
Tutorial: Statistical Analysis of Optimization Algorithms with R

Statistical Analysis of Optimization Algorithms
with R

T. Bartz-Beielstein, Mike Preuss, Martin Zaefferer

CIplus (Cologne University of Applied Sciences) and
Algorithm Engineering (TU Dortmund)

July 2012

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.

ACM 978-1-4503-1178-6/12/07.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 1/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Agenda

Introduction

R Basics and Technical Details

Exploratory Data Analysis

Distributions and Random Number Generation

Design of Experiments (DoE)

R-based automated analysis and tuning, e.g., sequential parameter
optimization

Reporting results. Automated report generation using Sweave

R-based optimization and benchmarking resources

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 2/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Your Instructors Today
I Dr. Thomas Bartz-Beielstein is a professor for Applied Mathematics at

Cologne University of Applied Sciences. He has published more than
several dozen research papers, presented tutorials about tuning, and has
edited several books in the field of Computational Intelligence.

I Mike Preuss is research associate at the Computer Science Department,
TU Dortmund. His main fields of activity are EAs for real-valued problems
and their application in numerous engineering domains

I Martin Zaefferer is a research assistant at Cologne University of Applied
Sciences. His research interests include computational intelligence,
applications of knowledge discovery and sequential parameter
optimization.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 3/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Introduction

Goals
I Most effective approach for learning how to design, conduct, and

analyze experiments that optimize performance in algorithms
I Show how to use statistically designed experiments to

I Obtain information for characterization and optimization of
algorithms

I Improve their performance
I Design and develop new operators and algorithms

I Learn how to evaluate algorithm alternatives, improve their field
performance and reliability

I Conduct experiments effectively and efficiently
I Hands-on tutorial which

I demonstrates how to analyze results from real experimental studies,
e.g., experimental studies in EC

I gives a comprehensive introduction in the R language
I introduces the powerful GUI “rstudio” (http://rstudio.org)
I will be held in an interactive manner, i.e., the analyses will be

performed in real time.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 4/106

1259

http://rstudio.org


Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Interfacing with R

Pure R

I Windows version comes with a
simple build-in GUI

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 5/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Interfacing with R

RStudio
I Powerful productivity tools

I Syntax highlighting, code
completion, and smart
indentation

I Execute R code directly from
the source editor

I Easily manage multiple
working directories using
projects

I Quickly navigate code using
typeahead search and go to
definition

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 6/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Iris Data

The Famous Iris Data Set
I Four features were measured from each sample

I Length and width of sepal and petal, respectively

Photo by[7]

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 7/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Iris Data

The Famous Iris Data Set: Iris Setosa, Virginica, and
Versicolor

I Based on the combination of the four features, Fisher [5] developed
a linear discriminant model to determine which species from these
four measurements

I Used as a typical test for many other classification techniques

I Iris setosa [3], iris virginica [10], and iris versicolor [8]

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 8/106

1260



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Iris Data

The Famous Iris Data Set: Hands-on Exercises
I How to generate a scatter plot of Fisher’s Iris data with pure R code

I First, we load the data frame:

> data(iris)

I Next, we have a quick look at the data (here, only the first three
rows are shown)

> iris[1:3,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 9/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Iris Data

The Famous Iris Data Set: Hands-on Exercises
I The summary() command gives a quick overview

> options(width=70)
> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

Median :5.800 Median :3.000 Median :4.350 Median :1.300

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species

setosa :50

versicolor:50

virginica :50

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 10/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Iris Data

The Famous Iris Data Set: Hands-on Exercises
I Finally, a scatter plot is generated with the pairs() function.

> pairs(iris[,1:4], col=c("red", "green", "blue")[as.numeric(iris$Species)])

Sepal.Length

2.0 3.0 4.0 0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

1 2 3 4 5 6 7

Petal.Width

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 11/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

A Gentle Introduction to R

I Some of the following examples are based on [9]

I R can be used as a calculator
> 2+2

[1] 4

> 5*3*4

[1] 60

I Data entry
> year <- c(1800,1850,1900,1950,2000)
> pop <- c(18,54,500,1701,7731)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 12/106

1261



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

A Simple plot

Data entry:
> print( c(year,pop))

[1] 1800 1850 1900 1950 2000 18 54 500 1701 7731

> plot(pop~year, pch=15)

1800 1850 1900 1950 2000

0
20

00
40

00
60

00
80

00

year

po
p

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 13/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

R sessions

The working directory.
> getwd()

[1] "C:/Users/bartz/Documents/workspace/SvnSpot.d/trunk/publications/Gecco2012Tutorial.d/Slides2012.d"

Use ls to list contents of R’s workspace:
> ls()

[1] "iris" "mygd" "pop" "year"

Quitting: Note, q() is a function and can be used if R should be quit.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 14/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Expressions, Objects, and Methods
I Standard interaction mode in R is as follows:

I Users enter an expression, which is evaluated by the R system. Result
is printed on the screen

I Expressions work on objects

I Each object has a class attribute, which is a character vector

> x <- 10
> class(x)

[1] "numeric"

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 15/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Logical Operators and Vectors in R

I R implements the following logical operators
I & , the logical ”and”,
I | , the logical ”or”, and
I !, the logical ”not” operator

I R commands to generate vectors:
I c() (”concatenate”),
I seq() (”sequence”), and
I rep() (”replicate”)

I Modes: logical, numeric, character, or list

> x <- c(1,2)
> y <- c(3,4)
> z <- c(x,y)
> x ==y

[1] FALSE FALSE

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 16/106

1262



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Vectors in R

I R’s repeat command rep() can be used in two variants
I To repeat the numerical value one ten times, we use

> rep(1,10)

[1] 1 1 1 1 1 1 1 1 1 1

I The second argument to the rep() command can be a vector.
> v <- c(1,2,4)
> letters <- c("a","b","c")
> rep(letters, v)

[1] "a" "b" "b" "c" "c" "c" "c"

I Here, the first element ”a” is repeated once, the second element ”b”
twice, and the third element ”c” four times

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 17/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Vectors in R: Sequences

> seq(from=5, to=22, by=3)

[1] 5 8 11 14 17 20

Short form
> seq(5,22,3)

[1] 5 8 11 14 17 20

Default step size is one. Short form with colon
> seq(0,10) == 0:10

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Character vectors: vectors of text strings, entries are specified in quotes
> c("one","two","three")

[1] "one" "two" "three"

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 18/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Calculations with Vectors in R

I Calculations with vectors of the same length (like ordinary numbers)
> x <- c(1,2,3)
> y <- c(1,2,4)
> x+y

[1] 2 4 7

I Relational expressions can be evaluated as follows
> x < y

[1] FALSE FALSE TRUE

I If vectors do not have the same length, the shorter vector is recycled
> y <- c(5,6)
> x+y

[1] 6 8 8

I Vector v modified to (5, 6, 5), i.e., the first element is added at the
end. Both vectors have the same size and can be added

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 19/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Calculating the mean of vectors in R

Consider the vector
> x<- c(2,3,5,7)

To calculate its mean,

x =
1

n

n∑
i=1

xi ,

we can proceed as follows:
> sum(x)/length(x)

[1] 4.25

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 20/106

1263



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Calculating the standard deviation of vectors in R

To calculate its standard deviation,

sd(x) =

√√√√ n∑
i=1

(xi − x)2

n − 1
,

we can proceed as follows:
> xbar <- sum(x)/length(x)

> sqrt( sum( (x - xbar)^2 / (length(x)-1) ) )

[1] 2.217356

Alternatively, we can use the build-in commands
> mean(x)

[1] 4.25

> sd(x)

[1] 2.217356

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 21/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Subsets, and Indexing

Brackets are used to access certain elements of a vector. To select the
i-th entry of the vector v , e.g., the third entry v3, we can use the
command
> v <- c(10,20,30,40,50,60,70,80,90,100)
> v[3]

[1] 30

This procedure is referred to as indexing in the following. To select a
subset, we can index with a vector.
> v[ c(3,4,5)]

[1] 30 40 50

Use negative subscripts to omit elements in nominated subscript positions
> v[-c(2,3)]

[1] 10 40 50 60 70 80 90 100

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 22/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Conditional Selection
I To modify elements of an vector, we can use the assignment operator

> v[1] <- -10
> v

[1] -10 20 30 40 50 60 70 80 90 100

I Conditional selection can be performed as follows
> v>50

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> v[v>50]

[1] 60 70 80 90 100

I Logical operators can be used to combine several subset selection
conditions.

I For example, to select entries, which are larger than 55 and smaller
than 79, we can use the following command

> v[ v > 55 & v < 79]

[1] 60 70

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 23/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Missing Values. The Symbol NA

> y <- c(1, NA, 3, 0, NA)
> y

[1] 1 NA 3 0 NA

Any operation that involves NA generates NA. The following does not
work as expected, all values remain unchanged:
> y[y==NA] <- 0
> print(y)

[1] 1 NA 3 0 NA

To replace NA by 0, use is.na():
> y[is.na(y)] <- 0
> print(y)

[1] 1 0 3 0 0

Some functions, e.g., mean() take the argument "na.rm=T".

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 24/106

1264



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Factors

Categorical data such as gender can be ”female” or ”male”, respectively.
Categorical data should be specified as factors.
> gender <- c(rep("female", 3), rep("male", 5))

To generate a factor, use R’s factor() command
> gender <- factor(gender)

Now: internally 3 1s are followed by 5 2s. We can use the function
as.numeric() to extract the numerical coding as numbers ”1” and ”2”.
> gender

[1] female female female male male male male male

Levels: female male

> as.numeric(gender)

[1] 1 1 1 2 2 2 2 2

A factor has set of levels. ”female” and ”male” are the levels of the factor
gender:
> levels(gender)

[1] "female" "male"

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 25/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Matrices and Arrays

Matrices and arrays are vectors with dimensions.
> x <- 1:20
> dim(x) <- c(5,4)
> x

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

We can also use the matrix() command.
> matrix(1:20, nrow= 5)

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 26/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Matrices and Arrays

To fill the matrix rowwise, we can use the argument byrow=T. To label
the rows of a matrix, we can use the command rownames().
> A <- matrix(1:20, nrow= 5, byrow=T)
> rownames(A) <- LETTERS[1:nrow(A)]
> colnames(A) <- 1:ncol(A)
> A

1 2 3 4

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

D 13 14 15 16

E 17 18 19 20

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 27/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Combining Matrices and Vectors

cbind() and rbind() combine objects such as matrices or vectors
columnwise or rowwise, respectively
> A <- matrix(1:4, nrow= 2, byrow=T)
> B <- matrix(10*(1:4), nrow= 2, byrow=T)
> cbind(A,B)

[,1] [,2] [,3] [,4]

[1,] 1 2 10 20

[2,] 3 4 30 40

> rbind(A,B)

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 10 20

[4,] 30 40

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 28/106

1265



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Lists

Many R functions return results as a list. Flexible structures to store
heterogeneous data, e.g., numerical or boolean values.
> l <- list( c("a", "b", "c"), 1:4, c(TRUE, TRUE, FALSE))
> l

[[1]]

[1] "a" "b" "c"

[[2]]

[1] 1 2 3 4

[[3]]

[1] TRUE TRUE FALSE

List l has three elements: 1) three strings, 2) numbers from one to four,
and 3) three boolean values.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 29/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Addressing Lists

Single square brackets return a list.
> l[1]

[[1]]

[1] "a" "b" "c"

Here, l[1] returns a list of length one, whereas l[2:3] returns a list of
length two.
> l[2:3]

[[1]]

[1] 1 2 3 4

[[2]]

[1] TRUE TRUE FALSE

List elements can be addressed by double square brackets
> l[[1]]

[1] "a" "b" "c"

> l[[1]][2]

[1] "b"

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 30/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Adding and Deleting List Elements

List elements can be deleted by
setting their values to NULL
> l

[[1]]

[1] "a" "b" "c"

[[2]]

[1] 1 2 3 4

[[3]]

[1] TRUE TRUE FALSE

Delete the first element
> l[[1]] <- NULL
> l

[[1]]

[1] 1 2 3 4

[[2]]

[1] TRUE TRUE FALSE

To delete multiple list elements, we
can use the minus sign
> l <- c(l,l)
> l <- l[-c(3,4)]
> l

[[1]]

[1] 1 2 3 4

[[2]]

[1] TRUE TRUE FALSE

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 31/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Length of Lists

length() to determine the length of a list
> length(l)

[1] 2

Adding a new element at the end using length()
> l[[length(l)+1]] <- c("x","y")
> l

[[1]]

[1] 1 2 3 4

[[2]]

[1] TRUE TRUE FALSE

[[3]]

[1] "x" "y"

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 32/106

1266



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Naming List Elements

We can use the names() function to add names to list elements.
> names(l) <- c("numbers", "booleans")
> l

$numbers

[1] 1 2 3 4

$booleans

[1] TRUE TRUE FALSE

$<NA>

[1] "x" "y"

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 33/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Data Frames

Data frames can be used for grouping data. A data frame is a list of
vectors of the same length.
> year <- c(1800,1850,1900,1950,2000)
> pop <- c(18,54,500,1701,7731)
> demography <- data.frame(y=year, p =pop)
> demography

y p

1 1800 18

2 1850 54

3 1900 500

4 1950 1701

5 2000 7731

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 34/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Implicit Loops Using Apply
I apply(x, margin, fun) returns a vector or array or list of values

obtained by applying a function to margins of an array or matrix

I Margin: vector giving the subscripts which the function will be
applied over

I For example, for a matrix 1 indicates rows, 2 columns, c(1, 2) rows
and columns, or in matrices named dimnames

I Implicit Loops Using sapply(), lapply(), and tapply()
I sapply() returns a simplified result (vector or matrix),
I lapply() returns a list, and
I tapply() creates a table

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 35/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Implicit Loops Using lapply()
List of car data:
> cars <- list(speed=c(180, 250, 300),
+ price = c(10.5, 55.6, 76.0),
+ consumption=c(5, 7.1, 12.5))
> cars

$speed

[1] 180 250 300

$price

[1] 10.5 55.6 76.0

$consumption

[1] 5.0 7.1 12.5

Consider the sum() function.
> lapply(cars, sum)

$speed

[1] 730

$price

[1] 142.1

$consumption

[1] 24.6

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 36/106

1267



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Implicit Loops Using Anonymous Functions

An anonymous function can be used as well
> lapply(cars, function(x) return(x[2]))

$speed

[1] 250

$price

[1] 55.6

$consumption

[1] 7.1

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 37/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

sapply()

Given a list structure x , the function unlist() simplifies it to produce a
vector. In order to obtain a vector of mean values instead of a list using
the lapply() function, the following command can be used.
> unlist(lapply(cars, mean))

speed price consumption

243.33333 47.36667 8.20000

Using sapply(), the same result can be obtained directly.
> sapply(cars, mean)

speed price consumption

243.33333 47.36667 8.20000

For example, to apply mean() to each of the iris data set columns:
> data(iris)
> sapply(iris, mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.843333 3.057333 3.758000 1.199333 NA

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 38/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Sorting

We can use the sort() function to sort a vector.
> sort(iris$Sepal.Length)[1:10]

[1] 4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.7

The order() function generates a vector of the indices of the sorted
values.
> a <- c(20,-1,4,3)
> order(a)

[1] 2 4 3 1

Here, the smallest value ”1” is at position 2, the next at position 4,
whereas the largest value is at position 1.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 39/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

A Gentle Introduction to R

Sorting Using order()

> a

[1] 20 -1 4 3

> i <- order(a)
> i

[1] 2 4 3 1

> a[i]

[1] -1 3 4 20

Sorting a set of variables according to the values of some other variables:
> i <- order(iris$Sepal.Length)
> options(width=70)
> iris[i,][1:4,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14 4.3 3.0 1.1 0.1 setosa

9 4.4 2.9 1.4 0.2 setosa

39 4.4 3.0 1.3 0.2 setosa

43 4.4 3.2 1.3 0.2 setosa

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 40/106

1268



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Simple Formulas

> celsius<-(0:4)*10
> fahrenheit <- 9/5*celsius+32
> conversion <- data.frame(c=celsius, f=fahrenheit)
> print(conversion)

c f

1 0 32

2 10 50

3 20 68

4 30 86

5 40 104

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 41/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Control Structures

Try using functions from the apply(x) family instead of loops.
system.time() returns CPU (and other) times used by process. First,
an implementation without loops.
> require(stats)
> x <- 1:1000000
> system.time(y <- x^2)

user system elapsed

0.02 0.01 0.03

Next, the for() function to perform calculation with loops.
> x <- 1:1000000
> system.time(
+ for( i in 1:length(x)) y[i] <- x[i]^2
+ )

user system elapsed

2.49 0.02 2.53

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 42/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Loops with for() and while()

Loops can be generated with the for() function as follows.
> for( i in 1:5) print(i)

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

We can also use the while() command.
> x<-1
> while(x <= 5){
+ print(x)
+ x <- x+1
+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 43/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Loops with repeat()

Alternatively, the repeat() command can be used in combination with
the break() command.
> x <- 1
> repeat{
+ print(x)
+ x<-x+1
+ if (x > 5) break
+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 44/106

1269



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

R Functions and Arguments

R has many pre-defined functions, e.g., mean, sum, or range.
> year <- c(1800,1850,1900,1950,2000)
> pop <- c(18,54,500,1701,7731)
> range(year)

[1] 1800 2000

> summary(year)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1800 1850 1900 1900 1950 2000

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 45/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Arguments and Positional Matching

R uses positional matching, i.e., the n-th argument corresponds to the
n-th function variable. For example, plot() assumes: 1st argument
(year) corresponds to x , whereas 2nd (population) corresponds y
> plot(year, pop)

1800 1850 1900 1950 2000

0
20

00
40

00
60

00
80

00

year

po
p

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 46/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Named Actual Arguments
I Positional matching: very simple concept, becomes unhandily if

many arguments occur

I R can handle named actual arguments, i.e., names are matched
against their formal arguments

I Output from plot() with x and y values exchanged:
> plot(y=year, x=pop)

0 2000 4000 6000 8000

18
00

18
50

19
00

19
50

20
00

pop

ye
ar

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 47/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

R Programming

Writing R Functions

Using R’s function() function, we can write our own functions. Note,
%*% denotes matrix multiplication
> norm <- function(x) sqrt(x%*%x)
> norm(1:4)

[,1]

[1,] 5.477226

Curly braces can be used to define the body of the function.
> h <- function(x){
+ if (x<0) -1
+ else 1}
> h(1)

[1] 1

Note, we can use the command ifelse() as well.
> heaviside <- function(x) ifelse(x<0,-1,1)
> heaviside(1)

[1] 1

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 48/106

1270



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Graphics

Graphics: The Basic Plot Command plot(x,y)

I The basic plot command is plot(x,y)

I Alternatively, plot(y ∼ x) can be used

> x <- (0:20)*pi/10
> y <- sin(x)
> plot(y~x)

0 1 2 3 4 5 6

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

y

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 49/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Graphics

Combining Plots
I Add lines to this plot using the function lines()

> n<-100
> x <- (0:n)*2*pi/100
> y <- sin(x)+rnorm(n+1)
> plot(y~x)
> lines(x,sin(x))

0 1 2 3 4 5 6

−3
−2

−1
0

1
2

x

y

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 50/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Graphics

Modifying the Layout
I par() modifies layouts, e.g., margin sizes, line widths and types,

colors, clipping, character sizes and fonts

> plot( (1:50)*0.92, sin( (1:50)*0.92))

0 10 20 30 40

−1
.0

−0
.5

0.
0

0.
5

1.
0

(1:50) * 0.92

si
n(

(1
:5

0)
 *

 0
.9

2)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 51/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Graphics

Modifying the Layout
I Now we plot the same figure again with a modified layout. In

addition, two new figures are plotted

> par(mfrow=c(3,1))
> plot( (1:50)*0.92, sin( (1:50)*0.92))
> plot( (1:50)*0.92, cos( (1:50)*0.92))
> plot( (1:50)*0.92, tan( (1:50)*0.92))

0 10 20 30 40

−1
.0

0.
0

1.
0

(1:50) * 0.92

si
n(

(1
:5

0)
 *

 0
.9

2)

0 10 20 30 40

−1
.0

0.
0

1.
0

(1:50) * 0.92

co
s(

(1
:5

0)
 *

 0
.9

2)

0 10 20 30 40

−2
0

0
20

40

(1:50) * 0.92

ta
n(

(1
:5

0)
 *

 0
.9

2)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 52/106

1271



Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Importing and Exporting Data

Importing from Text Files
I read.table() is an easy to use method to importing data from a

simple text file

I Simple test file, say ”simple.txt”:
x y
1 2
2 4
3 6
4 8

> df.simple <- read.table("simple.txt", header = TRUE)
> df.simple

x y

1 1 2

2 2 4

3 3 6

4 4 8

I The result of the read.table() is a data frame.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 53/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R Basics and Technical Details

Importing and Exporting Data

Exporting to Text Files
I write.table() prints its required argument x (after converting it

to a data frame if it is not one nor a matrix) to a file or connection

I write.csv() and write.csv2() provide convenience wrappers for
writing CSV files

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 54/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

Exploratory data analysis (EDA): Overview
I Idea: let the data speak for themselves

I Use of human brain’s abilities as a pattern recognition device

I Reveal new information (“playing trumpet to the tulips”)

I Ways how explore data prior to a formal analysis

I Standard tools:
I Histograms and density plots
I Stem-and-leaf plots
I Scatter plots
I Lattice: lowess smoother, trellis graphics

I Histograms: graphical representations of the frequency distribution
of sets of data

I Areas of the plotted rectangles proportional to the number of
observations with values within rectangle width

I Add density curves, they do not rely on breakpoints

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 55/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

Histograms and Density Plots

> data(iris)
> x <- iris$Sepal.Length
> dens <- density(x)
> hist(x,freq=F)
> lines(dens)

Histogram of x

x

D
en

si
ty

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 56/106

1272



Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

Stem-and-leaf plots
I The stem is on the left, leaves are on the right
I Smallest value reads 42. The value 44 appears four times

> stem(iris$Sepal.Length)

The decimal point is 1 digit(s) to the left of the |

42 | 0

44 | 0000

46 | 000000

48 | 00000000000

50 | 0000000000000000000

52 | 00000

54 | 0000000000000

56 | 00000000000000

58 | 0000000000

60 | 000000000000

62 | 0000000000000

64 | 000000000000

66 | 0000000000

68 | 0000000

70 | 00

72 | 0000

74 | 0

76 | 00000

78 | 0

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 57/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

Boxplots
I Boxplots summarize graphically the following information:

I Outliers
I Smallest and largest value (outliers excluded)
I Lower and upper quantile
I Median

> boxplot(iris$Sepal.Length)

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 58/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

Scatterplots
I Simple but effective tool for the analysis of pairwise relationships

> plot(Sepal.Length~Petal.Length,data=iris)

1 2 3 4 5 6 7

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Petal.Length

S
ep

al
.L

en
gt

h

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 59/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

What to Look for in Plots: Outliers
I Points that appear to be isolated from the main region of the data

are called outliers

I Outliers can distort models to be fit to the data

I But there is no general definition for outliers

I This definition depends on our view of the data

I Boxplots are useful to detect outliers in one dimension, scatterplots
are useful in two dimensions

I However, sometimes outliers will be apparent only in three or more
dimensions.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 60/106

1273



Tutorial: Statistical Analysis of Optimization Algorithms with R

Exploratory Data Analysis

What to Look for in Plots
I Asymmetry

I Most asymmetric distributions are positively or negatively skewed
I Positively skewed distributions can be characterized as follows: There

is a long tail to the right, values near the minimum are bunched up
together, and the largest values are widely dispersed

I Different variabilities
I Sometimes variability increases as data values increase
I Then the logarithmic transformation can be helpful

I Clustering
I Outliers can be considered as a special form of clustering
I Clusters may suggest structures in the data which may or may not

have been expected
I Scatterplots can be useful to detect clusters.

I Non-linearity
I Linear models should not be fitted to data where relationships are

non-linear

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 61/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Distributions and Random Number Generation

Distributions

Example (Binomial distribution)

I Determine five random
numbers following a binomial
(100, 1/5) distribution

> set.seed(123)
> rbinom(5, size = 100, p=1/5)

[1] 18 23 19 25 26

I Hundred samplings with
replacement from a box with 64
black and 16 red balls.
Probability of drawing a red
ball is p = 16/(64 + 16) = 1/5.

I Probability that ten red balls
are drawn, i.e., P(X = 10)

> dbinom(10,100,1/5)

[1] 0.00336282

I CDF, i.e., compute P(X ≤ 10)

> sum(dbinom(0:10, 100, 1/5))

[1] 0.005696381

> pbinom(10,100,1/5)

[1] 0.005696381

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 62/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

A Taxonomy of Algorithm and Problem Designs
I Classify parameters

I Parameters may be qualitative, like for the presence or not of an
recombination operater or numerical, like for parameters that
assume real values

I Our interest: understanding the contribution of these components

I Statistically speaking: parameters are called factors

I The interest is in the effects of the specific levels chosen for these
factors

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 63/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Problems and Algorithms

Tuning

multiple
algorithms
single

problems

multiple
algorithms
multiple
problems

single
algorithm
multiple
problems

single
algorithm
single
problem

I How to perform comparisons?
I Adequate statistics and models?

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 64/106

1274



Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

SASP: Algorithm and Problem Designs
I Basic design: assess the performance of an optimization algorithm

on a single problem instance π
I Randomized optimization algorithms ⇒ performance Y on one

instance is a random variable
I Experiment: On an instance π algorithm is run r times ⇒ collect

sample data Y1, . . . ,Yr (independent, identically distributed)
I One instance π, run the algorithm r times ⇒ r replicates of the

performance measure Y , denoted by Y1, . . . ,Yr

I Samples are conditionally on the sampled instance and given the
random nature of the algorithm, independent and identically
distributed (i.i.d.), i.e.,

p(y1, . . . , yr |π) =
r∏

j=1

p(yj |π). (1)

I Y might be described by a probability density/mass function p(y |π)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 65/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

SASP – Single Algorithm, Single Problem

Tuning

multiple algorithms
single problems

multiple algorithms
multiple problems

single algorithm
multiple problems

single
algorithm

single
problem

real-world setting

determine important factors

optimization

crucial: number of function evaluations

benefit: 

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 66/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

SAMP: Algorithm and Problem Designs
I Multiple problem instances occur if optimization problems have a set

of input data which instantiate the problem

I Experiment: collect sample data Y1, . . . ,YR (independent,
identically distributed)

I Goal: Drawing conclusions about a certain class or population of
instances Π

I Single algorithm, multiple problems: performance Y of the algorithm
on the class Π is described by the probability function

p(y) =
∑
π∈Π

p(y |π)p(π), (2)

with p(π) being the probability of sampling instance π

I In other terms, we are interested in the distribution of Y
marginalized over the population of instances

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 67/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

SAMP – Single Algorithm, Multiple Problems

Tuning

multiple algorithms
single problems

multiple algorithms
multiple problems

single
algorithm
multiple

problems

algorithm development

optimization

 robustness

benefit

important factors

understanding

single algorithm
single problem

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 68/106

1275



Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

MASP: Algorithm and Problem Designs
I Several optimization algorithms are compared on one fixed problem

instance π

I Experiment: collect sample data Y1, . . . ,YR (independent,
identically distributed)

I Goal: comparison of algorithms on one (real-world) problem instance
π

Tuning

multiple
algorithms

single problems

research beginner's paper => rejected

optimization

multiple algorithms ~ one algorithm, but
different parameters

tuning and comparison

benefit

similarities between algorithms

understanding

multiple algorithms
multiple problems

single algorithm
multiple problems

single algorithm
single problem

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 69/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

MAMP: Fixed Algorithm and Problem Designs
I Typically:

I Take a few, fixed instances for the problem at hand
I Collect the results of some runs of the algorithms on these instances

I Statistically, instances are also levels of a factor

I Instances treated as blocks

I All algorithms are run on each single instance

I Results are therefore grouped per instance

Tuning

multiple algorithms
single problems

multiple
algorithms

multiple
problems

research
expert paper =>

accepted

benefit: comparison

huge complexity
single algorithm

multiple problems

single algorithm
single problem

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 70/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

MAMP: Randomized Problem Designs
I Sometimes, several hundred (or even more) problem instances to be

tested ⇒ interest not just on the performance of the algorithms on a
few specific instances, but rather on the generalization of the results
to the entire population of instances

I Procedure: instances are chosen at random from a large set of
possible instances of the problem

I Statistically, instances are also levels of a factor

I However, factor is of a different nature from the fixed algorithmic
factors described above

I Levels are chosen at random and the interest is not in these specific
levels but in the population from which they are sampled

I ⇒ levels and the factor are random

I This leads naturally to a mixed model [4]

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 71/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

MAMP: Randomized Problem Designs
I Organize our presentation in different cases according to the number

and type of factors involved

I Identify the cases with the following notation:〈 algorithm
factors

,
number of
instances

( instance
factors

)
,

number of
runs

〉
.

I Lower-case letters when referring to the number of factors,
upper-case letters when referring to the number of levels

I Dash (-) indicates absence of fixed factors, round parenthesis
indicates nesting

I Example: 〈N, q(M), r〉 means N algorithmic factors, q instances
sampled from each combination of M instance factors, and r runs of
the algorithm per instance

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 72/106

1276



Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

MAMP: Nested Linear Mixed Models
I In statistics, the effects described are modeled as linear

combinations, and mathematical theory has been developed to make
inferences about the populations on the basis of the results observed
in the samples.

I The mixed nature of the factors leads to so-called nested linear
mixed models

I Nontrivial designs, go beyond the classical multifactorial ANOVA,
where all factors are instead treated as fixed

I Mathematical formula involved and the inference derived are
different in the case of mixed-effects models and this may lead to a
different inference

I [4] give an example where this difference clearly arises

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 73/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Summary: A Taxonomy of Algorithm and Problem Designs
I Taxonomy combining ideas from [1] and [4]

I Experimental design notation:〈 algorithm
factors

,
number of
instances

( instance
factors

)
,

number of
runs

〉
.

I Case 〈-, q(-), r〉: Random-Effects Design: one algorithm is evaluated
on q instances randomly sampled from a class Π

I Case 〈N, q(-), r〉: Mixed-Effects Design: h algorithms are evaluated
on q instances randomly sampled from a class Π

I Case 〈1, 1(1), r〉: Fixed-Effects Design: one algorithm is evaluated r
times on one fixed instance π

I . . .

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 74/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Algorithm and Problem Designs
I Classify parameters

I Continuous, categorical, etc.

I Designs
I Factorial, fractional factorial, space filling, etc.

I Models
I ANOVA, regression, kriging, tree-based models, etc.

I R packages for experimental designs: Groemping’s CRAN Task View:
Design of Experiments (DoE) & Analysis of Experimental Data
http:

//cran.r-project.org/web/views/ExperimentalDesign.html

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 75/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Comparison of Two Simulated Annealing Parameter
Settings

I Case 〈2, 1(1), r〉: Fixed-Effects Design: one algorithm is evaluated
on one instance π (fixed), i.e., SASP

> set.seed(123)
> library(SPOT)
> fn <- spotBraninFunction #test function to be optimized by SANN
> x0 <- c(-2,3) #starting point that SANN uses when optimizing Branin
> maxit <- 100 #number of evaluations of Branin allowed for SANN
> temp <- 10
> tmax <- 10
> n <- 100
> y <- rep(1,n)
> y0<-sapply(y, function(x) x<-optim(par=x0, fn=fn, method="SANN"
+ , control=list(maxit=maxit,
+ temp=temp, tmax=tmax))$value)
> temp <- 4
> tmax <- 62
> y <- rep(1,n)
> y1<-sapply(y, function(x) x<-optim(par=x0, fn=fn, method="SANN"
+ , control=list(maxit=maxit,
+ temp=temp, tmax=tmax))$value)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 76/106

1277

http://cran.r-project.org/web/views/ExperimentalDesign.html
http://cran.r-project.org/web/views/ExperimentalDesign.html


Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Comparison: Simple EDA Using Boxplots
> summary(y0)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3984 0.4444 0.6587 2.2770 3.4020 17.9600

> summary(y1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3985 0.4150 0.4439 0.5609 0.5736 2.2250

> boxplot(y0,y1)

1 2

0
5

10
15

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 77/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Comparison: Simple EDA Using Histograms

> par(mfrow=c(2,1))
> hist(y0,xlim = c( min(y0,y1), max(y0,y1)))
> hist(y1,xlim = c( min(y0,y1), max(y0,y1)))
> par(mfrow=c(1,1))

Histogram of y0

y0

Fr
eq

ue
nc

y

0 5 10 15

0
20

50

Histogram of y1

y1

Fr
eq

ue
nc

y

0 5 10 15

0
20

50

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 78/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Simple EDA: Let the Data Speak

> df1 <- read.table("Data.d/NULL.res",header=T)
> options(width=80)
> df1[1:10,]

Function XDIM YDIM STEP SEED CONFIG VARX1 VARX2 Y

1 UserSuppliedFunction 2 1 0 1234 1 23 62 0.5183426

2 UserSuppliedFunction 2 1 0 1235 1 23 62 0.4020790

3 UserSuppliedFunction 2 1 0 1234 2 62 33 3.5002149

4 UserSuppliedFunction 2 1 0 1235 2 62 33 16.6525805

5 UserSuppliedFunction 2 1 0 1234 3 38 26 4.7735424

6 UserSuppliedFunction 2 1 0 1235 3 38 26 0.3987177

7 UserSuppliedFunction 2 1 0 1234 4 70 16 1.4725001

8 UserSuppliedFunction 2 1 0 1235 4 70 16 18.1272253

9 UserSuppliedFunction 2 1 0 1234 5 8 90 0.5871467

10 UserSuppliedFunction 2 1 0 1235 5 8 90 0.6200017

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 79/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Design of Experiments (DoE)

Taxonomy

Analysis: Simple EDA Using Scatterplots

> library(car)
> scatterplotMatrix(~VARX1+VARX2+Y, reg.line=lm, smooth=TRUE,
+ spread=FALSE, span=0.5, diagonal = 'density', data=df1)

VARX1

0 20 40 60 80 100

0
20

40
60

80
10

0

0
20

40
60

80
10

0

VARX2

0 20 40 60 80 100 0 5 10 15

0
5

10
15Y

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 80/106

1278



Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

Sequential Parameter Optimization SPO

Use statistical techniques and methods from design of experiment to
solve optimization problems.

1. Take initial samples from design space and evaluate on target
function/algorithm

2. Build surrogate model (Linear, Tree-based, Kriging, ...) based on
known evaluations

3. Determine promising new solutions with model

4. Evaluate new solutions

5. If termination criterion not reached: go to 2.

6. Summarize Results / Create Report

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 81/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPO Toolbox (SPOT)
I Currently maintained and developed as an R-Package
I Interfaces to several other R-packages
I Provides Demos and Documentation
I Graphical User Interface
I Alternative version is available for matlab

P TS

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 82/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT: Installation, Help, Demos
I Install from CRAN:

> install.packages("SPOT")

I Load package to Workspace:
> require("SPOT")

I Get help on some spot functions
> ?spot
> ?spotOptim

I Get a list of SPOT demos
> demo(package="SPOT")

I Run a SPOT demo
> demo("spotDemo18ForresterOptim",ask=F)

I Start the GUI
> spotGui()

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 83/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

Applications: algorithms tuned by SPOT
I Several types of evolution strategies

I Time series prediction and anomaly detection

I Classification

I Symbolic Regression

I Simulated Annealing

I For more applications see [2]

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 84/106

1279



Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Simulated Annealing SANN
I Randomized optimization algorithm

I Two parameters: starting temperature TEMP and number of
function evaluations at each temperature TMAX

I implementation used: optim, part of R-base

> #Find minimum of 2D-sphere function with SANN
> fn<-function(x){return(sum(x^2))}
> result<-optim(par=c(2,-4),fn,method="SANN")
> result$value

[1] 0.0002277956

> result$par

[1] 0.006771081 0.013488814

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 85/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Tuning SANN: Define Problem to solve
I Target function: Branin-Function (2-D function with three global

minima)

> require(SPOT)
> fn <- spotBraninFunction #test function to be optimized by SANN
> x0 <- c(-2,3) #starting point that SANN uses when optimizing Branin
> maxit <- 100 #number of evaluations of Branin allowed for SANN
> testalgorithm <- function(pars,x0,fn,maxit){
+ temp<-pars[1]
+ tmax<-pars[2]
+ y <- optim(x0, fn, method="SANN",
+ control=list(maxit=maxit,
+ temp=temp, tmax=tmax))
+ return(y$value)
+ }

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 86/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

SANN sweep
I Since this is a simple test problem: Complete sweep

I Understand underlying fitness shape

I 1000 repeats for each setting (takes rather long)

> target <- function(x,y,x0,fn,maxit){
+ zz<-matrix(0,length(x))
+ repeats=1000
+ for(i in 1:repeats){
+ set.seed(i)
+ zz =zz + apply(cbind(x,y),1,testalgorithm,x0=x0,fn=fn,maxit=maxit)
+ }
+ return(zz/repeats)
+ }
> x <- seq(1, 100, length.out = 100)
> y <- x
> z <- outer(x, y, target,x0=x0,fn=fn,maxit=maxit)
> filled.contour(x, y, z, color.palette=heat.colors,xlab="temp",ylab="tmax")
> pal <- topo.colors(100)
> require(rgl)
> persp3d(x,y,z,col=pal[cut(z,100)],xlab="TEMP",ylab="TMAX")

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 87/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Plots from sweep

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 88/106

1280



Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Tuning SANN: Configure SPOT
I ROI: Region of interest, in which parameters are tuned

I Surrogate: Kriging based on Forrester et. al. [6]

I Settings are minimalistic (uses a lot of default values)

> roi<-spotROI(c(1,1),c(100,100),type=c("INT","INT"))
> config<-list(alg.func=testalgorithm,
+ alg.roi=roi,
+ init.design.size=20,
+ seq.predictionModel.func="spotPredictForrester",
+ seq.predictionOpt.func="spotPredictOptMulti",
+ seq.predictionOpt.method="cmaes",
+ seq.predictionOpt.budget=1000,
+ report.func="spotReportSens",
+ spot.fileMode=T,
+ io.verbosity=3,
+ auto.loop.nevals=100)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 89/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Tuning SANN: Run SPOT
I Pass configuration to SPOT

I Pass additional parameters to SPOT, needed by target function

> res<-spot(spotConfig=config,x0=x0,fn=fn,maxit=maxit)

Sensitivity plot for this ROI:

lower upper type BEST

VARX1 1 100 INT 1.84744

VARX2 1 100 INT 70.36899

Best solution found with 103 evaluations:

Y VARX1 VARX2 COUNT CONFIG

245 0.409769 1.84744 70.36899 5 24

Standard deviation of best solution:

0.409769033349987 +- 0.0112398099327513

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 90/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 91/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Tuning SANN: Raw results
I Result file, logged information separated by space

F u n c t i o n XDIM YDIM STEP SEED CONFIG VARX1 VARX2 Y
U s e r S u p p l i e d F u n c t i o n 2 1 0 1234 1 23 62 0.518342556082896
U s e r S u p p l i e d F u n c t i o n 2 1 0 1235 1 23 62 0.402079045134601
U s e r S u p p l i e d F u n c t i o n 2 1 0 1234 2 62 33 3.50021485407806

I Results in R command line
str(res$alg.currentResult)

'data.frame': 103 obs. of 9 variables:

$ Function: Factor w/ 1 level "UserSuppliedFunction": 1 1 1 1 1 1 1 1 1 1 ...

$ XDIM : num 2 2 2 2 2 2 2 2 2 2 ...

$ YDIM : int 1 1 1 1 1 1 1 1 1 1 ...

$ STEP : int 0 0 0 0 0 0 0 0 0 0 ...

$ SEED : num 1234 1235 1234 1235 1234 ...

$ CONFIG : int 1 1 2 2 3 3 4 4 5 5 ...

$ VARX1 : num 23 23 62 62 38 38 70 70 8 8 ...

$ VARX2 : num 62 62 33 33 26 26 16 16 90 90 ...

$ Y : num 0.518 0.402 3.5 16.653 4.774 ...

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 92/106

1281



Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Tuning SANN: Other report functions
I Other reports/graphics can be created

I spotReportContour for a contour plot
> spot(spotConfig=append(list(
+ report.func="spotReportContour",
+ report.interactive=F),
+ res),
+ spotTask="rep")

I spotReport3d for 3d plot
> spot(spotConfig=append(list(
+ report.func="spotReport3d",
+ report.interactive=F),
+ res),
+ spotTask="rep")

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 93/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT Demo

Plots from SPOT

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 94/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT features

Existing features
I Single and multi criteria optimization

I Automated tuning, or manual steps

I modular concept: Use different combinations of models / methods

I Available surrogate models: Linear, Tree, Kriging, Support Vector
Machine, Random Forest, ...

I Tuning real valued parameters as well as factors (i.e. with tree-based
models)

I User can use custom models

I Different means of budget allocation

I Logging and Report generation

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 95/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based automated analysis and tuning, e.g., sequential parameter optimization

SPOT features

Development
I Extend report functions

I Implementation of ensembles of surrogate models

I Improve multi criteria optimization

I Adaptive ROI

I New test problems or applications

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 96/106

1282



Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

Overview

We will focus on:

I Available optimization algorithms

I Benchmarking resources

But first a very short glimpse on our targets. . .

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 97/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

The Adaptability Perspective

When adapting algorithms to a problem (or multiple), two things are of
basic interest [11]:

I How good do we get?

I How long does it take to get there?

What to do with that?

I We can expect that different algorithms have different properties

I It depends on the optimization context which one is more important
(algorithm selection problem)

I We encourage to further look at these aspects (together)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 98/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

Optimization Algorithms

CRAN Task View: Optimization and Mathematical Programming
http://cran.r-project.org/web/views/Optimization.html

I Huge list of available algorithms

I Also: Mathematical programming solvers

I We focus on (some) general purpose continuous solvers

I You can also deliver your implementations there (to Stefan Theussl)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 99/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

Evolutionary Methods Packages

cmaes Covariance matrix adaptation evolution strategy

genalg Genetic algorithm

rgenoud GA plus quasi-Newtonian approach hybridization

pso Particle swarm optimization

DEoptim Differential evolution

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 100/106

1283

http://cran.r-project.org/web/views/Optimization.html


Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

Other Interesting Methods

optim (built-in function of the stats package)
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
bounded BFGS, conjugate gradient, Nelder-Mead, and
simulated annealing (SANN)

optimx new common frame for optim() methods and many more,
e.g. bobyqa, uobyqa, and newuoa

nloptr supports several global optimization routines (e.g.
DIRECT), local derivative-free and gradient-based (e.g.
BFGS) methods used as subroutines

And many more, even interfaces to solvers (COIN-OR, CPLEX)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 101/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

Benchmarking: BBOB

Black-Box Optimization Benchmarking (BBOB) 2012 library
http://coco.gforge.inria.fr/doku.php?id=bbob-2012

(see the GECCO workshop)

I 24 selected problems

I Interfaces from Matlab, C, Java, R, Python

I Lots of already existing results to compare with (BBOB 2009,
BBOB 2010)

I Very powerful visualization for free (Python-based post-processing)

I You can also just use the problems

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 102/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

BBOB Function Overview

Function groups:

I Separable (sphere, ellipsoidal, Rastrigin, Büche-Rastrigin, linear
slope)

I Low or moderate conditioning (attractive sector, step ellipsoidal,
Rosenbrock original, Rosenbrock rotated)

I High conditioning, unimodal (ellipsoidal, discus, bent cigar, sharp
ridge, different powers)

I Multi-modal with global structure (Rastrigin, Weierstrass, Schaffers
F7, Schaffers F7, moderately ill-conditioned, Composite
Griewank-Rosenbrock F8F2)

I Multi-modal with weak global structure (Schwefel, Gallagher’s
Gaussian 101-me Peaks, Gallagher’s Gaussian 21-hi Peaks, Katsuura
Function, Lunacek bi-Rastrigin)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 103/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

BBOB Sample Graphics

2 3 5 10 20 40

0

1

2

3
1 Sphere

BIPOP-CMA-ES

NBC-CMA

NEA1

NEA2

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
fu

n
ct

io
n
s

NEA1

NBC-CMA

NEA2

BIPOP-CMA-ES

best 2009f20-24

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 104/106

1284

http://coco.gforge.inria.fr/doku.php?id=bbob-2012


Tutorial: Statistical Analysis of Optimization Algorithms with R

R-based optimization and benchmarking resources

Real-World Problems

Noisy real-world test cases (as e.g. used in [12])
http:

//ls11-www.cs.tu-dortmund.de/rudolph/kriging/applications

Currently available:

I Gaming related: Car setup optimization (related to the former
competition)

I Hydrogeologic Testcase: well placement

I More to come (hopefully)

I If you have other interesting problems, let us know

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 105/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Acknowledgments

Acknowledgments
I This work has been supported by the Federal Ministry of Education

and Research (BMBF) under the grants FIWA (AIF FKZ 17N1009)
and CIMO (FKZ 17002X11)

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 106/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Acknowledgments

Thomas Bartz-Beielstein.
Experimental Research in Evolutionary Computation—The New
Experimentalism.
Natural Computing Series. Springer, Berlin, Heidelberg, New York,
2006.

Thomas Bartz-Beielstein.
Sequential parameter optimization—an annotated bibliography.
CIOP Technical Report 04/10, Research Center CIOP
(Computational Intelligence, Optimization and Data Mining),
Cologne University of Applied Science, Faculty of Computer Science
and Engineering Science, April 2010.

Radomil Binek.
Iris setosa (photo).
Retrieved March 24, 2001, from Wikimedia Commons Web site:
http://en.wikipedia.org/wiki/File:

Kosaciec_szczecinkowaty_Iris_setosa.jpg, 2005.
Licensed under the GFDL.

Marco Chiarandini and Yuri Goegebeur.
Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 106/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Acknowledgments

Mixed models for the analysis of optimization algorithms.
In Thomas Bartz-Beielstein, Marco Chiarandini, Lúıs Paquete, and
Mike Preuss, editors, Experimental Methods for the Analysis of
Optimization Algorithms, pages 225–264. Springer, Germany, 2010.
Preliminary version available as Tech. Rep. DMF-2009-07-001 at the
The Danish Mathematical Society.

Ronald A. Fisher.
The use of multiple measurements in taxonomic problems.
Annals Eugen., 7:179–188, 1936.

Alexander Forrester, Andras Sobester, and Andy Keane.
Engineering Design via Surrogate Modelling.
Wiley, 2008.

Eric Guinther.
Primrose willowherb ludwigia octovalvis(photo).
Retrieved April 25, 2012, from Wikimedia Commons Web site:
http://en.wikipedia.org/wiki/File:Petal-sepal.jpg, 2012.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 106/106

1285

http://ls11-www.cs.tu-dortmund.de/rudolph/kriging/applications
http://ls11-www.cs.tu-dortmund.de/rudolph/kriging/applications
http://en.wikipedia.org/wiki/File:Kosaciec_szczecinkowaty_Iris_setosa.jpg
http://en.wikipedia.org/wiki/File:Kosaciec_szczecinkowaty_Iris_setosa.jpg
http://en.wikipedia.org/wiki/File:Petal-sepal.jpg


Tutorial: Statistical Analysis of Optimization Algorithms with R

Acknowledgments

Licensed under the Creative Commons Attribution-Share Alike 2.0
Generic license.

Danielle Langlois.
Iris versicolor (photo).
Retrieved March 24, 2001, from Wikimedia Commons Web site:
http://en.wikipedia.org/wiki/File:

Iris_versicolor_3.jpg, 2005.
Licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license.

J. Maindonald and J. Braun.
Data Analysis and Graphics using R—an Example-based Approach.
Cambridge University Press, Cambridge UK, 2003.

Frank Mayfield.
Iris virginica (photo).
Retrieved March 24, 2001, from Wikimedia Commons Web site:
http://en.wikipedia.org/wiki/File:Iris_virginica.jpg,
2007.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 106/106

Tutorial: Statistical Analysis of Optimization Algorithms with R

Acknowledgments

Licensed under the Creative Commons Attribution-Share Alike 2.0
Generic license.

Mike Preuss.
Adaptability of algorithms for real-valued optimization.
In Mario Giacobini et al, editor, Applications of Evolutionary
Computing, EvoWorkshops 2009. Proceedings, volume 5484 of
Lecture Notes in Computer Science, pages 665–674. Springer, 2009.

Mike Preuss, Tobias Wagner, and David Ginsbourger.
High-dimensional model-based optimization based on noisy
evaluations of computer games.
In LION 6, Learning and Intelligent OptimizatioN Conference, Paris,
France, 2012. Springer LNCS.

Bartz-Beielstein, Preuss, Zaefferer | Tutorial: Statistical Analysis of Optimization Algorithms with R | 106/106

1286

http://en.wikipedia.org/wiki/File:Iris_versicolor_3.jpg
http://en.wikipedia.org/wiki/File:Iris_versicolor_3.jpg
http://en.wikipedia.org/wiki/File:Iris_virginica.jpg



