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Introduction

Swarm Intelligence

Collective behavior of a “swarm” of agents.

Examples from Nature

dome construction by termites

communication of bees

ant trails

foraging behavior of fish schools and bird flocks

swarm robotics

Plenty of inspiration for optimization.

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 3 / 79

Introduction

ACO and PSO

Ant colony optimization (ACO)

inspired by foraging behavior of ants

artificial ants construct solutions using pheromones

pheromones indicate attractiveness of solution component

Particle swarm optimization (PSO)

mimics search of bird flocks and fish schools

particles “fly” through search space

each particle is attracted by own best position and best position of neighbors
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Introduction

Theory

What “theory” can mean

convergence analysis

analysis of simplified models of algorithms

empirical studies on test functions

runtime analysis / computational complexity analysis

. . .

Example Question

How long does it take on average until algorithm A finds a target solution on
problem P?

Notion of time: number of iterations, number of function evaluations
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Introduction

Content

What this tutorial is about

runtime analysis

simple variants of swarm intelligence algorithms

insight into their working principles

impact of parameters and design choices on performance

what distinguishes ACO/PSO from evolutionary algorithms?

performance guarantees for combinatorial optimization

methods and proof ideas

What this tutorial is not about

convergence results

analysis of models of algorithms

no intend to be exhaustive
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Pseudo-Boolean Optimization

Ant Colony Optimization (ACO)

Main idea: artificial ants communicate via pheromones.

Scheme of ACO

Repeat:

construct ant solutions guided by pheromones

update pheromones by reinforcing good solutions
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Pseudo-Boolean Optimization

Pseudo-Boolean Optimization

Goal: maximize f : {0, 1}n → R.

Illustrative test functions

OneMax(x) =
n∑

i=1

xi

LeadingOnes(x) =
n∑

i=1

i∏

j=1

xj

Needle(x) =
n∏

i=1

xi
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Pseudo-Boolean Optimization

ACO in Pseudo-Boolean Optimization

Solution Construction

x1 = 1

x1 = 0

x2 = 1

x2 = 0

x3 = 1

x3 = 0

x4 = 1

x4 = 0

x5 = 1

x5 = 0

v0 v1 v2 v3 v4 v5

Probability of choosing an edge equals pheromone on the edge.

Initial pheromones: τ(xi = 0) = τ(xi = 1) = 1/2.

Note: no linkage between bits. No heuristic information used.

Pheromones τ(xi = 1) suffice to describe all pheromones.

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 10 / 79

Pseudo-Boolean Optimization

ACO in Pseudo-Boolean Optimization (2)

Pheromone update: reinforce some good solution x .

Strength of update determined by evaporation factor 0 ≤ ρ ≤ 1:

τ ′(xi = 1) =

{
(1− ρ) · τ(xi = 1) if xi = 0

(1− ρ) · τ(xi = 1) + ρ if xi = 1

Pheromone borders as in MAX-MIN Ant System (Stützle and Hoos, 2000):

τmin ≤ τ ′ ≤ 1− τmin

Default choice: τmin := 1/n (cf. standard mutation in EAs).
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Pseudo-Boolean Optimization

One Ant?

Most ACO algorithms analyzed: one ant per iteration.

One ant at a time, many ants over time.

Steady-state GA

Probabilistic model:
Population

New solutions:
selection + variation

Environmental selection

Ant Colony Optimization

Probabilistic model:
Pheromones

New solutions:
construction graph

Selection for reinforcement
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Pseudo-Boolean Optimization

Evolutionary Algorithms vs. ACO

MMAS* (Gutjahr and Sebastiani, 2008)

Start with uniform random solution x∗ and repeat:

Construct x .

Replace x∗ by x if f (x) > f (x∗).

Update pheromones w. r. t. x∗ (best-so-far update).

Note: best-so-far solution x∗ is constantly reinforced.

(1+1) EA

Start with uniform random solution x∗ and repeat:

Create x by flipping each bit in x∗ independently with probability 1/n.

Replace x∗ by x if f (x) ≥ f (x∗).

(1+1) EA: Probability of setting bit to 1 is in {1/n, 1− 1/n}.
MMAS*: Probability of setting bit to 1 is in [1/n, 1− 1/n] (unless ρ ≈ 1).
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Overview

1 Introduction

2 ACO in Pseudo-Boolean Optimization
MMAS with best-so-far update
How MMAS deals with plateaus
MMAS with iteration-best update

3 ACO and Shortest Path Problems
Single-Destination Shortest Paths
All-Pairs Shortest Paths
Stochastic Shortest Paths

4 ACO and Minimum Spanning Trees

5 ACO and the TSP

6 Particle Swarm Optimization
Binary PSO
Continuous Spaces

7 Conclusions

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 14 / 79

Pseudo-Boolean Optimization MMAS with best-so-far update

Fitness-level Method for the (1+1) EA

A7

A6

A5

A4

A3

A2

A1

fi
tn

es
sPr((1+1) EA leaves Ai ) ≥ si

Expected optimization time of (1+1) EA at most
m−1∑
i=1

1
si

.
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Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS*

Pheromones on 1-edges

1
n

1− 1
n

x∗ 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0

After (ln n)/ρ reinforcements of x∗ MMAS* temporarily behaves like (1+1) EA.

Fitness-Level Method with Ai = search points with i-th fitness value

(1+1) EA: ≤
m−1∑

i=1

1

si
MMAS*: ≤

m−1∑

i=1

1

si
+ m · ln n

ρ

Upper bounds: time for finding improvements + time for pheromone adaptation.
Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 16 / 79

1218



Pseudo-Boolean Optimization MMAS with best-so-far update

MMAS*

Pheromones on 1-edges

1
n

1− 1
n

x∗ 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0

After (ln n)/ρ reinforcements of x∗ MMAS* temporarily behaves like (1+1) EA.

Fitness-Level Method with Ai = search points with i-th fitness value

(1+1) EA: ≤
m−1∑

i=1

1

si
MMAS*: ≤

m−1∑

i=1

1

si
+ m · ln n

ρ

Upper bounds: time for finding improvements + time for pheromone adaptation.
Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 16 / 79

Pseudo-Boolean Optimization MMAS with best-so-far update

Bounds with Fitness Levels

OneMax:

si ≥ (n − i) · 1

n
·
(

1− 1

n

)n−1

≥ n − i

en

Theorem

(1+1) EA: en
n−1∑

i=0

1

n − i
= O(n log n)

MMAS*: en
n−1∑

i=0

1

n − i
+ n · ln n

ρ
= O((n log n)/ρ)
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Pseudo-Boolean Optimization MMAS with best-so-far update

Bounds with Fitness Levels (2)

LeadingOnes

si ≥
1

n
·
(

1− 1

n

)n−1

≥ 1

en

Theorem

(1+1) EA: en2 MMAS*: en2 + n · ln n

ρ
= O(n2 + (n log n)/ρ)

Unimodal functions with d function values:

Theorem

(1+1) EA: end MMAS*: end + d · ln n

ρ
= O(nd + (d log n)/ρ)
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Pseudo-Boolean Optimization MMAS with best-so-far update

Layering of Pheromones for LeadingOnes

(Lower bounds on) pheromones on LeadingOnes

1
n

1− 1
n

best-so-far 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1

Improved results for

LeadingOnes (Neumann, Sudholt, and Witt, 2009)

shortest paths (Sudholt and Thyssen, 2012)

Binary PSO on OneMax (Sudholt and Witt, 2010)
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Pseudo-Boolean Optimization How MMAS deals with plateaus

Strict Selection

Most ACO algorithms replace x∗ only if f (x) > f (x∗).

Drawback

Cannot explore plateaus.

Theorem (Neumann, Sudholt, Witt, 2009)

If ρ ≥ 1/poly(n) the expected time of MMAS* on Needle is
Ω(2−n · nn) = Ω((n/2)n).

Define variant MMAS of MMAS* replacing x∗ if f (x) ≥ f (x∗).
Pheromones on each bit perform a random walk.

Theorem (Neumann, Sudholt, Witt, 2009 and Sudholt, 2011)

The expected time of MMAS on Needle is O(n2/ρ2 · log n · 2n).

Mixing time estimates (Sudholt, 2011)

MMAS “forgets” initial pheromones on bits that have been irrelevant for the last
Ω(n2/ρ2) steps.
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Pseudo-Boolean Optimization How MMAS deals with plateaus

MMAS and Fitness Levels

How does MMAS cope with plateaus on fitness levels?

Switching between equally fit solutions can prevent freezing.

Pheromones on 1-edges

1
n

1− 1
n

x∗ 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0

0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0

Fitness-level method breaks down!
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Pseudo-Boolean Optimization How MMAS deals with plateaus

Is this Behavior Detrimental?

Probably not.

Theorem (Kötzing, Neumann, Sudholt, and Wagner, 2011)

O(n log n + n/ρ) on OneMax for both MMAS* and MMAS.

Assuming the sum of pheromones is fixed. Worst possible pheromone distribution
for finding improvements on OneMax (Gleser, 1975):

Pheromones on 1-edges

1
n

1− 1
n

Worst case: all pheromones (but one) at borders.
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Pseudo-Boolean Optimization How MMAS deals with plateaus

Experiments (Kötzing et al., 2011)

MMAS* MMAS

MMAS better than MMAS*

MMAS with ρ < 1 better than (1+1) EA (=MMAS at ρ = 1)!

does not hold for MMAS*

Open Problem

Prove that MMAS with proper ρ is faster than MMAS* and (1+1) EA.
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Pseudo-Boolean Optimization MMAS with iteration-best update
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Pseudo-Boolean Optimization MMAS with iteration-best update

Iteration-Best Update

λ-MMASib

Repeat:

construct λ ant solutions

update pheromones by reinforcing the best of these solutions

Advantages:

can escape from local optima

inherently parallel

simpler ants
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Pseudo-Boolean Optimization MMAS with iteration-best update

Iteration-Best vs. Comma Strategies

Jägersküpper and Storch, 2007

(1,λ) EA: λ ≥ c log n necessary, even for OneMax.

If λ ≤ c ′ log n then (1,λ) EA needs exponential time.

Reason: (1,λ) EA moves away from optimum if close and λ too small.

Behavior too chaotic to allow for hill climbing!
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Pseudo-Boolean Optimization MMAS with iteration-best update

Iteration-Best on OneMax

Slow pheromone adaptation effectively eliminates chaotic behavior.

Theorem (Neumann, Sudholt, and Witt, 2010)

If ρ ≤ 1/(cn1/2 log n)) for a sufficiently large constant c > 0 and ρ ≥ 1/poly(n)
then 2-MMASib optimizes OneMax in expected time O(

√
n/ρ).

For ρ = 1/(cn1/2 log n) the time bound is O(n log n).

Two ants are enough!

Proof idea: as long as all pheromones are at least 1/3, the sum of pheromones
grows steadily.

Large ρ or small λ: pheromones come crashing down to 1/n.

Theorem

Choosing λ/ρ ≤ (ln n)/244, the optimization time of λ-MMASib on every function
with a unique optimum is 2Ω(nε) for some constant ε > 0 w. o. p.
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Shortest Paths Single-Destination Shortest Paths

ACO System for Single-Destination Shortest Path Problem

A

B

C

D

E

dest

1

2

1

3

2

3

1

2

2

MMASSDSP

For each vertex u the ant

memorizes and keeps track of its best-so-far path

constructs a simple path from u to the destination

updates pheromones on edges (u, ·) (local pheromone update)
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Shortest Paths Single-Destination Shortest Paths

ACO System for Single-Destination Shortest Path Problem

A

B

C

D

E

dest

1

2

1

3

2

3

1

2

2

A

B

C

D

E

dest A

B

C

D

E

dest

A

B

C

D

E

dest

MMASSDSP

For each vertex u the ant

memorizes and keeps track of its best-so-far path

constructs a simple path from u to the destination

updates pheromones on edges (u, ·) (local pheromone update)
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Shortest Paths Single-Destination Shortest Paths

Shortest Paths Propagate Through the Graph

`︷ ︸︸ ︷

A

B

C

D

E

dest

1

2

1

3

2

3

1

2

2

Let τmin := 1/(∆`). Consider vertex u such that all ants on its shortest paths have
found shortest paths and adapted their pheromones.

probability of ant at u choosing the first edge correctly ≥ τ(e)/2 ≥ τmin/2

probability of following adapted pheromones: (1− 1/`)`−1 ≥ 1/e.

Expected time until ant at u has done the same ≤ 2e/τmin + ln(1/τmin)/ρ.

Upper bounds for MMASSDSP (Sudholt and Thyssen, 2012)

Consider all vertices sequentially: O(n∆`+ n ln(∆`)/ρ).

Slice graph into “layers” and use pheromone layering: O(∆`2 + `/ρ).

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 31 / 79

Shortest Paths Single-Destination Shortest Paths

Shortest Paths Propagate Through the Graph

`︷ ︸︸ ︷

A

B

C

D

E

dest

1

2

1

3

2

3

1

2

2

Let τmin := 1/(∆`). Consider vertex u such that all ants on its shortest paths have
found shortest paths and adapted their pheromones.

probability of ant at u choosing the first edge correctly ≥ τ(e)/2 ≥ τmin/2

probability of following adapted pheromones: (1− 1/`)`−1 ≥ 1/e.

Expected time until ant at u has done the same ≤ 2e/τmin + ln(1/τmin)/ρ.

Upper bounds for MMASSDSP (Sudholt and Thyssen, 2012)

Consider all vertices sequentially: O(n∆`+ n ln(∆`)/ρ).

Slice graph into “layers” and use pheromone layering: O(∆`2 + `/ρ).

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 31 / 79

Shortest Paths Single-Destination Shortest Paths

Shortest Paths Propagate Through the Graph

`︷ ︸︸ ︷

A

B

C

D

E

dest

1

2

1

3

2

3

1

2

2

Let τmin := 1/(∆`). Consider vertex u such that all ants on its shortest paths have
found shortest paths and adapted their pheromones.

probability of ant at u choosing the first edge correctly ≥ τ(e)/2 ≥ τmin/2

probability of following adapted pheromones: (1− 1/`)`−1 ≥ 1/e.

Expected time until ant at u has done the same ≤ 2e/τmin + ln(1/τmin)/ρ.

Upper bounds for MMASSDSP (Sudholt and Thyssen, 2012)

Consider all vertices sequentially: O(n∆`+ n ln(∆`)/ρ).

Slice graph into “layers” and use pheromone layering: O(∆`2 + `/ρ).

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 31 / 79

1223



Shortest Paths Single-Destination Shortest Paths
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Shortest Paths Single-Destination Shortest Paths

A Worst-Case Graph

1 2 3 4 5 6 n
1 1 1 1 1 1

n n n n n

1 2 3 4 5 6 n

1 2 3 4 5 6 n

Expected time O
(
∆`2 + `/ρ

)
and Ω

(
∆`2 + `

ρ log(1/ρ)

)

#wrong vertices decreases on average by O(ρ log(1/ρ)).

expected time for decrease of Ω(`) ⇒ Ω
(

`
ρ log(1/ρ)

)
.

After pheromone adaptation still Ω(`) wrong vertices left

#wrong vertices decreases on average by O(τmin)

expected time for decrease of Ω(`) ⇒ Ω
(

`
τmin

)
= Ω

(
∆`2

)
.
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Shortest Paths All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Use distinct pheromone function τv : E → R+
0 for each destination v :

1 2

3

1

11

1

1 2

3

1

11

1

1 2

3

1

11

1

1 2

3

1

11

1
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Shortest Paths All-Pairs Shortest Paths

A Simple Interaction Mechanism

Path construction with interaction

For each ant traveling from u to v

with prob. 1/2

use τv to travel from u to v

with prob. 1/2

choose an intermediate destination w ∈ V uniformly at random
uses τw to travel from u to w
uses τv to travel from w to v
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Shortest Paths All-Pairs Shortest Paths

Speed-up by Interaction

Theorem

If τmin = 1/(∆`) and ρ ≤ 1/(23∆ log n) the number of iterations using interaction
w. h. p. is O(n log n + log(`) log(∆`)/ρ).

Possible improvement: O
(
n3
)
→ O

(
n log3 n

)

Proof Sketch

Phase 1: find all shortest paths with one edge
slow evaporation −→ near-uniform search

Phase 2: interaction concatenates shortest paths with up to k edges

u v

k︷ ︸︸ ︷
︸ ︷︷ ︸

k

−→ find shortest paths with up to 3/2 · k edges.

Note: slow adaptation helps!
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Shortest Paths Stochastic Shortest Paths

Stochastic Shortest Paths

Directed acyclic graph G = (V ,E ,w) with non-negative weights

For a path p = (e1, . . . , e`)

w(p) :=
∑`

i=1 w(ei ) is the real length of p.

w̃(p) :=
∑`

i=1(1 + η(ei )) · w(ei ) is the noisy length of p.

Goal

Find or approximate real shortest paths despite noise.
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Shortest Paths Stochastic Shortest Paths

Ants Become Risk-Seeking

Every edge has independent noise ∼ Γ(k, θ).

1 1 1 1 1

(1 + ε) · 5

Algorithm: MMASSDSP, no re-evaluation of best-so-far paths.

Ant tends to store path with high variance as best-so-far path.

Theorem (Sudholt and Thyssen, 2012)

There is a graph where with probability 1− exp(−Ω(
√

n/ log n)) MMASSDSP does
not find a (1 + kθ/3)-approximation for all vertices within ecn iterations.

Re-evaluate best-so-far paths: Doerr, Hota, and Kötzing (this GECCO).
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MST

Broder’s Algorithm

Problem: Minimum Spanning Trees

Consider the input graph itself as construction graph.

Spanning tree can be chosen uniformly at random using
random walk algorithms (e. g. Broder, 1989).

Reward chosen edges ⇒ next solution will be
similar to constructed one
But: local improvements are possible
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MST

Component-based Construction Graph

Vertices correspond to edges of the input graph

Construction graph C (G ) = (N,A) satisfies N = {0, . . . ,m} (start vertex 0)
and A = {(i , j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}.

0

For a given path v1, . . . , vk select the next
edge from its neighborhood
N(v1, . . . , vk) := (E \ {v1, . . . , vk}) \ {e ∈ E |
(V , {v1, . . . , vk , e}) contains a cycle}
(problem-specific aspect of ACO).Reward: all
edges, that point to visited vertices
(neglect order of chosen edges)
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MST

Algorithm

1-ANT: (following Neumann/Witt, 2010)

two pheromone values

value h: if edge has been rewarded

value `: otherwise

heuristic information η, η(e) = 1
w(e) (used before for TSP)

Let vk the current vertex and Nvk be its neighborhood.

Prob(to choose neighbor y of vk) =
[τ(vk ,y)]α·[η(vk ,y)]β∑

y∈N(vk )[τ(vk ,y)]α·[η(vk ,y)]β

with α, β ≥ 0.

Consider special cases where either β = 0 or α = 0.
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MST

Results for Pheromone Updates

Case α = 1, β = 0: proportional influence of pheromone values

Theorem (Broder-based construction graph)

Choosing h/` = n3, the expected time until the 1-ANT with the Broder-based
construction graph has found an MST is O(n6(log n + log wmax)).

Theorem (Component-based construction graph)

Choosing h/` = (m − n + 1) log n, the expected time until the 1-ANT with the
component-based construction graph has found an MST is
O(mn(log n + log wmax)).

Better than (1+1) EA!
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MST

Broder Construction Graph: Heuristic Information

Example graph G∗ with n = 4k + 1 vertices.

k triangles of weight profile (1, 1, 2)

two paths of length k with exponentially increasing weights.

1 2

1

2
1

1

2

1

1

1
2

4

1
2

4

2
k

2k

k triangles





Theorem (Broder-based construction graph)

Let α = 0 and β be arbitrary, then the probability that the 1-ANT using the
Broder construction procedure does not find an MST in polynomial time is
1− 2−Ω(n).
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MST

Component-based Construction Graph/Heuristic
Information

Theorem (Component-based construction graph)

Choosing α = 0 and β ≥ 6wmax log n, the expected time of the 1-ANT with the
component-based construction graph to find an MST is constant.

Proof Idea

Choose edges as Kruskal’s algorithm.

Calculation shows: probability of choosing a lightest edge is at least 1− 1/n.

n − 1 steps =⇒ probability for an MST is Ω(1).
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TSP

Traveling Salesman Problem

Traveling Salesman Problem (TSP)

2 7

15
3

1
Input: weighted complete graph
G = (V ,E ,w) with w : E → R.

Goal: Find Hamiltonian cycle of minimum
weight.
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TSP

MMAS for TSP (Kötzing, Neumann, Röglin, Witt 2010)

Best-so-far pheromone update with τmin := 1/n2 and τmax := 1− 1/n.

Initialization: same pheromone on all edges.

“Ordered” tour construction

Append a feasible edge chosen with probability
proportional to pheromones.

“Arbitrary” tour construction

Add an edge chosen with probability proportional to
pheromones as long as no cycle is closed or a vertex
get degree at least 3.
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TSP

Locality

Lemma

MMAS* with saturated pheromones exchanges Ω(log(n)) edges in expectation.

Length of unseen part roughly halves each time.

Lemma

For any constant k: MMAS∗Arb with saturated pheromones creates exactly k new
edges with probability Θ(1).
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TSP

Locality

Lemma

MMAS* with saturated pheromones exchanges Ω(log(n)) edges in expectation.

Length of unseen part roughly halves each time.

Lemma

For any constant k: MMAS∗Arb with saturated pheromones creates exactly k new
edges with probability Θ(1).
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TSP

ACO Simulating 2-OPT

Zhou (2009): ACO can simulate 2-OPT.

Probability of particular 2-Opt step (for constant ρ):

MMAS∗Ord: Θ(1/n3) MMAS∗Arb: Θ(1/n2)
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TSP

Average Case Analysis

Assume that n points placed independently, uniformly at random in the unit
hypercube [0, 1]d .

Theorem [Englert, Röglin, Vöcking 2007]

2-Opt finds after O(n4+1/3 · log n) iterations with probability 1− o(1) a solution
with approximation ratio O(1).

Theorem

For ρ = 1, MMAS∗Arb finds after O(n6+2/3) iterations with probability 1− o(1) a
solution with approximation ratio O(1).

Theorem

For ρ = 1, MMAS∗Ord finds after O(n7+2/3) iterations with probability 1− o(1) a
solution with approximation ratio O(1).
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TSP

Smoothed Analysis

Smoothed Analysis

Each point i ∈ {1, . . . , n} is chosen independently according to a probability
density fi : [0, 1]d → [0, φ].

1/
√
φ

1/
√
φ

2-Opt:
O( d
√
φ)-approximation in

O(n4+1/3 · log(nφ) · φ8/3) steps

MMAS∗Ord: O( d
√
φ)-approximation

in O(n7+2/3 · φ3) steps

MMAS∗Arb: O( d
√
φ)-approximation

in O(n6+2/3 · φ3) steps
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TSP

ACO: Summary and Open Questions

(Stochastic) Shortest Paths

Natural and interesting test-bed for the robustness of ACO algorithms.

global pheromone updates?

other strategies to deal with noise

where does slow pheromone adaptation help?

average-case analyses with heuristic information

Strength of ACO

Problem-specific construction procedures can make ACO more powerful.

how to find a fruitful combination of metaheuristic search and
problem-specific components?

Main Challenge in Analysis of ACO

Understand dynamics of pheromones within borders.

results for MST and TSP with more natural pheromone models

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 54 / 79

PSO

Overview

1 Introduction

2 ACO in Pseudo-Boolean Optimization
MMAS with best-so-far update
How MMAS deals with plateaus
MMAS with iteration-best update

3 ACO and Shortest Path Problems
Single-Destination Shortest Paths
All-Pairs Shortest Paths
Stochastic Shortest Paths

4 ACO and Minimum Spanning Trees

5 ACO and the TSP

6 Particle Swarm Optimization
Binary PSO
Continuous Spaces

7 Conclusions

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 55 / 79

PSO

Particle Swarm Optimization

Particle Swarm Optimization

Bio-inspired optimization principle developed by Kennedy and Eberhart
(1995).

Mostly applied in continuous spaces.

Swarm of particles, each moving with its own velocity.

Velocity is updated according to

own best position and
position of the best individual in its neighborhood (here: swarm).
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PSO

Particle Swarm Optimization

0010

1100

1101

1010

1010

x∗

Binary PSO (Kennedy und Eberhart, 1997)
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PSO Binary PSO

Creating New Positions

Probabilistic construction using velocity v and sigmoid function s(v):

Prob(xj = 1) = s(vj) = 1
1+e−vj

1.0

0.0
0-4 +4

Restrict velocities to vj ∈ [−vmax,+vmax].

Common practice: vmax = 4 (good for n ∈ [50, 500])

Sudholt and Witt, 2010: vmax := ln(n − 1) (good across all n):

1

n
≤ Prob(xj = 1) ≤ 1− 1

n
.
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PSO Binary PSO

Updating Velocities

Update current velocity vector according to

cognitive component → towards own best: x∗(i) − x (i) and

social component → towards global best: x∗ − x (i).

Learning rates c1, c2 affect weights for the two components.

Random scalars r1 ∈ U[0, c1], r2 ∈ U[0, c2] chosen anew in each generation:

v (i) = v (i) + r1(x∗(i) − x (i)) + r2(x∗ − x (i))
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PSO Binary PSO

Understanding Velocities

Assume bit i is 1 in global best and own best. Create x .

ACO: reinforce bit value 1 in probabilistic model if xi = 1

PSO: reinforce bit value 1 in probabilistic model if xi = 0

Probability to increase vi is

1− s(vi ) = s(−vi ) =
1

1 + evi
.

⇒ at least 1/2 for vi < 0, but decreases rapidly with growing vi .
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PSO Binary PSO

Velocity Freezing

Particle with best-so-far solution: own best = global best

1
n

1− 1
n

x∗ 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0

Lemma

Expected freezing time to vmax or −vmax is O(n) for single bits
and O(n log n) for n or µn bits if µ = poly(n).

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 61 / 79

1232



PSO Binary PSO

Velocity Freezing

Particle with best-so-far solution: own best = global best

1
n

1− 1
n

x∗ 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0

Lemma

Expected freezing time to vmax or −vmax is O(n) for single bits
and O(n log n) for n or µn bits if µ = poly(n).
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PSO Binary PSO

Fitness-Level Method for Binary PSO

Upper bound for the (1+1) EA

m−1∑

i=0

1

si

Upper bound for #generations of Binary PSO

m−1∑

i=0

1

si
+ O(m · n log n)

Upper bound for #generations of “social” Binary PSO, i. e., c1 := 0

O

(
1

µ

m−1∑

i=0

1

si
+ m · n log n

)
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PSO Binary PSO

1-PSO vs. (1+1) EA on OneMax

More detailed analysis: average adaptation time of 384 ln n is sufficient.

Theorem (Sudholt and Witt, 2010)

The expected optimization time of the 1-PSO on OneMax is O(n log n).

Proof uses layering argument and amortized analysis.

Experiments: 1-PSO 15% slower than (1+1) EA on OneMax.
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PSO Continuous Spaces

Continuous PSO

Search space: (bounded subspace of) Rn.

Objective function: f : Rn → R.

Particles represent positions x (i) in this space.

Particles fly at certain velocity: x (i) := x (i) + v (i).

Velocity update with inertia weight ω:

v (i) = ωv (i) + r1(x∗(i) − x (i)) + r2(x∗ − x (i))
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PSO Continuous Spaces

Convergence of PSO

Swarm can collapse to points or other low-dimensional subspaces.

Convergence results for standard PSO, ω < 1 (Jiang, Luo, and Yang, 2007)

PSO converges . . . somewhere.

Extensions of standard PSO

Bare-bones PSO (Kennedy, 2003)

PSO with mutation (several variants)

PSO using gradient information (several variants)

Guaranteed Convergence PSO (GCPSO) (van den Bergh and Engelbrecht,
2002)
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PSO Continuous Spaces

Guaranteed Convergence PSO

Van den Bergh and Engelbrecht, 2002:

Make a cube mutation of a particle’s position by adding p ∈ U[−`, `]n.

Adapt “step size” ` in the course of the run by doubling or halving it,
depending on the number of successes.

Possible step size adaptation (Witt, 2009)

After an observation phase consisting of n steps has elapsed, double ` if the total
number of successes was at least n/5 in the phase and halve it otherwise. Then
start a new phase.

−→ 1/5-rule known from evolution strategies!
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PSO Continuous Spaces

GCPSO with 1 Particle

GCPSO with one particle is basically a (1+1) ES with cube mutation.

Can be analyzed like classical (1+1) ES (Jägersküpper, 2007)

Sphere(x) := ||x || = x2
1 + x2

2 + · · ·+ x2
n

Theorem (Witt, 2009)

Consider the GCPSO1 on Sphere. If ` = Θ(||x∗||/n) for the initial solution x∗,
the runtime until the distance to the optimum is no more than ε||x∗|| is

O(n log(1/ε)) with probability at least 1− 2−Ω(n) provided that 2−n
O(1) ≤ ε ≤ 1.

Same result as for (1+1) ES using Gaussian mutations in Jägersküpper, 2007.

Dirk Sudholt (University of Sheffield) Theory of Swarm Intelligence 68 / 79

1234



PSO Continuous Spaces

Stagnation of Standard PSO

Lehre and Witt, MIC 2011

Standard PSO with one/two particles stagnates even on one-dimensional Sphere!

0−ε +ε

Expected first hitting time of ε-ball around optimum is infinite.

Noisy PSO (Lehre and Witt, 2011)

Adding noise U[−δ/2, δ/2] for δ ≤ ε yields finite expected first hitting time on
(half-)Sphere.
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PSO Continuous Spaces

PSO: Summary and Open Questions

Summary

analysis of Binary PSO and its probabilistic model

initial result on runtime of GCPSO

results on expected first hitting time of ε-ball for Standard PSO & Noisy PSO

Neighborhood topologies

ring topology, etc. instead of global best of swarm

where does a restricted topology help?

Swarm dynamics

analyze combined impact of cognitive and social components

more results on swarms in continuous spaces
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Conclusions

Conclusions

Summary

Insight into probabilistic models underlying ACO and PSO

How design choices and parameters affect (bounds on) running times

How simple ACO algorithms optimize unimodal functions and plateaus

Results for ACO in combinatorial optimization

First analyses of basic PSO algorithms in discrete and continuous spaces

Future Work

A unified theory of randomized search heuristics?

More results on multimodal problems

When and how diversity and slow adaptation help
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