if the instal-
lation has been correctly performed. Both source code
and binary installer are provided.

2. Build the library from source code: for doing so, the
easiest way is to use CMake1. To build testLibCu-
daOptimize one has to link against the previously in-
stalled libCudaOptimize static library and the CUDATM

utilities library.

3.2 How to use the library
Basically, there are two ways to use this library. The first

and most direct one is just to apply the included heuristics
to optimize a user-defined fitness function. All one needs to
do, in this simplest case, is to write a function in C++ or, to
fully exploit the parallelization potentiality of the package,
in CUDA-C. Then, one must select the heuristic, set its
parameters, run it, and retrieve the solution(s) found. An
example of this usage is shown in section 4.1.

The second purpose of the library is to allow the user
to design and implement an optimization technique, taking
advantage of the structure of the algorithms implemented in
libCudaOptimize. Since several EC methods share a similar
structure, one can extend the superclass IOptimizer or one
of its children in order to create a new optimizer. To do so, a
mandatory step is to implement the four protected functions
of IOptimizer shown in Figure 2:

1www.cmake.org

• initSolutions initializes the candidate solutions within
the search space, e.g. random initialization;

• step defines how the optimizer generates new potential
solutions from the current population;

• fitnessEvaluation calls the user’s fitness function;

• update is called after fitness evaluation and should up-
date the population according to the results obtained:
replace current individuals, update personal best loca-
tions, check constraints, . . .

An example of this usage can be found in section 4.2.
It is important to notice that the user does not have to

handle memory allocations and releases nor grid and kernels
configuration, since these operations are taken care for by
the library core.

4. CASE STUDIES

4.1 Optimization of a fitness function
The first case study examined is a method for automatic

localization of the hippocampus in mouse brain histological
images [18]. The localization uses two parametric models
that are moved and deformed towards the image, in order
to maximize a fitness function which is proportional to their
overlap with two major structures of the hippocampus (see
Figure 3) using PSO to generate candidate solutions. In
the first implementation of this method, in which PSO was
coded in Matlab and the fitness function in C++, these two
parts were localized sequentially one after the other, but
now this process can be run independently in parallel by
two swarms.

The fitness function takes as inputs: (i) the image that
contains the hippocampus, (ii) some vectors that represent
the limits of the deformations, and (iii) another vector that
represents the coordinates of the model. The values of this
vector (usually having between 14 and 16 elements) are
optimized by the methods provided by libCudaOptimize.
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Figure 3: Example of a hippocampus and the result of the
localization phase.

Thanks to the library features, we can evolve two swarms in
parallel, each of which will be responsible of one model. The
first step that was performed was the conversion of the fit-
ness function from C++ to CUDA-C, which is quite straight-
forward and will not be explained here. It is worth noting
that one needs to supply a C++ function pointer to the
optimizer in order to call the CUDA-C kernel (fitness func-
tion). This C++ fitness function receives as input a pointer
to the SolutionSet object, from which it can access the co-
ordinates and the fitnesses of the swarm(s), which will be
passed to CUDA-C kernel, along with any other data that
is needed:

void localizeHippocampus(SolutionSet* s)

{

localizeHippocampus_kernel<<<...,...>>>

(s->getDevicePositions(),

s->getDeviceFitnesses(),

...);

}

In the main function, all one has to do is choose the opti-
mization technique, e.g. PSO, and create an instance of the
correct extension of the class IOptimizer, setting, if nec-
essary, some parameters (during the instantiation, or later
using the functions listed in Figure 2). In this case, a pointer
to the fitness function and the number of swarms (2), of so-
lutions (64), and the dimension of the problem (16).

One can also set other parameters for the optimization,
like the termination criteria (that can be total execution
time, number of fitness evaluations, number of generations/ite-
rations, or required fitness value). After all the parameters
have been set, one has just to start the optimization process
and retrieve the results:

void main() {

PSO_Optimizer p(&localizeHippocampus,

16, 2, 64);

p.optimize();

float* myResults = p.getBestSolution();

}

As one can see, a C++ (or CUDA-C) fitness function can
be bound to libCudaOptimize by adding less than 10 lines
of code.

Figure 4 and 5 show the execution time we obtained us-
ing libCudaOptimize changing the number of PSO gener-
ations (from 100 to 10000) and the number of particles of
the swarms (from 16 to 512), respectively. Three different
implementations have been compared:

1. both fitness function and PSO implemented in C++;

2. fitness function implemented in C++ using our parallel
PSO;

3. both fitness function and PSO implemented in CUDA-
C;

Tests were run on a 64-bit Intel(R) CoreTM i7 CPU run-
ning at 2.67GHz using CUDA v. 4.1 on a nVIDIATM GeForce
GTS450 graphics card with 1GB of DDR memory and com-
pute capability 2.1. For the first test, whose results are
plotted in Figure 4, the optimization was run 10 times for
each configuration, for a total of 1000 × 3 runs. As for the
second, depicted in Figure 5, a total of 1250×3 experiments
was performed.
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Figure 4: Execution time versus PSO generations, swarm
size fixed at 64 particles.
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Figure 5: Execution time versus number of particles, termi-
nation criterion set as 200 generations.

The plots clearly show the GPU version outperforming the
two other implementations. In Figure 5, the CPU version
appears to have better performance than the CPU+GPU
one with smaller swarms (less than 60 particles). This is
due to the overhead introduced by the data transfer between
host and device memory. However, when dealing with more
complex configurations this overhead is overshadowed by the
advantages of the parallel PSO execution.
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4.2 Implementation of a new optimization
method

As a second case study, we extended the library by im-
plementing a metaheuristic which was not included in the
basic set of optimizers provided by the library: Simulated
Annealing (SA) [7]. This technique tries to mimic the physi-
cal annealing process, where a material is heated and slowly
cooled into a uniform structure. SA may even perform bad
moves (i.e. changes which leads to worse fitness) accord-
ingly to a probability distribution dependent on the tem-
perature of the system: a move is selected at random and,
then, as the temperature decreases, the probability of ac-
cepting a bad move decreases (when temperature is zero, no
bad moves are accepted, i.e. it behaves like hill climbing).
The main building blocks of the algorithm are three: the
candidate solution generation method (sometimes referred
to as the neighborhood function), the acceptance probabil-
ity function mentioned earlier, and the cooling schedule.

To make SA conform with the notions of a population-
based technique, we adapted the method for considering
more than one candidate solution at the same time. For the
sake of simplicity, the neighborhood function simply gen-
erates random solutions from the current solution positions
with a standard deviation of 0.1. The acceptance probability
function is defined as follows:

P (x, x′, T ) = exp(
f(x)− f(x′)

T
)

where P is the probability function, x the current solution, x′
the candidate solution, T the temperature of the system, and
f(x) the fitness of a solution. As for the cooling schedule, the
temperature value is reduced by a factor of 0.98 after every
iteration of the algorithm. Moving on to implementation
details, code snippets are provided to explain the process.
Firstly, we need to extend the IOptimizer implementing the
required methods:

#include "IOptimizer.h"

class SA_Optimizer :

public virtual IOptimizer

{

protected:

SolutionSet m_neighbors;

float m_temperature;

public:

SA_Optimizer();

virtual ~SA_Optimizer();

virtual bool init();

virtual void initSolutions();

virtual void step();

virtual void fitnessEvaluation();

virtual void update();

};

The SA_Optimizer class has only two more member vari-
ables: a SolutionSet instance representing the neighbors of
the current state in an iteration, and a float variable as the
temperature of the system. The method initSolutions()

is implemented similarly to the initialization functions of

DE_Optimizer and PSO_Optimizer classes, in which the po-
sitions of the population of solutions are set randomly over
the search space. The only functions that had to be imple-
mented from scratch were step and update, by specifying
a neighborhood generating procedure and the acceptance
probability function respectively. Each of these functions
calls a CUDA-C kernel to execute the appropriate method in
parallel, specifying the thread block configuration required.
Every thread block performs the calculations for a solution
in a set, while every thread in the block represents a dimen-
sion of the problem under optimization. Code snippets for
the host and device functions for the step function, used for
creating new candidate solutions that will be evaluated by
fitnessEvaluation, are presented below:

void SA_Optimizer:: step()

{

h_cudaSA_step(m_solutionSet.getDevicePositions(),

m_neighbors.getDevicePositions(),... );

m_temperature*=0.98f;

}

__global__ void sa_step(float* positions,

float* neighborPositions,...)

{

int tid=threadIdx.x;

int solutionID=(blockIdx.x*gridDim.y)+blockIdx.y;

int posID=(solutionID*blockDim.x)+tid;

curandState localState=devStates[posID];

if(tid<problemDimension)

{

float y=positions[posID]+

(-0.1f+(curand_uniform(&localState)*0.2f));

cropPosition(y);

neighborPositions[posID]=y;

}

devStates[posID]=localState;

}

h_cudaSA_step is a host function whose only purpose is
to call the kernel sa_step, which can not be called directly
from a C++ class. This kernel is executed simultaneously
by as many threads as the problem dimension. In practice,
the number of threads for a given kernel should be a power
of half the GPU warp size to achieve the coalesced access to
global memory recommended by nVIDIATM [12]. The code
above shows the most common and basic implementation of
a neighborhood function, used by many derivative-free opti-
mization methods. These algorithms usually test candidate
positions sampled from a fixed or adaptive neighborhood
around the current position. In our case, we generate candi-
date solutions by uniform sampling from a hypercube with
side length of 0.2 and centered at the current solution. The
CuRand library supplied with the CUDA SDK is used to
generate random numbers, where, for every dimension of
each solution a random number generator (curandState) is
stored in a global memory array (devStates). First, the
random number generator is loaded into a thread local vari-
able for efficiency. Then, a new position y is computed for
every dimension by adding a uniform random number in the
range [−0.1, 0.1] to the current position. Finally, the neigh-
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bor position along with the random number generator are
stored back in global memory at the end of the kernel.

It is worth noting the way the global memory is being
accessed in the device code. blockIdx.x represents the set
index, blockIdx.y represents the solution index within the
set, and threadIdx.x is the dimension index in the search
space. This SA code should be used as a guideline for the
advanced user to extend the library with new optimization
techniques.

5. CONCLUSIONS
We introduced libCudaOptimize, a free, fast and portable

open source library for continuous optimization based on
CUDATM. Two practical examples of using and extending
the library have been shown: the optimization of a fitness
function which takes advantage of this framework, and the
implementation of a new optimization technique that could
be useful for solving more problems.

Regarding future work, several aspects can be improved or
extended. Our next efforts will mainly be concerned about:
the realization of some visualization and statistical tools in
order to help behavioral analysis of EC techniques; more
support for multiple solution sets, like allowing different sets
to have independent termination criteria; the possibility to
evolve solutions of data types other than floats; and the
parallel implementation of other well-known optimization
methods like Genetic Algorithms, Evolution Strategies or
Evolutionary Programming as well as further expansions of
the methods already present.
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