
Integration of Flexible Interfaces in Optimization Software
Frameworks for Simulation-Based Optimization

Andreas Beham, Erik Pitzer,
Stefan Wagner, Michael Affenzeller

University of Applied Sciences Upper Austria
School of Informatics, Communication and
Media, Softwarepark 11, 4232 Hagenberg,

AUSTRIA
{andreas.beham, erik.pitzer,

stefan.wagner, michael.affenzeller}
@fh-hagenberg.at

Klaus Altendorfer,
Thomas Felberbauer, Martin Bäck

University of Applied Sciences Upper Austria
School of Management, Wehrgrabengasse 1-3,

4400 Steyr, AUSTRIA
{klaus.altendorfer,

thomas.felberbauer}@fh-steyr.at
martin.baeck@gmail.com

ABSTRACT

Optimization of simulation parameters is an important task
in many different sciences where simulation is used to model
and analyze complex processes and behaviors. In this work it
is shown how users, such as researchers, students, and prac-
titioners can benefit from the integration of data-exchange-
interfaces in optimization software system. The develop-
ment of such an interface enables users to couple their own
systems and use preimplemented algorithms for their ap-
plication. The interface description is based on a unified
protocol buffer approach which can be ported to further
frameworks and optimization software systems. The ben-
efits of a modular architecture, such as in the HeuristicLab
optimization environment, will be examined under the light
of a successful integration. HeuristicLab is available on the
web under the GPL license, its application to the optimiza-
tion of planning and control systems in manufacturing en-
vironments will be shown as a case study in this work. The
concrete subject of the case study is a production scenario
where different control strategies are used to plan different
products. The question is whether machines should be ded-
icated to a certain control strategy or whether the machines
should be shared. The quality is measured by the achieved
service level and amounted inventory costs.

Categories and Subject Descriptors

D.2.11 [Software]: Software Engineering—Software Archi-
tectures; D.2.12 [Software]: Software Engineering—Inter-
operability ; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods; I.6.3
[Computing Methodologies]: Simulation and
Modeling—Applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

General Terms

Design, Experimentation

Keywords

HeuristicLab, metaheuristics, protocol buffers, simulation-
based optimization

1. INTRODUCTION
The optimization of simulation parameters is not a new

topic and has been discussed before [7, 6], however still there
is a lack of widely available ready-to-use optimization sys-
tems that can be employed to perform the optimization task.
Some simulation frameworks come with optimizers, such as
OptQuest [9], included or provide a separate license to use
them, but even in this case the included optimizer might not
be well suited to solve the given problem. The cause for this
can be found in the no free lunch theorem [22] which states
that no algorithm can outperform any other algorithm on
all problems. Due to the high heterogeneity of the actual
simulation models and the meaning of their parameters, the
problems can be of many different natures. In one case there
might be only a single optimal solution that can be obtained
through a basic local search algorithm, but in other cases the
model response might be more complex and different strate-
gies are required with different levels of diversification and
intensification. In any case, the more solutions that need to
be evaluated, the longer the optimization process will last.
The selection of a suited optimization method and suited
algorithm parameters is therefore crucial to find good pa-
rameters for the given simulation model.

1.1 Simulation Environments
A number of simulation environments and frameworks

have been created and improved over time that provide the
basis for developing a wide range of different simulation
models. Among these are AnyLogic, Arena, or MatLab.
Domain experts can make use of these frameworks that of-
ten provide a graphical development environment which ab-
stracts the underlying programming language. This facili-
tates their use for people with no or only limited program-
ming skills. These frameworks further provide many ab-
stractions for database and file access, visualization, and
include tools for user interface development and statisti-

125

Figure 1: Block diagram of the architecture in HeuristicLab 3.3 with a separation into the different logical layers.

cal analysis. A number of different modeling methodologies
may also be supported such as the development of discrete-
event-based or agent-based simulation models, and/or mod-
els based on system dynamics. Naturally, models can also be
written from scratch using a general purpose programming
language, but the aforementioned environments offer a lot
of functionality for students, researchers, and practitioners
and are therefore popular starting points.

1.2 Optimization Environments
Optimization methods, especially metaheuristics, are of-

ten developed by researchers that are not experts in the ap-
plication domain of a simulation model. Implementations of
these algorithms may be available in a certain general pur-
pose programming language, but often tailored to a certain
problem. In the emergence and further development of op-
timization frameworks these methods have been generalized
and abstracted to work with a number of different prob-
lems. These frameworks bundle several methods, provide
a rich functionality to build upon and a sound base that is
created to software engineering standards, see [16] for a com-
parison. HeuristicLab [19, 20] is one such environment that
provides a diverse set of provided algorithms and a graphi-
cal user interface (GUI). The graphical interface allows for
a more natural interaction with the software and lowers the
barrier for users to apply and design optimization methods,
much like AnyLogic, Arena, MatLab, etc. provide a graph-
ical environment to create and run simulation models. In
HeuristicLab, algorithms can be modeled visually through
the use of a modeling language and their performance can
be studied in extensive experiments. Problems can be de-
scribed in the graphical environment by combining existing
representations with a user-defined evaluation function. A
compiler and an integrated development environment (IDE)
is only necessary should new features be added in new plu-
gins. HeuristicLab 3.3 is written in C# and was released to
the public in 2010 under the GNU General Public License
(GPL) v3.0.

2. HEURISTICLAB ARCHITECTURE
The architecture of HeuristicLab is composed of a mul-

titude of different plugins. Generally, each of the boxes in
Figure 1 represent an assembly, or multiple assemblies if a
“*” is added to the name. The architecture consists of three
horizontal layers and two vertical layers. The horizontal
layers are base, core, and optimization. The vertical layers
split the horizontal layers into models on the one hand and
views on the other hand. The dependencies in this block
diagram are modeled only roughly, but the general idea is
that assemblies depend on those below and those to the left.
The architecture is generally split sharply into assemblies
that contain user interface (UI) elements and assemblies that
contain model elements. Therefore HeuristicLab can also be
used in environments that do not support or need a user
interface.

Base Layer

The base layer contains plugins which provide essential func-
tionality. Every plugin in HeuristicLab is based on the Plug-
inInfrastructure which provides services such as loading
assemblies and checking the plugin dependencies. An impor-
tant class in this assembly is the ApplicationManager sin-
gleton which can lookup types, instantiate them, and thus
provides the base for a loosely coupled architecture. The
base layer also houses the Persistence which allows to store
and restore object graphs in a compressed XML file.

Core Layer

On top of the base layer lies the core layer that includes
the algorithm modeling language. It is described by core
interfaces, data objects, parameters, operators, and engines.
The interplay of these elements is shown in Figure 2. The
important concept is the separation of individual steps in
the form of small operators [19]. These are small enough
to represent an essential step in an algorithm and usually
large enough to contain more than just a single statement.
Operators can be linked to form an operator graph which in
turn describes an algorithm. An engine is then used to exe-
cute that graph in that it applies one operator after another

126

Figure 2: Interaction in the core layer in HeuristicLab 3.3.

sequentially by starting from a predefined initial operator.
In general, the operators process data that is stored in the
scope tree. Each scope can hold several variables and may be
viewed as representing a solution. If it contains sub-scopes,
it may also be seen as a population. An operator can be
applied on any level in the scope tree and may read and
write variables or modify the tree structure. Some opera-
tors may declare that each of the subsequent operators are
applied to a number of sub-scopes in parallel. The Paralle-
lEngine can execute those operators in different threads and
further specialized engines allow to make use of distributed
computing resources, such as HeuristicLab Hive. To obtain
variables operators contain parameters which can contain
a value themselves, or provide only the name of a variable
that is then looked up in the algorithm’s parameters, the
problem’s parameters, and the scope tree. One such oper-
ator typically is an evaluation operator that is applied on
a solution scope. It reads the variables that constitute the
problem representation, the problem’s parameters and adds
a quality variable to that scope with the fitness score. As
any other operator it could also contain additional parame-
ters that would e.g. read the algorithm’s state such as the
actual iteration or a collection which acts as a memory.

Optimization Layer

Finally, on top of the core layer lie the algorithm and prob-
lem models, the encodings, and various other plugins for
algorithm analysis and random distributions. Several algo-
rithms are already implemented such as genetic algorithm
[15], evolution strategy [4], offspring selection genetic algo-
rithm [1], local search, simulated annealing [14], tabu search
[8], particle swarm optimization [13], and many more. The
problems include real-valued test functions, and combinato-
rial problems such as the traveling salesman, vehicle routing,
and the quadratic assignment problem, as well as data anal-
ysis problems such as regression and classification. The op-
timization layer also contains a set of analyzers which allow
to gain insights into the performance of an algorithm. Ba-
sic analyzers provide a quality progress, but more advanced
analyzers enable to inspect the algorithms’ behavior.

2.1 Integration of Simulation-Based
Optimization

Generally, two different cases of simulation-based opti-
mization can be identified. In the first case the simulation
model acts as a fitness function, it will take a number of pa-
rameters and calculate the resulting fitness value. In the
second case, the optimization problem occurs within the
simulation model itself. For example, the simulation of a
production facility might require to solve a scheduling prob-
lem to determine the best order of job executions which in
turn requires the integration of an optimization approach.
HeuristicLab has been used in both cases [17, 18] success-
fully, but while the first case has been generalized and ab-
stracted as shown in this work, the second case still requires
a tighter coupling with the simulation model. The general-
ization and abstraction of the second case could be a topic
for future work.

External Evaluation Problem

Simulation-based optimization in HeuristicLab has been in-
tegrated in the form of the ExternalEvaluationProblem.
As the name implies it assumes the evaluation is taking
place in another application. This problem has no prede-
fined representation or operators, instead the user can cus-
tomize the problem according to her needs. If the actual
simulation-based optimization tasks can be represented by
a set of real-valued parameters, the RealVectorEncoding

plugin and its operators can be added to the problem. If
instead the parameters are integer values, the IntegerVec-

torEncoding plugin can be used to create, and modify the
solutions. Both encodings can also be combined if the prob-
lem parameters are mixed. A screenshot of the problem
configuration view is given in Figure 4. In the following the
parameters of this problem are explained.
BestKnownQuality & BestKnownSolution: These parame-
ters are used and updated by certain analyzers and remem-
ber the best quality that has been found so far as well as
the corresponding best solution.
Cache: Together with the appropriate evaluation operator
this parameter can be used to add an evaluation cache. The
cache can be used to store already seen configurations and
their corresponding quality so that these need not be simu-
lated again.
Clients: Contains a list of clients in the form of communi-
cation channels. At least one must be specified, but the list
can contain multiple channels if the simulation model is run
on multiple machines.
Evaluator: This operator is used to collect the required
variables, packs them into a message, and transmits them
to one of the clients. If the cached evaluator is used the cache
will be filled and the quality of previously seen configurations
will be taken directly from the cache.
Maximization: This parameter determines if the received
quality values should be maximized or minimized.
Operators: This list holds all operators that can modify and
process solutions such as for example crossover and mutation
operators. Any operator added to the list can be used in
an algorithm and certain algorithms might require certain
operators to work.
SolutionCreator: This operator is used to create the initial
solution, typically it randomly initializes a vector of a certain
length and within certain bounds.

127

Interoperability

The representation of solutions as scope objects which con-
tain an arbitrary number of variables and the organization
of scopes in a tree provides an opportunity for integrating a
generic data exchange mechanism. Typically, an evaluator
is applied on the solution scope and calculates the quality
based on some variables that it would expect therein. The
evaluator in the ExternalEvaluationProblem will however
collect a user specified set of variables in the solution scope,
and adds them to the SolutionMessage. This message is
then transmitted to the external application for evaluation.
The evaluation operator then waits for a reply in form of the
QualityMessage which contains the quality value and which
can be inserted into the solution scope again. This allows to
use any algorithm that can optimize single-objective prob-
lems in general to optimize the ExternalEvaluationProblem.
The messages in this case are protocol buffers1 which are
defined in a .proto file. The structure of these messages is
shown in Figure 3.
The protocol buffer specification in form of the message

definitions is used by a specific implementation to generate
a tailored serializer and deserializer class for each message.
The format is designed for very compact serialized files that
do not impose a large communication overhead and the seri-
alization process is quick due to the efficiency of the specific
serialization classes. Implementations of protocol buffers are
provided by Google for Java, C++, and Python, but many
developers have provided open source ports for other lan-
guages such as C#, Clojure, Objective C, R, and many oth-
ers2. The solution message buffer is a so called“union type”,
that means it provides fields for many different data types,
but not all of them need to be used. In particular there
are fields for storing Boolean, integers, doubles, and strings,
as well as arrays of these types, and there is also a field
for storing bytes. Which data type is stored in which field
is again customizable. HeuristicLab uses a SolutionMes-

sageBuilder class to convert the variables in the scope to
variables in the solution message. This message builder is
flexible and can be extended to use custom converters, so
if the user adds a special representation to HeuristicLab a
converter can be provided to store that representation in a
message. By default, if the designer of an ExternalEvalua-
tionProblem would use an integer vector, it would be stored
in an integer array variable in the solution message. The
simulation model can then extract the variable and use it to
set its parameters. The protocol buffer is also extensible in
that new optional fields may be added at a later date. Fi-
nally, transmission to the client is also abstracted in the form
of channels. The default channel is based on the transmis-
sion control protocol (TCP) which will start a connection to
a network socket that is opened by the simulation software.
The messages are then exchanged over this channel.

Parallelization and Caching

If the required time to execute a simulation model becomes
very long, users might want to parallelize the simulation by
running the model on multiple computers. In HeuristicLab
this is easily possible through the use of the parallel engine.
The parallel engine allows multiple evaluation operators to
be executed concurrently which in turn can make use of mul-

1
http://code.google.com/p/protobuf

2
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

message SolutionMessage {
message IntegerVariable {
required string name = 1;
optional int32 data = 2;

}
message IntegerArrayVariable {
required string name = 1;
repeated int32 data = 2;
optional int32 length = 3;

}
//... further sub-messages omitted for brevity ...
required int32 solutionId = 1;
repeated IntegerVariable integerVars = 2;
repeated IntegerArrayVariable integerArrayVars = 3;
repeated DoubleVariable doubleVars = 4;
repeated DoubleArrayVariable doubleArrayVars = 5;
repeated BoolVariable boolVars = 6;
repeated BoolArrayVariable boolArrayVars = 7;
repeated StringVariable stringVars = 8;
repeated StringArrayVariable stringArrayVars = 9;
repeated RawVariable rawVars = 10;

}
message QualityMessage {

required int32 solutionId = 1;
required double quality = 2;

}

Figure 3: Definition of the generic interface messages.

tiple channels defined in the Clients parameter. It makes
use of the ThreadPool in .NET which manages the avail-
able threads for efficient operations. To further speed up
the optimization the user can add aforementioned Evalua-

tionCache and the respective evaluator. The cache can be
persisted to a file or exported as a comma-separated-values
(CSV) file for later analysis [17].

The application of these features in HeuristicLab on a
simulation-based optimization task in a production planning
and control scenario will be discussed in the next section.

3. SIMULATION OF MANUFACTURING

CONTROL STRATEGIES
Production planning and control has a major impact on

the performance of manufacturing systems. Mostly key per-
formance indicators like inventory, tardiness and service level
are measured to identify the logistical performance of such
systems. One of the research questions treated concerning
production planning and control is the parameterization of
these methods. Looking at the available literature shows
that research currently focuses on analytical models [2, 3].
Such models have the advantage that optimal solutions can
be identified. However, their disadvantage is the simple
structure of production systems these models have to as-
sume. To identify good parameters for production planning
and control, simulation studies can be applied which are able
to model more complex and therefore more practically rele-
vant production systems. For dispatching rule development
this method has already broadly been applied [21, 5]. Re-
cently simulation is also applied to identify good production
planning and control parameters like lotsize and production
lead time [12] whereby in [11] a simulation framework to
support this approach is provided. Motivated by a practi-
cal case, in this paper a production system is studied with
some materials being produced to stock and others being
produced to order. In detail the practically relevant prob-

128

Figure 4: Example of a simulation-based optimization prob-
lem configuration in HeuristicLab 3.3 with multiple bounds
shown for each dimension of an integer parameter vector.
The first column denotes the minimum value, the second
column the maximum value, and the step size can be given
in the third column.

lem is how to combine these materials in one production sys-
tem. The complexity of the problem makes it analytically
intractable and therefore the simulation-based optimization
approach becomes a suitable option. For the simulation
model generation, the simulation framework developed in
[11] is applied in this paper.

3.1 Model Description
The modeled production system follows a flow shop struc-

ture inspired by a production company operating in the au-
tomotive sector. The flow shop consists of six machines (M1-
M6), which are arranged in three machine groups which can
be seen as production, assembling and packaging. In each
group there are two individual machines which are identical,
so it is possible to produce all products on both machines
within the machine groups.
The production planning and control methods for the ma-

terials are material requirements planning (MRP) as well as
kanban. Half of the finished goods (items) are MRP planned
and have a demand with a variation coefficient of 0.5. The
second half of the items are kanban controlled and have a
variation coefficient of 0.25. The question to answer is how
should the planned lead times, safety stocks, and fixed order
periods (FOP) for MRP and the number and size of kan-
ban containers be set to minimize inventory and tardiness
costs with respect to a predefined production system capac-
ity. The orders were chosen such that the system utilization
is approximately 85%.
The basic function of MRP is to plan material require-

ments. The target of MRP is to schedule jobs and purchase
orders to satisfy material requirements generated by exter-

nal demand. Kanban on the other hand is a pull system and
triggered by demand. If a kanban is empty the upstream
workstation gets a signal to reproduce the used material in
the amount of the kanban size. For a more detailed descrip-
tion of the methods refer to [10].

Market Scenarios

Two different scenarios are considered in this work which
shall be optimized and compared. The scenarios differ in the
machine allocation policy of the production system which is
illustrated in Figure 6a and 6b. While in the first scenario
each machine group dedicates a machine to either MRP or
kanban controlled materials, the second scenario shares the
machines between these strategies. In both scenarios there
are four kinds of items, four materials and two raw materi-
als. There are customer orders for a total of 3000 parts per
month of products 10 and 12, and 4500 parts per month for
products 11 and 13. The actual amount per order is log-
normal distributed with the values given in Table 1. The
customer required lead time is also lognormal distributed,
but with a mean value of 10 days and a standard deviation
of 1.4 days for all finished products.

Table 1: Market for the small size scenario

Item 10 11 12 13
Orders / month [pcs] 3000 4500 3000 4500
Order amount µ [pcs] 100 150 100 150
Order amount σ [pcs] 50 75 25 37.5

Bill of Material

Figure 5 shows the bill of material (BOM) for the scenarios
and the LLC (low level code). LLC 0 combines all finished
goods which are arranged into two product groups called
product group PG1 and PG2. The arrows indicate which
item is required to produce which other item and the car-
dinality in the arrows states the required number of items.
The materials in LLC 3 are purchased materials in this case
that are always available and need not be taken into con-
siderations for the planning. The items in PG1 as well as
item 20 and 30 are controlled by MRP, whereas the items in
PG2, as well as item 21 and 31 are kanban controlled.

Figure 5: Bill of material

129

Machine Allocation Policies and Routing

Naturally, the different allocation scenarios also affect the
routing. In the case where the production is mixed items
1X are produced on machine group MG3, items 2X are pro-
duced on machine group MG2, and items 3X are produced
on machine group MG1. In the segmented case the machine
groups are split according to the control strategy. Items 10
and 11 are produced only on M5, item 20 is produced on M3,
and item 30 is produced on M1. While the kanban controlled
items 12, 13, 21, and 31 are produced on the respective other
machine in the machine groups. The processing and set up
times are equal for all item and machine combinations and
are given in Table 2. Generally, the orders are sorted by an
earliest due date (EDD) dispatching rule.

(a) segmented (b) mixed

Figure 6: Different machine allocation policies.

Table 2: Processing and set up times for all items on all
workstations. Set up times occur if a production order is
processed on a machine that differs from the previously pro-
cessed order. Otherwise no set up time is required.

µ σ

Processing [min] 4.86 2.43
Set up [min] 6 0.15

4. COUPLING WITH HEURISTICLAB
The simulation model described in the previous section

is implemented in AnyLogic3 6. AnyLogic is written in
Java and allows to add Java code in various parts of the
modelling process. Generally one creates a model in form
of an ActiveObject which might contain many other Ac-
tiveObjects. The model can then be run in different ex-
periments such as a SimulationExperiment. To couple the
model with HeuristicLab and make use of the generic data-
exchange interface a special type of experiment is used. In

3http://www.xjtek.com

ExperimentInitialization();

for (e = 0 to Experiments) do

BeforeExperiment();

for (i = 0 to Iterations) do

for (r = 0 to Replications) do

BeforeSimulationRun();

// run the model

AfterSimulationRun();

end for

AfterIteration();

end for

end for

Figure 7: Pseudo code of the ParametersVariation experi-
ment in AnyLogic 6

AnyLogic the so called ParametersVariation experiment
allows to perform a set of simulation runs for certain pa-
rameters. These parameters can be varied automatically
given certain bounds and a step size, but can also be varied
freely such as by HeuristicLab. For this purpose a small Java
library was added to the model, which is also available on
the HeuristicLab website4. The Java library abstracts the
data-exchange part and allows to set the simulation model
up as either a push or a poll service for HeuristicLab. In
the push service the model needs to implement an interface
which is passed to the library, in the poll service the library
can be polled for incoming solution messages and a qual-
ity can be returned. The ParametersVariation experiment
in AnyLogic has a few steps which perfectly allow to inte-
grate the communication requirements as can be seen in Fig-
ure 7. In the ExperimentInitialization section the library
is used to create a new poll service on a given TCP port.
In BeforeExperiment the quality is initialized, the solution
message is polled and the process blocks until a message
is received. In BeforeSimulationRun the parameters are as-
signed from the received values, and in AfterSimulationRun

the performance indicators are calculated and added to the
quality. Finally in AfterIteration the average quality is
calculated, the library is called to transmit the value back
to HeuristicLab, the quality is reset, and a new message is
polled.

4.1 Experiment Design
The system utilization for all experiments is about 85%.

The performance measures are the overall costs separated in
inventory and tardiness costs. The fitness value after each
iteration is calculated as the mean value of the overall costs
measured in Euro. The tardiness costs are corrected by the
end of the simulation run. All customer orders that cannot
be satisfied when the simulation model ends are penalized
as being tardy to avoid situations with seemingly low costs,
but only due to excessively delaying customer orders. The
inventory cost rate to the tardiness costs rate is chosen to
be 1:20 so that tardiness costs are penalized stronger. In
the experiments one year with 360 days is analyzed whereby
each run is replicated 5 times to account for stochastic vari-
ance.

4http://dev.heuristiclab.com/howtos

130

5. RESULTS
The results have been computed by applying different al-

gorithms on the simulation model in the scenario where the
production is segmented as well as in the mixed case. Fig-
ure 8 shows a comparison of the quality performance in the
segmented case with various configurations of genetic algo-
rithms (GA) and evolution strategies (ES). For the GA,
”1-point” denotes a single point crossover, ”Discrete” is a
discrete crossover choosing each gene randomly from one
of the parents, and ”Average” denotes an averaging of the
genes. The mutation operator, termed ”RNA”, was chosen
to slightly perturb a solution by adding a normal distributed
value to each gene and rounding the result. For the ES there
were runs attempted with comma selection without recom-
bination as well as with average (intermediate) and discrete
(dominant) recombination. Every algorithm configuration
was run with the same seed so that the same initial popula-
tion was used. The algorithms were set to evaluate 10,000
solutions and run times for a complete run varied from 16
hours on a modern quad-core with 3.2Ghz to 24 hours on
an older laptop with 1.87Ghz. The cache was active in all
runs, but emptied before each new run. Some runs of the
genetic algorithm benefited from the cache in that about 1-
10% of the configurations were revisited and needed not to
be reevaluated. This reduced the runtime to about 2 hours
on average. The cache for the evolution strategy typically
showed no or an insignificant number of hits meaning also
that it found a larger number of unique solutions. In general
in this scenario, the evolution strategy was able to find better
solutions than the genetic algorithm. The quality progress
of the ES showed the typical exponential shape in contrast
to the progress of the GA which suggests that the discovery
of better solutions is a more random event. Further con-
siderations of the quality progress shows that variations in
the mixed scenario were less common and the search could
progress more smoothly, while in the segmented scenario the
quality variations between the generations were higher. This
indicates that the mixed scenario is better to optimize and
possibly more robust to parameter variations.
The best quality / least costs that could be achieved were

about 40,000 in the segmented allocation scenario and close
to 9000 in the mixed allocation scenario. This indicates that
sharing of the machines might be beneficial when considering
the rather small manufacturing environment under approxi-
mately 85% utilization. The generalization of these findings
to real-world scenarios needs of course a much more thor-
ough analysis under various utilization levels and also with
more complex and bigger manufacturing scenarios.

6. CONCLUSIONS
Metaheuristic software environments have a great bene-

fit in that users can make use of existing algorithms and
problems. Problem data can be entered into the available
models and a range of different methods can be quickly em-
ployed to find the best solution. Nevertheless, the devel-
opment of additional problems, possibly also making use of
further problem-oriented frameworks, often requires users to
deal with deeper parts both environments and may require
a certain programming skill. The integration of generic data
exchange methods, such as protocol buffers eases the appli-
cation of optimization and allows users to provide a fitness
function in a way suitable for them. For this purpose a

(a) genetic algorithm in the segmented scenario

(b) evolution strategy in the segmented scenario

(c) genetic algorithm in the mixed scenario

(d) evolution strategy in the mixed scenario

Figure 8: Performance comparison of algorithms with re-
spect to the current best quality progress in different sce-
narios.

data-exchange protocol was introduced that is based on two
protocol buffer messages and it has been shown how the inte-
gration was performed within the HeuristicLab architecture
as well as in the AnyLogic simulation environment. Due to
the generic nature of these messages and the broad availabil-
ity of protocol buffer implementations the results could also
be transferred to further frameworks and environments. Fi-
nally, results were shown from a simulation-based optimiza-
tion study that benefited from the described protocol.

7. ACKNOWLEDGMENTS
This work was supported by Austrian Research Promotion

Agency (FFG) within the Josef Ressel Centre “Heureka!”.

131

8. REFERENCES
[1] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham.

Genetic Algorithms and Genetic Programming -
Modern Concepts and Practical Applications.
Numerical Insights. CRC Press, 2009.

[2] K. Altendorfer. Capacity and Inventory Planning for
Make-to-Order Production Systems - The Impact of a
Customer Required Lead Time Distribution. PhD
thesis, University of Vienna, 2011.

[3] K. Altendorfer and S. Minner. Simultaneous
optimization of capacity and planned lead time in a
two-stage production system with different customer
due dates. European Journal of Operational Research,
213(1):134–146, 2011.

[4] H.-G. Beyer and H.-P. Schwefel. Evolution strategies -
A comprehensive introduction. Natural Computing,
1(1):3–52, March 2002.

[5] R. Dabbas, J. Fowler, D. Rollier, and D. McCarville.
Multiple response optimization using mixture-designed
experiments and desirability functions in
semiconductor scheduling. International Journal of
Production Research, 41(5):939, 2003.

[6] M. Fu, F. Glover, and J. April. Simulation
optimization: A review, new developments, and
applications. In Proceedings of the 2005 Winter
Simulation Conference, pages 83–95, 2005.

[7] M. C. Fu. Optimization for simulation: Theory vs.
practice. INFORMS J. on Computing, 14(3):192–215,
Summer 2002.

[8] F. Glover. Tabu search – part I. ORSA Journal on
Computing, 1(3):190–206, 1989.

[9] F. Glover, J. P. Kelly, and M. Laguna. New advances
for wedding optimization and simulation. In P. A.
Farrington, H. B. Nembhard, D. T. Sturrock, and
G. W. Evans, editors, Proceedings of the 1999 Winter
Simulation Conference, pages 255–260, 1999.

[10] W. Hopp and M. Spearman. Factory Physics. Mc
Graw Hill / Irwin: Boston, 2008.

[11] A. Hübl, K. Altendorfer, H. Jodlbauer, M. Gansterer,
and R. Hartl. Flexible model for analyzing production
systems with discrete event simulation. In Proceedings
of the 2011 Winter Simulation Conference, pages
1559–1570, Phoenix, Arizona, U.S.A, December 2011.

[12] H. Jodlbauer and A. Huber. Service-level performance
of mrp, kanban, conwip and dbr due to parameter
stability and environmental robustness. International
Journal of Production Research, 46(8):2179–2195,
2008.

[13] J. Kennedy and R. C. Eberhardt. Particle swarm
optimization. In Proceedings of the 1995 IEEE
International Conference on Neural Networks,
volume 4, pages 1942–1948. IEEE Press, 1995.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[15] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer, 3rd edition, 1999.

[16] J. Parejo, A. Ruiz-Cortés, S. Lozano, and
P. Fernandez. Metaheuristic optimization frameworks:
a survey and benchmarking. Soft Computing - A
Fusion of Foundations, Methodologies and
Applications, 16(3):527–561, 2011.

[17] E. Pitzer, A. Beham, M. Affenzeller, H. Heiss, and
M. Vorderwinkler. Production fine planning using a
solution archive of priority rules. In Proceedings of the
IEEE 3rd International Symposium on Logistics and
Industrial Informatics (Lindi 2011), pages 111–116,
August, 2011.

[18] S. Vonolfen, M. Affenzeller, A. Beham, S. Wagner, and
E. Lengauer. Simulation-based evolution of municipal
glass-waste collection strategies utilizing electric
trucks. In Proceedings of the IEEE 3rd International
Symposium on Logistics and Industrial Informatics
(Lindi 2011), pages 177–182, August 2011.

[19] S. Wagner. Heuristic Optimization Software Systems -
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Johannes Kepler University, Linz, Austria, 2009.

[20] S. Wagner, A. Beham, G. K. Kronberger,
M. Kommenda, E. Pitzer, M. Kofler, S. Vonolfen,
S. M. Winkler, V. Dorfer, and M. Affenzeller.
Heuristiclab 3.3: A unified approach to metaheuristic
optimization. In Actas del séptimo congreso español
sobre Metaheuŕısticas, Algoritmos Evolutivos y
Bioinspirados (MAEB’2010), page 8, Valencia, Spain,
September 2010.

[21] A. Waikar, B. Sarker, and A. Lal. A comparative
study of some priority dispatching rules under
different shop loads. Production Planning & Control,
6(4):301–310, 1995.

[22] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997.

132

