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Research Interests

◮ Runtime analysis of evolutionary algorithms,
especially population-based EAs

◮ Black-box complexity

◮ ...

What is Drift Analysis?

◮ Prediction of the long term behaviour of a process X
◮ hitting time, stability, occupancy time etc.

from properties of ∆.
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What is Drift Analysis1?

ba Yk

“Drift” ≥ ε0

◮ A powerful tool in time-complexity analysis of EAs.

1NB! Drift is a different concept than genetic drift in evolutionary biology.

Runtime of (1+1) EA on Linear Functions [3]

Droste, Jansen & Wegener (2002)

Runtime of (1+1) EA on Linear Functions [2]

Doerr, Johannsen, and Winzen (GECCO 2010)

Some history

Origins

◮ Stability of equilbria in ODEs (Lyapunov, 1892)

◮ Stability of Markov Chains (see eg [14])

◮ 1982 paper by Hajek [6]
◮ Simulated annealing [19]

Drift Analysis of Evolutionary Algorithms

◮ Introduced to EC in 2001 by He and Yao [7, 8]
◮ (1+1) EA on linear functions: O(n lnn) [7]
◮ (1+1) EA on maximum matching by Giel and Wegener [5]

◮ Simplified drift in 2008 by Oliveto and Witt [18]

◮ Multiplicative drift by Doerr et al [2]
◮ (1+1) EA on linear functions: en ln(n) + O(n) [22]

◮ Variable drift by Johannsen [11] and Mitavskiy et al. [15]

◮ Population drift [12]
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About this tutorial...

◮ Assumes no or little background in probability theory

◮ Main focus will be on drift theorems and their proofs
◮ Some theorems are presented in a simplified form

full details are available in the references

◮ A few simple applications will be shown

◮ Please feel free to interrupt me with questions!

General Assumptions

ba Yk

◮ Xk is a stochastic process2 in some general state space X
representing the state of the evolutionary algorithm

◮ eg. Xk is the current search point of (1+1) EA in {0, 1}n

◮ Yk := g(Xk) were g : X → R is a “distance function”

◮ Our goal is to say something about these two stopping times

τa := min{k ≥ 0 | Yk ≤ a} τb := min{k ≥ 0 | Yk ≥ b}

where we assume −∞ ≤ a < b <∞ and Y0 ∈ (a, b).
2We do not require Xk to be a Markov process.

Overview of Tutorial

ba Yk

E [Yk+1 − Yk | Fk]

Drift Condition3 Statement Note

E [Yk+1 | Fk] ≤ Yk − ε0 E [τa] ≤ Additive drift [7, 10]
Pr (τa > B) ≤ [6]
Pr (τb < B) ≤ Simplified drift [6, 17]

E [Yk+1 | Fk] ≥ Yk − ε0 ≤ E [τa] Additive drift (lower b.) [7, 9]
E [Yk+1 | Fk] ≤ Yk E [τa] ≤ Supermartingale [16]
E [Yk+1 | Fk] ≤ (1− δ)Yk E [τa] ≤ Multiplicative drift [2, 4]

Pr (τa > B) ≤ [1]
E [Yk+1 | Fk] ≥ (1− δ)Yk ≤ E [τa] Multipl. drift (lower b.) [13]
E [Yk+1 | Fk] ≤ Yk − h(Yk) E [τa] ≤ Variable drift [11]

E
[
eλYk+1 | Fk

]
≤ eλYk

α0
Pr (τb < B) ≤ Population drift [12]

3Some drift theorems need additional conditions.

Part 1 - Basic Probability Theory
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Basic Probability Theory

Ω

1

2

3

4

5

6

R
X

Probability Triple (Ω,F ,Pr)

◮ Ω : Sample space

◮ F : σ-algebra on Ω (family of events)

◮ Pr : F → R probability function
(satisfying probability axioms)

Events

◮ E ∈ F

Random Variable

◮ X : Ω → R and X−1 : B → F

◮ X = y ⇐⇒ {ω ∈ Ω | X(ω) = y}

Stochastic Processes and Filtration

Definition

◮ A stochastic process is a sequence of random variables
Y1, Y2, . . . on the same probability space.

◮ A filtration is an increasing family of sub σ-algebras4 of F

F0 ⊆ F1 ⊆ · · · ⊆ F

◮ A stochastic process Yk is adapted to a filtration Fk if Yk is
Fk-measurable for all k: ∀A ∈ B{ω ∈ Ω | Yk(ω) ∈ A} ∈ Fk

=⇒ Informally, Fk represents the information that has been
revealed about the process during the first k steps,
including the value of Yk.

4An event family closed under any countable collection of set operations [21].

Stopping Time

Definition
A rv. τ : Ω → N is called a stopping time if for all k ≥ 0

{τ ≤ k} ∈ Fk

◮ The information obtained until step k is sufficient
to decided whether the event {τ ≤ k} is true or not.

Example

◮ The smallest t such that Yt < a in a stochastic process.

◮ The runtime of an evolutionary algorithm

Expectation

The expectation of a discrete random variable X is

E [X] :=
∑

x

xPr (X = x)

Independence

Two random variables X and Y are independent if

∀x, y ∈ R Pr ({X ≤ x} ∩ {Y ≤ y}) = Pr (X ≤ x) Pr (Y ≤ y)

If X and Y are independent, then E [XY ] = E [X]E [Y ]
Linearity of expectation

For any random variables X and Y , and constants a, b ∈ R

E [aX + b] = aE [X] + b

E [X + Y ] = E [X] + E [Y ]

=⇒ Often easier to find E [X] than Pr (X ≥ k).
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Markov’s Inequality

Theorem (Markov’s Inequality)

Let X be a random variable assuming only non-negative values.
Then Pr (X ≥ t) ≤ E [X] /t for all t ∈ R

+.

1

0 t

f(x) :=

{

0 if x < t

1 if x ≥ t

x/t

Pr (X ≥ t) = 0 ·Pr (X < t)+1 ·Pr (X ≥ t) = E [f(X)] ≤ E [X/t].

Jensen’s Inequality

Theorem
If ϕ : R→ R is a convex function on (a, b), and X a random
variable taking values in (a, b), then

E [ϕ(X)] ≥ ϕ(E [X])

◮ If ϕ′′(x) ≥ 0 for all x ∈ (a, b), then ϕ is convex on (a, b).

Jensen’s Inequality

Theorem
If ϕ : R→ R is a concave function on (a, b), and X a random
variable taking values in (a, b), then

E [ϕ(X)] ≤ ϕ(E [X])

◮ If ϕ′′(x) < 0 for all x ∈ (a, b), then ϕ is concave on (a, b).

Conditional Probability and Expectation
Given two events A and E , where Pr (E) > 0

Pr (A | E) :=
Pr (A ∩ E)

Pr (E)

Conditional Expectation

E [X | E ] :=
∑

x

x · Pr (X = x | E)

Law of total probability, 0 < Pr (E) < 1

Pr (A) = ≥ Pr (E) · Pr (A | E) + Pr
(
E
)
· Pr

(
A | E

)

E [X] = ≥ Pr (E) · E [X | E ] + Pr
(
E
)
· E

[
X | E

]
if X ≥ 0

Tower Property, if H is a sub-σ-algebra of G , then

E [E [X | G ] | H ] = E [X | H ]
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Martingales

Definition (Supermartingale)

Any process Yk st ∀k

1. Yk is adapted to Fk

2. E [|Xk|] <∞

3. E [Yk+1 | Fk] ≤ Yk
0 20 40 60 80 100

k

Example

Let ∆1,∆2, . . . be rvs with −∞ < E [∆k+1 | Fk] ≤ −ε0 for k ≥ 0
Then the following sequence is a super-martingale

Yk := ∆1 + · · ·+ ∆k Zk := Yk + kε0

E [Yk+1Zk+1 | Fk] = ∆1 + · · ·+ ∆k + E [∆k+1 | Fk] + (k + 1)ε0

≤ ∆1 + · · ·+ ∆k − ε0 + (k + 1)ε0 < Yk = Zk

Martingales

Lemma
If Y is a supermartingale, then E [Yk | F0] ≤ Y0 for all fixed k ≥ 0.

Proof.

E [Yk | F0] = E [E [Yk | Fk] | F0]

≤ E [Yk−1 | F0]≤ · · · ≤ E [Y0 | F0]
︸ ︷︷ ︸

by induction on k

= Y0

Example

Where is the process Y in the previous example after k steps?

Y0 = Z0 ≥ E [Zk | F0] = E [Yk + kε0 | F0]

Hence, E [Yk | F0] ≤ Y0 − ε0k, which is not surprising...

Part 2 - Additive Drift

Additive Drift

ba = 0 Yk

ε0

(C1+) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≤ −ε0

(C1−) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≥ −ε0

Theorem ([7, 9, 10])

Given a sequence (Yk,Fk) over an interval [0, b] ⊂ R.
Define τ := min{k ≥ 0 | Yk = 0}, and assume E [τ | F0] <∞.

◮ If (C1+) holds for an ε0 > 0, then E [τ | F0] ≤ Y0/ε0 ≤ b/ε0.

◮ If (C1−) holds for an ε0 > 0, then E [τ | F0] ≥ Y0/ε0.
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Obtaining Supermartingales from Drift Conditions

Definition (Stopped Process)

Let Y be a stochastic process and τ a stopping time.

Yk∧τ :=

{

Yk if k < τ

Yτ if k ≥ τ

Let τa := min{k ≥ 0 | Yk ≤ a}, and assume

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

◮ Condition (C1) only required to hold when Yk > a,

◮ Hence, Yk is not necessarily a supermartingale...

◮ But the “stopped process” Yk∧τa is a supermartingale, so

E [Yk∧τa | F0] ≤ Y0 ∀k

Dominated Convergence Theorem

Theorem
Suppose Xk is a sequence of random variables such that
for each outcome in the sample space

lim
k→∞

Xk = X.

Let Y ≥ 0 be a random variable with E [Y ] <∞ such that
for each outcome in the sample space, and for each k

|Xk| ≤ Y.

Then it holds

lim
k→∞

E [Xk] = E

[

lim
k→∞

Xk

]

= E [X]

Proof of Additive Drift Theorem

(C1+) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≤ −ε0

(C1−) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≥ −ε0

Theorem
Given a sequence (Yk,Fk) over an interval [0, b] ⊂ R

Define τ := min{k ≥ 0 | Yk = 0}, and assume E [τ | F0] <∞.

◮ If (C1+) holds for an ε0 > 0, then E [τ | F0] ≤ Y0/ε0.

◮ If (C1−) holds for an ε0 > 0, then E [τ | F0] ≥ Y0/ε0.

Proof.
By (C1+), Zk := Yk∧τ + ε0(k ∧ τ) is a super-martingale, so

Y0 = E [Z0 | F0] ≥ E [Zk | F0] ∀k.

Since Yk is bounded to [0, b], and τ has finite expectation,
the dominated convergence theorem applies and

Y0 ≥ lim
k→∞

E [Zk | F0] = E [Yτ + ε0τ | F0] = ε0E [τ | F0] .

Proof of Additive Drift Theorem

(C1+) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≤ −ε0

(C1−) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≥ −ε0

Theorem
Given a sequence (Yk,Fk) over an interval [0, b] ⊂ R

Define τ := min{k ≥ 0 | Yk = 0}, and assume E [τ | F0] <∞.

◮ If (C1+) holds for an ε0 > 0, then E [τ | F0] ≤ Y0/ε0.

◮ If (C1−) holds for an ε0 > 0, then E [τ | F0] ≥ Y0/ε0.

Proof.
By (C1−), Zk := Yk∧τ + ε0(k ∧ τ) is a sub-martingale, so

Y0 = E [Z0 | F0]≤E [Zk | F0] ∀k.

Since Yk is bounded to [0, b], and τ has finite expectation,
the dominated convergence theorem applies and

Y0≤ lim
k→∞

E [Zk | F0] = E [Yτ + ε0τ | F0] = ε0E [τ | F0] .
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Example: (1+1) EA on LeadingOnes

1 (1+1) EA

1: Sample x(0) uniformly at random from {0, 1}n.
2: for k = 0, 1, 2, . . . do
3: Set y := x(k), and flip each bit of y with probability 1/n.
4:

x(k+1) :=

{

y if f(y) ≥ f(x(k))

x(k) otherwise.

5: end for

Example 1: (1+1) EA on LeadingOnes

Lo(x) :=

n∑

i=1

i∏

j=1

xj

x =

Leading 1-bits
︷ ︸︸ ︷

1111111111111111

Remaining bits
︷ ︸︸ ︷

0∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ .
Left-most 0-bit

◮ Let Yk := n−Lo(x(k)) be the “remaining” bits in step k ≥ 0.
◮ Let E be the event that only the left-most 0-bit flipped in y.
◮ The sequence Yk is non-increasing, so

E [Yk+1 − Yk | Yk > 0 ∧Fk]

≤ (−1) Pr (E | Yk > 0 ∧Fk)

= (−1)(1/n)(1− 1/n)n−1 ≤ −1/en.

◮ By the additive drift theorem, E [τ | F0] ≤ enY0 ≤ en2.

Example 2: (1+1) EA on Linear Functions

◮ Given some constants w1, . . . , wn ∈ [wmin, wmax], define

f(x) := w1x1 + w2x2 + · · ·+ wnxn

◮ Let Yk be the function value that “remains” at time k, ie

Yk :=

(
n∑

i=1

wi

)

−

(
n∑

i=1

wix
(k)
i

)

=

n∑

i=1

wi

(

1− x
(k)
i

)

.

◮ Let Ei be the event that only bit i flipped in y, then

E [Yk+1 − Yk | Fk] ≤

n∑

i=1

Pr (Ei | Fk)E [Yk+1 − Yk | Ei ∧Fk]

≤

(
1

n

)(

1−
1

n

)n−1 n∑

i=1

wi

(

x
(k)
i − 1

)

≤ −
Yk
en
≤ −

wmin

en

◮ By the additive drift theorem, E [τ | F0] ≤ en2(wmax/wmin).

Remarks on Example Applications

Example 1: (1+1) EA on LeadingOnes

◮ The upper bound en2 is very accurate.

◮ The exact expression is c(n)n2, where c(n)→ (e− 1)/2 [20].

Example 2: (1+1) EA on Linear Functions

◮ The upper bound en2(wmax/wmin) is correct, but very loose.

◮ The linear function BinVal has (wmax/wmin) = 2n−1.

◮ The tightest known bound is en log(n) + O(n) [22].

=⇒ A poor choice of distance function gives an imprecise bound!
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What is a good distance function?

Theorem ([8])

Assume Y is a homogeneous Markov chain, and τ the time to
absorption. Then the function g(x) := E [τ | Y0 = x], satisfies

{

g(x) = 0 if x is an absorbing state

E [g(Yk+1)− g(Yk) | Fk] = −1 otherwise.

◮ Distance function g gives exact expected runtime!

◮ But g requires complete knowledge of the expected runtime!

◮ Still provides insight into what is a good distance function:
◮ a good approximation (or guess) for the remaining runtime

Part 3 - Variable Drift

Drift may be Position-Dependant

Constant Drift Variable Drift

Drift may be Position-Dependant

Idea: Find a function g : R→ R st.
the transformed stochastic process
g(X1), g(X2), g(X3), . . .
has constant drift.

Constant Drift
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Multiplicative Drift

ba = 0 Yk

δYk

(M) ∀k E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −δYk

Theorem ([2])

Given a sequence (Yk,Fk) over an interval [a, b] ⊂ R, a > 0
Define τa := min{k ≥ 0 | Yk = a}, and assume E [τa | F0] <∞.

◮ If (M) holds for a δ > 0, then E [τa | F0] ≤ ln(Y0/a)/δ.

Proof.
g(s) := ln(s/a) is concave, so by Jensen’s inequality

E [g(Yk+1)− g(Yk) | Yk > a ∧Fk]

≤ ln(E [Yk+1 | Yk > a ∧Fk])− ln(Yk) ≤ ln(1− δ) ≤ −δ.

Example: Linear Functions Revisited

◮ For any c ∈ (0, 1), define the distance at time k as

Yk := cwmin +
n∑

i=1

wi

(

1− x
(k)
i

)

◮ We have already seen that

E [Yk+1 − Yk | Fk] ≤
1

en

n∑

i=1

wi

(

x
(k)
i − 1

)

= −
Yk − cwmin

en
≤ −

Yk(1− c)

en

◮ By the multiplicative drift theorem (a := cwmin and δ := 1−c
en )

E [τa | F0] ≤

(
en

1− c

)

ln

(

1 +
nwmax

cwmin

)

Variable Drift Theorem

ba = 0 Yk

h(Yk)

(V) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≤ −h(Yk)

Theorem ([15, 11])

Given a sequence (Yk,Fk) over an interval [a, b] ⊂ R, a > 0.
Define τa := min{k ≥ 0 | Yk = a}, and assume E [τa | F0] <∞.
If there exists a function h : R→ R such that

◮ h(x) > 0 and h′(x) > 0 for all x ∈ [a, b], and

◮ drift condition (V) holds, then

E [τa | F0] ≤

∫ Y0

a

1

h(z)
dz

=⇒ The multiplicative drift theorem is the special case h(x) = δx.

Variable Drift Theorem: Proof

g(x) :=

∫ x

a

1

h(z)
dz

E [Yk+1 | Fk]

1
h(x)

Ykh(Yk)

1
h(Yk)

Proof.
The function g is concave (g′′ < 0), so by Jensen’s inequality

E [g(Yk)− g(Yk+1) | Fk] ≥ g(Yk)− g(E [g(Yk+1) | Fk])

≥

∫ Yk

Yk−h(Yk)

1

h(z)
dz ≥ 1
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Part 4 - Supermartingale

Supermartingale

ba = 0 Yk

(S1) ∀k E [Yk+1 − Yk | Yk > 0 ∧Fk] ≤ 0

(S2) ∀k Var [Yk+1 | Yk > 0 ∧Fk] ≥ σ2

Theorem (See eg. [16])

Given a sequence (Yk,Fk) over an interval [0, b] ⊂ R.
Define τ := min{k ≥ 0 | Yk = 0}, and assume E [τ | F0] <∞.

◮ If (S1) and (S2) hold for σ > 0, then E [τ | F0] ≤ Y0(2b−Y0)
σ2

Proof.
Let Zk := b2− (b−Yk)2, and note that b−Yk ≤ E [b− Yk+1 | Fk].

E [Zk+1 − Zk | Fk] = −E
[
(b− Yk+1)2 | Fk

]
+ (b− Yk)2

≤ −E
[
(b− Yk+1)2 | Fk

]
+ E [b− Yk+1 | Fk]2

= −Var [b− Yk+1] = −Var [Yk+1 | Fk] ≤ −σ2

Part 5 - Hajek’s Theorem

Hajek’s Theorem5

Theorem
If there exist λ, ε0 > 0 and D <∞ such that for all k ≥ 0

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D

then for any δ ∈ (0, 1)

(2.9) Pr (τa > B | F0) ≤ eη(Y0−a−B(1−δ)ε0)

(*) Pr (τb < B | F0) ≤ BD
(1−δ)ηε0

· eη(a−b)

for some η ≥ min{λ, δε0λ
2/D} > 0.

◮ If λ, ε0, D ∈ O(1) and b− a ∈ Ω(n),
then there exists a constant c > 0 such that

Pr (τb ≤ ecn | F0) ≤ e−Ω(n)

5The theorem presented here is a corollary to Theorem 2.3 in [6].1249



Stochastic Dominance - (|Yk+1 − Yk| | Fk) ≺ Z

Definition
Y ≺ Z if Pr (Z ≤ c) ≤ Pr (Y ≤ c) for all c ∈ R

- 3 - 2 -1 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Example

1. If Y ≤ Z, then Y ≺ Z.

2. Let (Ω, d) be a metric space, and V (x) := d(x, x∗).
Then |V (Xk+1)− V (Xk)| ≺ d(Xk+1, Xk)

Xk
V (Xk)

x∗

V (Xk+1)

Xk+1

d(Xk, Xk+1)

Condition (C2) implies that “long jumps” must be rare

Assume that

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D

Then for any j ≥ 0,

Pr (|Yk+1 − Yk| ≥ j) = Pr
(

eλ|Yk+1−Yk| ≥ eλj
)

≤ E

[

eλ|Yk+1−Yk|

]

e−λj

≤ E

[

eλZ
]

e−λj

= De−λj .

Moment Generating Function (mgf) E
[
e
λZ
]

Definition
The mgf of a rv X is MX(λ) := E

[
eλX

]
for all λ ∈ R.

◮ The n-th derivative at t = 0 is M
(n)
X (0) = E [Xn],

hence MX provides all moments of X, thus the name.

◮ If X and Y are independent rv. and a, b ∈ R, then

MaX+bY (t) = E

[

et(aX+bX)
]

= E
[
etaX

]
E

[

etbX
]

= MX(at)MY (bt)

Example

◮ Let X :=
∑n

i=1 Xi where Xi are independent rvs with
Pr (Xi = 1) = p and Pr (Xi = 0) = 1− p. Then

MXi
(λ) = (1− p)eλ·0 + peλ·1

MX(λ) = MX1
(λ)MX2

(λ) · · ·MXn
(λ) = (1− p + peλ)n.

Moment Generating Functions

Distribution mgf

Bernoulli Pr (X = 1) = p 1− p + pet

Binomial X ∼ Bin(n, p) (1− p + pet)n

Geometric Pr (X = k) = (1− p)k−1p pet

1−(1−p)et

Uniform X ∼ U(a, b) etb−eta

t(b−a)

Normal X ∼ N(µ, σ2) exp(tµ + 1
2σ

2t2)

The mgf. of X ∼ Bin(n, p) at t = ln(2) is

(1− p + pet)n = (1 + p)n ≤ epn.
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Condition (C2) often holds trivially

Example ((1+1) EA)

Choose x uniformly from {0, 1}n

for k = 0, 1, 2, ...

Set x′ := x(k), and flip each bit of x′ with probability p.

If f(x′) ≥ f(x(k)), then x(k+1) := x′ else x(k+1) := x(k)

Assume

◮ Fitness function f has unique maximum x∗ ∈ {0, 1}n.

◮ Distance function is g(x) = H(x, x∗)

Then

◮ |g(x(k+1))− g(x(k))| ≺ Z where Z := H(x(k), x′)

◮ Z ∼ Bin(n, p) so E
[
eλZ
]
≤ enp for λ = ln(2)

Simple Application (1+1) EA on Needle

(1+1) EA with mutation rate p = 1/n on

Needle(x) :=
n∏

i=1

xi

Yk := H(x(k), 0n)

a := (3/4)n

b := n

Condition (C2) satisfied6 with D = E
[
eλZ
]
≤ e where λ = ln(2).

Condition (C1) satisfied for ε0 := 1/2 because

E [Yk+1 − Yk | Yk > a ∧Fk] ≤ (n− a)p− ap = −ε0.

Thus, η ≥ min{λ, δε0λ
2/D} > 1/25 when δ = 1/2 and

Pr (τa > n + k | F0) ≤ e(1/25)(Y0−a−(n+k)(1−δ)ε0) ≤ e−k/100

Pr
(

τb < en/200 | F0

)

= e−Ω(n)

6See previous slide.

Proof overview

Theorem (2.3 in [6])

Assume that there exists 0 < ρ < 1 and D ≥ 1 such that

(D1) E
[
eηYk+1 | Yk > a ∧Fk

]
≤ ρeηYk

(D2) E
[
eηYk+1 | Yk ≤ a ∧Fk

]
≤ Deηa

Then

(2.6) E
[
eηYk+1 | F0

]
≤ ρkeηY0 + Deηa(1− ρk)/(1− ρ).

(2.8) Pr (Yk ≥ b | F0) ≤ ρkeη(Y0−b) + Deη(a−b)(1− ρk)/(1− ρ).

(*) Pr (τb < B) ≤ eη(a−b)BD/(1− ρ)

(2.9) Pr (τa > k | F0) ≤ eη(Y0−a)ρk

Lemma
Assume that there exists a ε0 > 0 such that

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D <∞ for a λ > 0.

then (D1) and (D2) hold for some η and ρ < 1

Theorem

(D1) E
[
eη(Yk+1−Yk) | Yk > a ∧Fk

]
≤ ρ

(D2) E
[
eη(Yk+1−a) | Yk ≤ a ∧Fk

]
≤ D

Assume that (D1) and (D2) hold. Then

(2.6) E
[
eηYk+1 | F0

]
≤ ρkeηY0 + Deηa(1− ρk)/(1− ρ).

Proof.
By the law of total probability, and the conditions (D1) and (D2)

E
[
eηYk+1 | Fk

]
≤ ρeηYk + Deηa (1)

By the law of total expectation, Ineq. (1), and induction on k

E
[
eηYk+1 | F0

]
= E

[
E
[
eηYk+1 | Fk

]
| F0

]

≤ ρE
[
eηYk | F0

]
+ Deηa

≤ ρkeηY0 + (1 + ρ + ρ2 + · · ·+ ρk−1)Deηa.
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Proof of (2.8)

Theorem

(D1) E
[
eη(Yk+1−Yk) | Yk > a ∧Fk

]
≤ ρ

(D2) E
[
eη(Yk+1−a) | Yk ≤ a ∧Fk

]
≤ D

Assume that (D1) and (D2) hold. Then

(2.6) E
[
eηYk+1 | F0

]
≤ ρkeηY0 + Deηa(1− ρk)/(1− ρ).

(2.8) Pr (Yk ≥ b | F0) ≤ ρkeη(Y0−b) + Deη(a−b)(1− ρk)/(1− ρ).

Proof.
(2.8) follows from Markov’s inequality and (2.6)

Pr (Yk+1 ≥ b | F0) = Pr
(

eηYk+1 ≥ eηb | F0

)

≤ E
[
eηYk+1 | F0

]
e−ηb

Proof of (*)

Theorem

(D1) E
[
eη(Yk+1−Yk) | Yk > a ∧Fk

]
≤ ρ

(D2) E
[
eη(Yk+1−a) | Yk ≤ a ∧Fk

]
≤ D

Assume that (D1) and (D2) hold for D ≥ 1. Then

(2.8) Pr (Yk ≥ b | F0) ≤ ρkeη(Y0−b) + Deη(a−b)(1− ρk)/(1− ρ).

(*) Pr (τb < B) ≤ eη(a−b)BD/(1− ρ)

Proof.
By the union bound and (2.8)

Pr (τb < B | Y0 < a ∧F0) ≤
B∑

k=1

Pr (Yk ≥ b | Y0 < a ∧F0)

≤

B∑

k=1

Deη(a−b)

(

ρk +
1− ρk

1− ρ

)

≤
BDeη(a−b)

1− ρ

Proof of (2.9)

Theorem

(D1) E
[
eη(Yk+1−Yk) | Yk > a ∧Fk

]
≤ ρ

Assume that (D1) hold. Then

(2.9) Pr (τa > k | F0) ≤ eη(Y0−a)ρk

Proof.
By (D1) Zk := eηYk∧τρ−k∧τ is a supermartingale, so

eηY0 = Z0 ≥ E [Zk | F0] = E

[

eηYk∧τρ−k∧τ | F0

]

(2)

By (2) and the law of total probability

eηY0 ≥ Pr (τa > k | F0)E
[

eηYk∧τρ−k∧τ | τa > k ∧F0

]

= Pr (τa > k | F0)E
[

eηYkρ−k | τa > k ∧F0

]

≥ Pr (τa > k | F0) eηaρ−k

(C1) and (C2) =⇒ (D1)

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D <∞ for a λ > 0.

(D1) E
[
eη(Yk+1−Yk) | Yk > a ∧Fk

]
≤ ρ

Lemma
Assume (C1) and (C2). Then (D1) holds when ρ ≥ 1− ηε0 + η2c,

and 0 < η ≤ min{λ, ε0/c} where c :=
∑
∞

k=2
λk−2

k! E
[
Zk
]
.

Proof.
Let X := (Yk+1 − Yk | Yk > a ∧Fk).
By (C2) it holds, |X| ≺ Z, so E

[
Xk
]
≤ E

[
|X|k

]
≤ E

[
Zk
]
.

From ex =
∑
∞

k=0 x
k/(k!) and linearity of expectation

0 < E
[
eηX

]
= 1 + ηE [X] +

∞∑

k=2

ηk

k!
E

[

Xk
]

≤ ρ.
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(C2) =⇒ (D2)

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D <∞ for a λ > 0.

(D2) E
[
eη(Yk+1−a) | Yk ≤ a ∧Fk

]
≤ D

Theorem
Assume (C2) and 0 < η ≤ λ. Then (D2) holds.

Proof.
If Yk ≤ a then Yk+1 − a ≤ Yk+1 − Yk ≤ |Yk+1 − Yk|, so

E

[

eη(Yk+1−a) | Yk ≤ a ∧Fk

]

≤ E

[

eλ|Yk+1−Yk| | Yk ≤ a ∧Fk

]

Furthermore, by (C2)

E

[

eλ|Yk+1−Yk| | Yk ≤ a ∧Fk

]

≤ E

[

eλZ
]

= D.

(C1) and (C2) =⇒ (D1) and (D2)

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D <∞ for a λ > 0.

(D1) E
[
eη(Yk+1−Yk) | Yk > a ∧Fk

]
≤ ρ

(D2) E
[
eη(Yk+1−a) | Yk ≤ a ∧Fk

]
≤ D

Lemma
Assume (C1) and (C2). Then (D1) and (D2) hold when

ρ ≥ 1− ηε0 + η2c and 0 < η ≤ min{λ, ε0/c}

where c :=
∑
∞

k=2
λk−2

k! E
[
Zk
]

= (D − 1− λE [Z])λ−2 > 0.

Corollary

Assume (C1), (C2) and 0 < δ < 1. Then (D1) and (D2) hold for

η := min{λ, δε0/c} =⇒ δε0 ≥ ηc

ρ := 1− (1− δ)ηε0 = 1− ηε0 + ηδε0 ≥ 1− ηε + η2c

Reformulation of Hajek’s Theorem

Theorem
If there exist λ, ε > 0 and 1 < D <∞ such that for all k ≥ 0

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D

then for any δ ∈ (0, 1)

(2.9) Pr (τa > B | F0) ≤ eη(Y0−a)ρB

(*) Pr (τb < B | F0) ≤ BD
(1−ρ) · e

η(a−b)

where η := min{λ, δε0/c} and ρ := 1− (1− δ)ηε0

1. Note that ln(ρ) ≤ ρ− 1 for all ρ ≥ 0, so

Pr (τa > B | F0) ≤ eη(Y0−a)ρB = eη(Y0−a)eB ln(ρ)

≤ eη(Y0−a−B(1−δ)ε0).

2. c = (D − 1− λE [Z])λ−2 < D/λ2 so η ≥ min{λ, δε0λ
2/D}.

Reformulation of Hajek’s Theorem

Theorem
If there exist λ, ε > 0 and 1 < D <∞ such that for all k ≥ 0

(C1) E [Yk+1 − Yk | Yk > a ∧Fk] ≤ −ε0

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D

then for any δ ∈ (0, 1)

(2.9) Pr (τa > B | F0) ≤ eη(Y0−a−B(1−δ)ε0)

(*) Pr (τb < B | F0) ≤ BD
(1−δ)ηε0

· eη(a−b)

for some η ≥ min{λ, δε0λ
2/D}.
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Simplified Drift Theorem [17]

We have already seen that

(C2) (|Yk+1 − Yk| | Fk) ≺ Z and E
[
eλZ
]

= D

implies Pr (|Yk+1 − Yk| ≥ j) ≤ De−λj for all j ∈ N0.

The simplified drift theorem replaces (C2) with

(S) Pr (Yk+1 − Yk ≥ j | Yk < b) ≤ r(n)(1 + δ)−j for all j ∈ N0.

and with some additional assumptions, provides a bound of type7

Pr
(

τb < 2c(b−a)
)

≤ 2−Ω(b−a). (3)

◮ Until 2008, conditions (D1) and (D2) were used in EC.

◮ (D1) and (D2) can lead to highly tedious calculations.

◮ Oliveto and Witt were the first to point out that the much
simpler to verify (C1), along with (S) is sufficient.

7See [17] for the exact statement.

Part 6 - Population Drift

Drift Analysis of Population-based Evolutionary Algorithms

◮ Evolutionary algorithms generally use populations.

◮ So far, we have analysed the drift of the (1+1) EA,
ie an evolutionary algorithm with population size one.

◮ The state aggregation problem makes analysis of
population-based EAs with classical drift theorems difficult:

How to define an appropriate distance function?
◮ Should reflect the progress of the algorithm
◮ Often hard to define for single-individual algorithms
◮ Highly non-trivial for population-based algorithms

=⇒ This part of the tutorial focuses on a drift theorem for
populations which alleviates the state aggregation problem.

Population-based Evolutionary Algorithms

Pt

x

Require: ,
Finite set X , and initial population P0 ∈ X

λ

Selection mechanism psel : X λ ×X → [0, 1]
Variation operator pmut : X × X → [0, 1]

for t = 0, 1, 2, . . . until termination condition do

for i = 1 to λ do

Sample i-th parent x according to psel(Pt, ·)
Sample i-th offspring Pt+1(i) according to pmut(x, ·)

end for

end for

1254



Selection and Variation - Example
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Population Drift

Central Parameters

◮ Reproductive rate of selection mechanism psel

α0 = max
1≤j≤λ

E [#offspring from parent j],

◮ Random walk process corresponding to variation operator pmut

Xk+1∼ pmut(Xk)

Population Drift [12]

(C1P) ∀k E
[
eκ(g(Xk+1)−g(Xk)) | a < g(Xk) < b

]
< 1/α0

Theorem
Define τb := min{k ≥ 0 | g(Pk(i)) > b for some i ∈ [λ]}.

If there exists constants α0 ≥ 1 and κ > 0 such that

◮ psel has reproductive rate less than α0

◮ the random walk process corresponding to pmut satisfies (C1P)

and some other conditions hold,8 then for some constants c, c′ > 0

Pr
(

τb ≤ ec(b−a)
)

= e−c
′(b−a)

8Some details are omitted. See Theorem 1 in [12] for all details.

Population Drift: Decoupling Selection & Variation

Population drift

If there exists a κ > 0 such that

M∆mut
(κ) < 1/α0

where

∆mut= g(Xk+1)− g(Xk)

Xk+1∼ pmut(Xk)

and

α0 = max
j

E [#offspring from parent j],

then the runtime is exponential.

Classical drift [6]
If there exists a κ > 0 such that

M∆(κ) < 1

where

∆ = h(Pk+1)− h(Pk),

then the runtime is exponential.
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Conclusion

◮ Drift analysis is a powerful tool for analysis of EAs
◮ Mainly used in EC to bound the expected runtime of EAs
◮ Useful when the EA has non-monotonic progress,

eg. when the fitness value is a poor indicator of progress

◮ The “art” consists in finding a good distance function
◮ No simple receipe

◮ A large number of drift theorems are available
◮ Additive, multiplicative, variable, population drift...
◮ Significant related literature from other fields than EC

◮ Not the only tool in the toolbox, also
◮ Artificial fitness levels, Markov Chain theory, Concentration of

measure, Branching processes, Martingale theory, Probability
generating functions, ...

Acknowledgements

Thanks to

◮ David Hodge

◮ Carsten Witt, and

◮ Daniel Johannsen

for insightful discussions.

References I

[1] Benjamin Doerr and Leslie Ann Goldberg.
Drift analysis with tail bounds.
In Proceedings of the 11th international conference on Parallel problem solving
from nature: Part I, PPSN’10, pages 174–183, Berlin, Heidelberg, 2010.
Springer-Verlag.

[2] Benjamin Doerr, Daniel Johannsen, and Carola Winzen.
Multiplicative drift analysis.
In GECCO ’10: Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 1449–1456, New York, NY, USA, 2010. ACM.

[3] Stefan Droste, Thomas Jansen, and Ingo Wegener.
On the analysis of the (1+1) Evolutionary Algorithm.
Theoretical Computer Science, 276:51–81, 2002.

[4] Simon Fischer, Lars Olbrich, and Berthold Vöcking.
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