

What Does Large Scale Mean?

- Many scientific disciplines are currently experiencing a massive "data deluge"
- Vast amounts of data are available thanks to initiatives such as the human genome project or the virtual human physiome
- Data mining technologies need to deal with large volumes of data, scale accordingly, extract accurate models, and provide new insight
- So, what does large mean?

iecco

Large Meaning... Piles of Records

Datasets with a high number of records
This is probably the most visible dimension of large

scale data mining – GenBank (the genetic sequences database from the NIH) contains (Apr, 2011) more than 135 million gene sequences and more than 126 billion nucleotides

Large Meaning... Lots of Classes

- Yet another dimension of difficulty
- Reuters-21578 dataset is a text categorization task with 672 categories
- Very related to the class unbalance problem
- Machine learning methods need to make an extra effort to make sure that underrepresented data is taken into account properly

Other Perks

- Evaluation can be costly
- Some evolutionary models
 - Mimic natural evolution introducing spatial relations (remember Darwin' s islands?)
 - Are model after decentralized models (cellular automata like)
- Based on the nature of evolutionary algorithms and the above ingredients there multiple parallelization models has been proposed (Cantu-Paz, 2000; Alba, 2005)

The Challenges of Data Mining

- We have seen in the previous slides how evolutionary algorithms have a natural tendency for parallel processing, hence being suitable for large-scale data mining
- However, data mining presents a challenge that goes beyond pure optimization, which is that evaluation is based on *data*, not just on a fitness formula

The Challenges of Data Mining

- Holding the data is the first bottleneck that largescale data mining needs to face
 - Efficiently parsing the data
 - Proper data structures to achieve the minimum memory footprint
 - It may sound like just a matter of programming, but it can make a difference
 - Specially important when using specialized hardware (e.g. CUDA)
 - Optimized publicly available data handling libraries exist (e.g. the HDF5 library)

The Challenges of Data Mining

- Usually it is not possible to hold all the training data in memory
 - Partition it and use different subsets of data at a time
 - · Windowing mechanisms, we will talk about them later
 - Efficient strategies of use of CUDA technology
 - Hold different parts of the data in different machines
 Parallel processing, we will also talk about this later
- Can also data richness become a benefit not a problem?
 - Data-intensive computing

The Challenges of Data Mining

- Classic challenges of machine learning
 - Over-learning
 - Our models need to have good predictive capacity
 - Generating interpretable solution
 - Discovering useful new knowledge inside the data

Large Scale Data Mining Using GBML

- Efficiency enhancement techniques
- Hardware acceleration techniques
- Parallelization models
- Data-intensive computing

GECCO

Prelude: Efficiency Enhancement

- Review of methods and techniques explicitly designed for data mining purposes
- Evolutionary computation efficiency enhancement techniques could also be applied (and we show some examples of this too)
- For a good tutorial on efficiency enhancement methods, please see GECCO 2005 Tutorial on efficiency enhancement by Kumara Sastry at
 http://www.slideshare.net/kknsastry/principled-efficiency-enhancement-techniques

Efficiency Enhancement Techniques

- Goal: Modify the data mining methods to improve their efficiency without special/parallel hardware
- Remember:
 - An individual can be a rule, or a rule set, or a decision tree...
 - Individuals parameters need to be estimated (accuracy, generality...)
- Included in this category are:
 - Windowing mechanisms
 - Exploiting regularities in the data
 - Fitness surrogates
 - Hybrid methods

Windowing Mechanisms

- Classic machine learning concept
 - Do we need to use all the training data all the time?
 - Using a subset would result in faster evaluations
 - How do we select this subset and how often is it changed?
 - How accurate the fitness estimation will be? Will it favor modularity?
- Freitas (2002) proposed a classification of these methods in three types:
 - Individual-wise: Changing the subset of data for each evaluated solution
 - Generation-wise: Changing the subset of data at each generation of the evolutionary algorithm
 - Run-wise: Selecting a single subset of data for a whole run of a GA

Windowing Mechanisms - ILAS

- Incrementing Learning with Alternating Strata (Bacardit, 2004)
- · Generation-wise windowing mechanism
- Training set is divided in non-overlapping strata
- Each GA iteration uses a different strata, using a round-robin policy (evaluation speedup linearly with the number of strata)

Exploiting Regularities

- The instances in the training set do not usually cover uniformly the search space
- Instead, there are some recurrent patterns and regularities, that can be exploited for efficiency purposes
- (Giraldez et al., 2005) proposed a method that precomputes the possible classifications of a rule
- As they only dealt with discrete/discretized attributes, they generate a tree structure to efficiently know which examples belong to each value of each attribute
- Furthermore, rule matches are the intersection of all these subsets of examples

Exploiting Regularities in the Data

- Other methods exploit a different regularity: usually not all attributes are equally important
- Example: Prediction of a Bioinformatics dataset (Bacardit and Krasnogor, 2009)
 - Att Leu_2 \in [-0.51,7] and Glu \in [0.19,8] and Asp_{+1} \in [-5.01,2.67] and Met_{+1} \in [-3.98,10] and Pro_{+2} \in [-7,-4.02] and Pro_{+3} \in [-7,-1.89] and Trp_{+3} \in [-8,13] and Glu_{+4} \in [0.70,5.52] and Lys_{+4} \in [-0.43,4.94] \rightarrow alpha
 - Only 9 attributes out of 300 were actually in the rule

Exploiting Regularities in the Data

Function match (instance x, rule r)
 Foreach attribute att in the domain
 If att is relevant in rule r and
 (x.att < r.att.lower or x.att > r.att.upper)
 Return false
 EndIf
 EndFor
 Return true

 Given the previous example of a rule, 293

iterations of this loop are wasted !!

Exploiting Regularities in the Data

- How to exploit this phenomenon?
- Reordering the attributes in the domain from specific to general (Butz et al., 2008)
 - Afterwards, starting the match process with the most specific one
 - The most specific attributes are usually those that make the process break. Thus, reducing usually the number of iterations in the match loop
 - Still, in the cases where a whole rule matches, the irrelevant attributes need to be evaluated

Exploiting Regularities in the Data

- Could we completely get rid of the irrelevant attributes?
 - The attribute list knowledge representation (ALKR) (Bacardit, Burke and Krasnogor, 2009)
 - This representation *automatically identifies* which are the relevant/specific attributes for each rule
 - Only tracks information about them

Class C1

Exploiting Regularities in the Data

- In ALKR two operators (specialize and generalize) add or remove attributes from the list with a given probability, hence exploring the rule-wise space of the relevant attributes
- ALKR match process is more efficient, however crossover is costlier and it has two extra operators
- Since ALKR chromosome only contains relevant information, the exploration process is more efficient. On large data sets it managed to generate better solutions

Fitness Surrogates

- In evolutionary algorithms, we can construct a function that estimates the evaluation of our solutions using the training set. This is usually known as a *fitness surrogate*
- Two recent works (Orriols et al., 2007) and (Llorà et al., 2007) use the structural information extracted from the model building process of competent genetic algorithms to build such a function
- Cheap surrogates can help avoid costly evaluations that tend to dominate execution time

Hybrid Methods

- Two kinds of LS operators
 - Rule set-wise operator
 - Takes N parents (N can be > 2) and generates a single offspring with the best rules of all of them
 - Rule-wise operators that edit rules
 - Rule cleaning drop conditions that misclassify
 - · Rule splitting find the exact spot where a rule can be splitted and the generated rules cleaned
 - · Rule generalizing -update a rule so it can correctly classify more examples

Enough Talk! Where is the Big Iron?

• Let's start with a simple hardware acceleration example

Hardware Acceleration Techniques

- Commodity hardware provides simple vectorized operations
- Result of the gaming world
- Usually operate over 128 bits (4 floats)
- · Vector units are able to execute ops in 1 cycle
- IBM implemented Altivec
- Intel started with MMX and then SSE and derivates
- AMD 3DNow!, 3DNow+!

0.6% xcs_classifier::match

0.4% ternary_condition::cover

0.370	binary_state::string_value	3.170	xcs_classifier_system::match
3.2%	xcs_classifier_system::match	1.1%	experiment_mgr::perform_experiments
1.4%	experiment mgr::perform experiments	0.8%	ternary condition::~ternary conditi

- 0.8% ternary_condition::~ternary_condition
 0.7% ternary_condition::cover
- 0.6% ternary_condition::~ternary_condition 0.6% xcs_classifier::match

Hardware Acceleration On Steroids

- NVIDIA's Computer Unified Device Architecture (CUDA) is a parallel computing architecture that exploits the capacity within NVIDIA's Graphic Processor Units
- CUDA runs thousands of threads at the same time → Single Program, Multiple Data paradigm
- In the last few years GPUs have been extensively used in the evolutionary computation field
 - Many papers and applications are available at http://www.gpgpgpu.com
- The use of GPGPUs in Machine Learning involves a greater challenge because it deals with more data but this also means it is potentially more parallelizable

Performance of BioHEL using CUDA

• We used CUDA in a Tesla C1060 card with 4GB of global memory, and compared the run-time to that of Intel Xeon E5472 3.0GHz processors

	Name	T	#Att	#Disc	#Cont	#CI	T. Serial (s)	T.CUDA (s)	Speed Up
Cont.	sat	5790	36	0	36	6	0.03± 0.01	25.91± 2.45	3.7
	wav	4539	40	0	40	3	75.47± 9.38	24.69± 0.81	3.1
	pen	9892	16	0	16	10	149.70± 19.93	40.04± 2.94	3.7
	SS	75583	300	0	300	3	347979.80± 60982.74	5992.28±247.50	58.1
	CN	234638	180	0	180	2	821464.70±167542.04	18644.31 ± 943.98	44.1
Mixed	adu	43960	14	8	6	2	5422.78± 1410.71	271.73± 26.03	20.0
	far	90868	29	24	5	8	2471.28± 701.83	94.99± 41.53	26.0
	kdd	444619	41	15	26	23	76442.32± 23533.21	2102.414±191.34	36.4
	SA	493788	270	26	244	2	1252976.80±203186.55	28759.71±552.00	38.3
	Par	235929	18	18	0	2	524706.70± 98949.46	19559.79±671.70	26.8
	c-4	60803	42	42	0	3	52917.95± 8059.55	2417.83±170.19	21.9

- Biggest speedups obtained in large problems (|T| or #Att), specially in domains with continuous attributes
- Run time for the largest dataset reduced from 2 weeks to
 8 hours

Coarse-grained Parallelism

- By coarse-grain parallelism we are talking about executing independently several runs
- As there is no communication, the speedup is always linear ☺
- In which situations can we do this?
 - Evolutionary algorithms are stochastic methods, we need to run always our methods several times. If we have the parallel hardware, this is a trivial way of gaining efficiency

Coarse-grained Parallelism

- There is, however, a more defined way of performing coarse-grain parallelism: ensemble learning
- These techniques integrate the collective predictions of a set of models in some principled fashion
- These models can be trained independently

Coarse-grained Parallelism

- Ensemble for consensus prediction (Bacardit and Krasnogor, 2008)
- Similar technique to bagging
 - 1. Evolutionary data mining method is run N times on the original training set, each of them with a different random seed
 - 2. From each of the N runs, a rule set is generated
 - Exploitation stage: For each new instance, the N models produce a prediction. The majority class is used as the ensemble prediction
- Ensembles evaluated on 25 UCI repository datasets using the Gassist LCS
- In average the ensemble accuracy was 2.6% higher

More Corse-Grain

- If evaluation is extremely costly
- Run the same algorithm with the same seed
- Same population everywhere
- Each algorithm only evaluates a chunk of the population
- The fitness estimates are broadcasted (e.g. MPI)
- Minimal communication possible (only the fitness value)
- All algorithms run the same genetic operators on identical population individuals (as all run using the same seed)
- The NAX system (Llora, X., Priya, A., and Bhragava, 2007)

Data-intensive Computing

- · Usually refers to:
 - Infrastructure
 - Programming techniques/paradigms
- Google made it main stream after their MapReduce model
- Yahoo! provides and open source implementation
 - Hadoop (MapReduce)
 - HDFS (Hadoop distributed filesystem)
 - Mahout (Machine Learning methods)
- Engineered to store petabytes reliably on commodity hardware (fault tolerant)
- Map: Equivalent to the map operation on functional programming
- Reduce: The reduction phase after maps are computed

Data-Intensive Infrastructure

- Extend the programming limitation of MapReduce
- Execution Paradigms
 - Conventional programs perform computational tasks by executing a sequence of instructions.

Meandre: NCSA's

- Data driven execution revolves around the idea of applying transformation operations to a flow or stream of data when it is available.

Protein Structure Prediction

- Beside the overall 3D PSP (an optimization problem), several structural aspects can be predicted for each protein residue
 - Coordination number
 - Solvent accessibility
 - Etc.
- These problems can be modelled in may ways:
 - Regression or classification problems
 - Low/high number of classes
 - Balanced/unbalanced classes
 - Adjustable number of attributes
- Ideal benchmarks !!
- http://icos.cs.nott.ac.uk/datasets/psp_benchmark.html

Contact Map Prediction

- (Bacardit et al. 2009) participated in the CASP8 competition
- CASP = Critical Assessment of Techniques for Protein Structure Prediction. Biannual competition
- Every day, for about three months, the organizers release some protein sequences for which *nobody* knows the structure (129 sequences were released in CASP9, in 2010)
- · Each prediction group is given three weeks to return their predictions
- If the machinery is not well oiled, it is not feasible to participate !!
- For CM, prediction groups have to return a list of predicted contacts (they are not interested in non-contacts) and, for each predicted pair of contacting residues, *a confidence level*
- The evaluation for CM ranks this list by the confidence, and calculates the accuracy of the top L/x predictions (L = length of chain, x = typically 10)

 Confidence is computed based on the votes distribution in the ensemble

iecco

Results of Contact Map prediction

- The subset of the most difficult target (*Free Modelling targets*) of CASP9 were used to evaluate CM
- Out predictor obtained an average accuracy of 23.6%
- Do you think it is low?
 - It is more than 11 times higher than a random prediction
 - The predictor was the best sequence-based method in the competition
- Overall, tackling this problem has forced us to address a broad range of bottlenecks in DM methods
 - Code bottlenecks
 - Memory footprint bottlenecks
 - Scalability bottlenecks

Advances on Fourier Transform IR Imaging

- Infrared spectroscopy is a classical technique for measuring chemical composition of specimens.
- At specific frequencies, the vibrational modes of molecules are resonant with the frequency of infrared light.
- Microscope has develop to the point that resolution that match a pixel with a cell (and keep improving).
- It allows to start from the same data (stained tissue)
- Generates larges volumes of data

Wrapping Up

- We have shown in this tutorial how GBML methods have high potential for mining large-scale datasets
- They are natural parallel processing machines
- Recent improvements in many dimensions of the learning process
 - Representations
 - Learning paradigms
 - Inference mechanisms
 - Hybridization

Re la constante de la constant

The Game Has a New Name

- The exception is becoming norm
 - Efficient parallel designs
 - Efficiency enhancement methods
 - Hardware support (SSE, CUDA, etc.)
- However, all these components cannot be used blindly, they have to be adjusted properly, accordingly to the characteristics/dimensions of the problem

• Some work already exists (Butz, 2006; Franco et al., 2011), but we still have a long road ahead of us

Do not Be Shy

- GBML systems are highly flexible, with good explanatory power, and can have good scalability
- Go and give it a shoot!

References

- <u>http://www.ncbi.nlm.nih.gov/Genbank/index.html</u>
- <u>http://www.netflixprize.com/</u>
- V. Reinke, Germline genomics (January 20, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.74.1, http:// www.wormbook.org
- Bernadó, E., Ho, T.K., Domain of Competence of XCS Classifier System in Complexity Measurement Space, IEEE Transactions on Evolutionary Computation, 9: 82-104, 2005.
- "Physicists brace themselves for lhc ' data avalanche'." www.nature.com/news/2008/080722/full/news.2008.967.html
- M. Pop and S. L. Salzberg, "Bioinformatics challenges of new sequencing technology," Trends in Genetics, vol. 24, no. 3, pp. 142 – 149, 2008
- http://www.hdfgroup.org/HDF5
- K. Sastry, "Principled Efficiency-Enhancement Techniques", GECCO-2005 Tutorial
- A.A. Freitas, "Data Mining and Knowledge Discovery with Evolutionary Algorithms", Springer-Verlag, 2002
- J. Bacardit, Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona, Spain, 2004

References

- Jaume Bacardit, David E. Goldberg, Martin V. Butz, Xavier Llorà and Josep M. Garrell, Speeding-up Pittsburgh Learning Classifier Systems: Modeling Time and Accuracy, 8th International Conference on Parallel Problem Solving from Nature - PPSN VIII
- D. Song, M.I. Heywood and A.N. Zincir-Heywood, Training genetic programming on half a million patterns: an example from anomaly detection, IEEE Transactions on Evolutionary Computation, vol. 9, no. 3, pp 225-239, 2005
- Llora, X., Priya, A., and Bhragava, R. (2007), Observer-Invariant Histopathology using Genetics-Based Machine Learning. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), 2098–2105
- Giráldez R, Aguilar-Ruiz JS, Santos JCR (2005) Knowledge-based fast evaluation for evolutionary learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C 35 (2):254–261
- J. Bacardit, E. K. Burke, and N. Krasnogor. Improving the scalability of rule-based evolutionary learning. Memetic Computing, 1(1):55-67, 2009
- M. V. Butz, P. L. Lanzi, X. Llorà, and D. Loiacono. An analysis of matching in learning classifier systems. In GECCO '08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 1349–1356. ACM, 2008.
- Llorà, X., Sastry, K., Yu, T., and Goldberg, D. E. Do not match, inherit: fitness surrogates for genetics-based machine learning techniques. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp 1798-1805, ACM, 2007

References

- Orriols-Puig, A., Bernadó-Mansilla, E., Sastry, K., and Goldberg, D. E. Substructrual surrogates for learning decomposable classification problems: implementation and first results. 10th International Workshop on Learning Classifier Systems, 2007
- J. Bacardit and N. Krasnogor, Performance and Efficiency of Memetic Pittsburgh Learning Classifier Systems, Evolutionary Computation Journal, 17(3):307-342, 2009
- G. Wilson and W. Banzhaf, "Linear genetic programming gpgpu on microsoft's xbox 360," in Proceedings of the 2008 Congress on Evolutionary Computation, pp. 378-385. IEEE Press, 2008
- <u>http://www.qpqpqpu.com/</u>
- J. Bacardit and N. Krasnogor. "Empirical evaluation of ensemble techniques for a Pittsburgh Learning Classifier System". Learning Classifier Systems. LNAI 4998, pp. 255-268, 2008, Springer
- http://www.infobiotic.net/PSPbenchmarks/
- J. Bacardit, M. Stout, J.D. Hirst, K. Sastry, X. Llorà and N. Krasnogor. Automated Alphabet Reduction Method with Evolutionary Algorithms for Protein Structure Prediction In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO2007), pp. 346-353, ACM Press, 2007
- Goldberg, D. E., Sastry, K. and Llora, X. (2007), Toward routine billion-variable optimization using genetic algorithms. Complexity, 12(3), 27–29.

References

- G. Venturini. SIA: A supervised inductive algorithm with genetic search for learning attributesbased concepts. In: Brazdil PB (ed) Machine Learning: ECML-93 - Proc. of theEuropean Conference on Machine Learning, Springer-Verlag, Berlin, Heidelberg, pp 280–296, 1993
- J. Rissanen J. Modeling by shortest data description. Automatica vol. 14:465–471, 1978
- L. Bull, E. Bernadó-Mansilla and J. Holmes (editors), Learning Classifier Systems in Data Mining. Springer, 2008
- Alba, E., Ed. Parallel Metaheuristics. Wiley, 2007.
- Cantu-Paz, E. Efficient and Accurate Parallel Genetic Algorithms. Springer, 2000.
- Llora, X. E2K: evolution to knowledge. SIGEVOlution 1, 3 (2006), 10–17.
- Llora, X. Genetic Based Machine Learning using Fine-grained Parallelism for Data Mining. PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull University, Barcelona, February, 2002.RFC2413, The Dublin Core Metadata Initiative, 2008.
- Llora, X., Acs, B., Auvil, L., Capitanu, B., Welge, M., and Goldberg, D. E. Meandre: Semantic-driven data-intensive flows in the clouds. In Proceedings of the 4th IEEE International Conference on e-Science (2008), IEEE press, pp. 238–245.
- M. Butz, Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design, Studies in Fuzziness and Soft Computing, vol 109. Springe,r, 2006

