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� Research Interests :

• Foundational Principles of Evolutionary Computation

• Bridging Theory and Practice in Evolutionary Computation

� Main contributions to the field:  

• Geometric View of Evolutionary Algorithms (>50 publications)

Instructor Biography

Agenda

� Motivations, Research Questions and Methodology

� Geometric Interpretation of Search Operators

� Fitness Landscape of Geometric Operators

� Unification of Evolutionary Algorithms

� Principled Design of Crossover Operators

� Principled Generalization of Search Algorithms

� Unified Theory of Evolutionary Algorithms

� A Vision of the Future

� Conclusions

Objectives of the Tutorial
� Introduce the Geometric View of Evolutionary Algorithms

� Provide a unifying framework to think intuitively, formally 
and generally about Evolutionary Algorithms across 
Representations

� Give a comprehensive overview of the benefits 
of the Geometric View

� Illustrate a way to bridge Theory and Practice

� Give evidence of general principles behind Evolutionary 
Search

� Think about a desirable future scenario

� Gather ideas, suggestions and criticisms from the 
participants!
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Motivations, 

Research Questions 

and Methodology

Fragmentation

� Different flavors of (traditional) Evolutionary Algorithms:

• Very many variations on each flavors

• It is desirable to have a coherent picture (De Jong)

� Evolutionary Algorithms are very similar:

• Algorithmically irrelevant differences 

(e.g., application domain and phenotype interpretation)

• Algorithmic elements that can be freely exchanged 

(e.g., selection scheme)

� Real difference:

• Solution representation (e.g., binary strings, real vectors)

• Search operators (i.e., mutation and crossover)

� Is there a deeper unity encompassing all Evolutionary 
Algorithms beyond the specific representation?

Practice: ad-hoc operators design

� For every new problem and new solution representation search 

operators are designed ad-hoc

� No systematic way of designing new search operators

• No guidelines or only informal rule-of-thumbs (heuristic)

• Not applicable to all representations/problems (limited scope)

• Mostly for mutation and less for crossover (simple operators)

• Application of guidelines to specific representation is a black 

art (vague)

Practice: ad-hoc operators design

� No formal thinking about search operator design

• Can we formally define mutation and crossover in 
general for any representation?

• Can we formally derive representation-specific operators 
for any target representation?

• Can we automatically construct representation-specific 
operators from their general definitions?
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Practice: vague meta-heuristics

� Meta-heuristic: a space/problem-independent algorithmic 

template of a search algorithm that can be specified to new 

spaces/problems

• Neighbourhood-based (e.g., local search) vs. 

Representation-based (e.g., evolutionary algorithms)

� Meta-heuristics have vague non-formal definitions

• Can we formally define a meta-heuristic in a 
space/problem independent way? 

• Can we formally specify it to any target space without 
ad-hoc adaptations? 

• Can we prove general search properties of a 
meta-heuristic?

Practice: vague meta-heuristics

� New meta-heuristics can be obtained by generalizing search 

algorithms defined on specific representations

• E.g., Particle Swarm Optimization can be generalized from 

continuous to combinatorial spaces

• Is there a formal/systematic way of generalizing search 
algorithms for specific search spaces to (formal) 
meta-heuristics?

Theory: rigorous XOR general

� No general theory (general principles)

• General “theories” are not rigorous 

(e.g., landscape analysis (Merz))

• General theories are not about performance (e.g., modern 

schema theories (Poli), dynamical systems (Stephens))

• Rigorous theory about performance are very problem specific 

(e.g., run-time analysis (Wegner))

• Are there truly general principles common to all 
evolutionary algorithms across representations?

• Is a general rigorous theory of performance possible?

Theory: relevant to practice XOR 

rigorous

� No practically useful theory (analysis vs. design)

• Most theories are about algorithm analysis (descriptive)

• Theories of algorithm/operators design (prescriptive):

– Heuristic/not formal (e.g., Building-Blocks (Goldberg), 

Locality (Rothlauf))

– Formal but without performance guarantee 

(e.g., Forma Analysis (Radcliffe))

• Is a general formal theory of algorithm design that 
guarantees some form of performance possible?
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Geometric Framework
� Recombination and mutation across representations admit 

surprisingly simple geometric characterizations relating parents 

and offspring (geometric operators).

� Formalizes and simplifies the relationship between 

representations, search operators, distance of the search 

space/neighbourhood structure, and fitness landscape.

� Allows us to extend the geometric intuition and reasoning valid 

on continuous spaces to combinatorial spaces.

� The geometric team:

• My PhD work + 50 publications with many co-authors

• Other people working on it by their own initiative ☺

Other Formal Unifying Frameworks

� Radcliffe: formal theory of representations based on equivalence 

classes

� Poli: unification of schema theorem for genetic algorithms and 

genetic programming

� Stephens: EAs unification using dynamical systems and coarse 

graining

� Rowe: theory of representations based on group theory

� Stadler: theory of landscapes which links representations and 

search operators based on algebraic combinatorics

Geometric Interpretation 
of Search Operators

Metric Space
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Balls & Segments
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Geometric Crossover & Mutation

� Geometric operators are defined on the structure of the search 

space by means of simple geometric shapes, like balls and 

segments. These shapes are used to delimit the region of space 

that includes all possible offspring with respect to the location of 

their parents.

� Geometric crossover: a recombination operator is a geometric 

crossover under the metric d if all its offspring are in the d-metric 

segment between its parents.

� Geometric mutation: a mutation operator is a r-geometric 

mutation under the metric d if all its offspring are in the d-ball of 

radius r centred in the parent.

Example of Geometric Mutation

000

001

010 011

100 101

111110

Neighbourhood structure naturally associated with the shortest path 

distance.

Traditional one-point mutation is 1-geometric under Hamming 
distance.
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Example of Geometric Crossover

The traditional crossover is geometric under the Hamming 
distance.
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H(A,X)  + H(X,B) = H(A,B)

Accessibility & Probability

� Geometric operators are defined in terms of accessibility:

where to find offspring relative to parents positions.

� More fine-grained classes of geometric operators which include 

the probability of generating offspring are possible.

� For example, in uniform geometric crossover under d

offspring are uniformly distributed on the d-metric segment.

� Traditional uniform crossover for binary strings is uniform 

geometric crossover under Hamming distance.

Uniform Crossover & Uniform Mutation

Uniform geometric crossover:

Uniform geometric ε-mutation:
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Representation-Search Space Duality

� Cartesian duality: via equating points in the plane and their 

coordinate geometric object (e.g., a line) have algebraic dual 

(e.g., a corresponding linear equation in the coordinates of the 

points on the line).

� An analogous duality applies to geometric operators: 

- coordinates that represent a point in a plane = representation 

(e.g., binary string) that represent a point in the search space 

(e.g., hamming space)

- the same geometric operator can be defined in geometric 

terms in terms of spatial relations and, at the same time, in can 

be defined in algebraic terms in terms of manipulation of the 

underlying representation.
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Representation-Search Space Duality

� Example: traditional uniform crossover can be defined: 

(i) geometrically as uniform geometric crossover on the 

Hamming space 

(ii) algebraically by how the binary strings representing the 

parents are probabilistically recombined to obtain binary strings 

representing their offspring 

� Algebraic vs. Geometric:

• Operational (implementation) vs. Declarative (specification)

• Representation-specific (no distance) vs. 

Representation-independent (no representation)

Fitness Landscape
of Geometric Operators

Fitness landscapes & search operators

� Visual metaphor to understand search behaviour

� Used in problem hardness studies

� A fitness landscape is a triple:

• Fitness function f

• Solution set S

• Structure on the search space (e.g., d/Nhd)

� Fitness landscapes are induced by search operators:

• In a search algorithm one can find f and S but not d or Nhd

• So fitness landscapes do not exist!

• What is the fitness landscape seen by a search algorithm 

then?

• The structure of the search space hence the fitness 

landscape is “induced” by the search operators.

• What this actually means is not clear!

Traditional View

� One operator, one landscape (Terry Jones).

� The structure of the space induced by a mutation operator is a 

graph with nodes representing candidate solutions and weighted 

edges indicating the probability of producing a certain offspring 

given a certain parent.

� Different mutation operators induce different structures, hence 

different landscapes.

� Problem 1: when a search algorithm has two operators (e.g., 

mutation and crossover) each of them see a different fitness 

landscape. What is the fitness landscape seen by the search 

algorithm?
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Crossover Landscape

� What is the structure induced by crossover?

� As crossover has two parents edges, each pair of nodes are 

linked by edges to nodes representing possible offspring.

� This structure is not a graph, it is an hyper-graph.

� Problem 2: the natural spatial interpretation of graph is lost, 

these fitness landscapes have difficult interpretation.

� There are other approaches to induce structure of the search 

space from recombination operators by theoreticians (e.g., 

Stadler) or practitioners (e.g., Vanneschi)

Geometric Landscape

� The structure of the landscape is given by the distance 

associated with the geometric operators. 

� As mutation and crossover operator can be defined using the 

same distance they see the same fitness landscape, which is 

also the landscape seen by the search algorithm.

� Mutation and crossover navigate the same fitness landscape 
in different ways, as mutation produces offspring (i.e., 

accesses) a ball around the parent, and crossover accesses the 

segment between the parents.

� Probabilities of accessing offspring are spatial distributions
(weights on nodes) on balls and segments.  

Benefits

� Same fitness landscape for mutation, crossover and search 

algorithm. This allows to understand how they interact.

� Simple fitness landscape for crossover and more complex 

search operators.

� Intuitive interpretation of search dynamics in the search space 

and how it relates with the topography of the fitness landscape.

� Rigorous and complete description of the search. It can be used 

to prove performance of search algorithms on fitness 

landscapes.

� Unifies neighbourhood search view and representation-based 

search view, that are now seen as dual and equivalent.

Geometric Unification 
of Evolutionary Algorithms
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Minkowski spaces – real vectors
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Pre-existing operators – real vectors

� Mutations:

• bounded spherical mutation: geometric under Euclidean 

distance

• creep mutation: geometric under Chessboard distance

� Recombinations:

• blend crossover: geometric under Euclidean distance

• box crossover: geometric under Manhattan distance

• discrete crossover: geometric under Manhattan distance

• extended-line & extended-box crossovers: non-geometric

Hamming spaces – n-ary strings
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Pre-existing operators – n-ary strings

� Mutations:

• point-mutations for binary and n-ary strings: 

1-geometric mutation under Hamming distance

• position-wise mutations: 

n-geometric mutation under Hamming distance 

(with probability distribution only function of the distance)

� Recombinations:

• all mask-based crossovers (including 1-point, 2-point, 

uniform) for binary and n-ary strings: 

geometric crossover under Hamming distance

• intermediate recombination for integer vectors:

geometric crossover under Manhattan distance on integer 

vectors

1325



Cayley spaces - permutations
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Pre-existing operators – permutations

� Mutations:

• single edit-move mutations: 1-geometric mutation under 

corresponding edit distance

� Recombinations:

• PMX: geometric crossover under swap distance

• Cycle crossover: geometric crossover under swap distance & 

Hamming distance (restricted to permutations)

• Cut-and-fill crossovers (adaptations of 1-point crossover):

geometric crossovers under swap and adjacent swap distances

• Merge crossover: geometric crossover under insertion distance

• Davis’s order crossover: non-geometric crossover

• Most recombinations for permutations are geometric 

crossovers

Syntactic tree spaces –

Homologous Crossover
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Pre-existing operators – syntactic trees

� Mutations:

• point and sub-tree mutations: geometric mutation under 

structural Hamming distance on trees (mutations towards the 

root have larger radius)

� Recombinations:

• Koza’s sub-tree swap crossover: non-geometric

• Homologous crossover: geometric under structural Hamming 

distance
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Variable length sequence spaces –

Homologous Recombination

Parent1=AGCACACA

Parent2=ACACACTA

best inexact alignment (with gaps):best inexact alignment (with gaps):best inexact alignment (with gaps):best inexact alignment (with gaps):

AGCA|CAC-A � Child1=AGCACACTA
A-CA|CACTA � Child2=ACACACA

Pre-existing operators – sequences:

Biological Recombination

� Mutation: 

• insertion, deletion or substitution of a single amino acid: 1-

geometric mutation under Levenshtein distance

� Recombination:

• Homologous recombination for variable length sequences (1-

point, 2-points, n-points, uniform):

geometric crossover under Levenshtein distance

• More realistic models of homologous biological 

recombination with respects to gap size and base-pairs 

matching preference:

geometric crossovers under weighted and block-based 

Levenshtein distance

Significance of Unification

� Most of the pre-existing crossover operators for major 

representations fit the geometric definition

� Established pre-existing operators have emerged from 

experimental work done by generations of practitioners over 

decades

� Geometric crossover compresses in a simple formula an 
empirical phenomenon

Principled Design
of Crossover Operators
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Crossover Principled Design

� Domain specific solution representation is effective

� Problem: for non-standard representations it is not clear how 
crossover should look like

� But: given a problem you may know already a good 
neighbourhood structure/distance/mutation

� Geometric Interpretation of Crossover:

• your representation and space structure => 

• specific geometric crossover by plugging the space 
structure in the definition =>

• operational definition of crossover manipulating the 
underlying representation

+ = ?

Crossover Design: Graph Example

Non-labelled graph neighbourhood

MOVE: Insert/remove an edge

Edit distance: minimum 

number of moves to transform 

a graph to the other

0

1

2

1

2

3

+

Offspring
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Operational Geometric Crossover

� Edit distance has a natural dual interpretation:

• measure of distance in the search space

• measure of similarity on the underlying representation

• this can be used to help identifying an operational definition 

of crossover representation (implementation) which 

corresponds its geometric definition in terms of distance 

(specification)

� For graphs under ins/del edge edit distance the operational 

crossover is as follows:

• Pair up the nodes of the parent graphs such that there are 

the minimum number of edges mismatches

• Recombine the aligned parent graphs using a recombination 

mask on the edges

• This recombination implements exactly the geometric 

crossover

Crossover Design: TSP Example

� Edit distance duality for permutations: 

• producing offspring in the segment between parents on a 

space generated by moves of type x (e.g., swaps) �

• producing offspring permutations on minimal sorting 
trajectories to sort a parent permutation into the other using 

move of type x

� Sorting Crossovers:

• Geometric crossover for permutations can be implemented 

using traditional sorting algorithms and returning as offspring 

a partially sorted permutation

• Adj. Swap -> bubble sort

• Swap -> selection sort, 

• Insertion ->insertion sort

� Pre-existing geometric crossovers for permutations are sorting 

crossovers in disguise

Crossover Design: TSP example

� A known good neighbourhood structure for TSP is 2opt 

structure = space of circular permutations endowed with reversal 

edit distance

� Geometric crossover for TSP =

picking offspring on the minimal sorting trajectories by sorting 

one parent circular permutation toward the other parent by 

reversals (sorting circular permutations by reversals) 
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Operational Geometric Crossover 

for TSP

� BAD NEWS: sorting circular permutations by reversals is NP-
Hard!

� GOOD NEWS: there are approximation algorithms that sort 
within a bounded error to optimality

� A 2-approximation algorithm sorts by reversals using sorting 
trajectories that are at most twice the length of the minimal 
sorting trajectories

� Approximation algorithms can be used to build approximated 
geometric crossovers for TSP

� In experiments, this crossover beats Edge Recombination which 
is the best for TSP 

Product Geometric Crossover

� It is a simple and general method to build more complex 
geometric crossovers from simple geometric crossovers

� GX1:AxA�A  geometric under d1

� GX2:BxB� B geometric under d2

� A product crossover of GX1 and GX2 is an operator defined on 
the cartesian product of their domains PGX:(A,B)x(A,B)�(A,B)
that applies GX1on the first projection and GX2 on the second 
projection. GX1 and GX2 do not need to be independent and 
can be based on different representations.

� Theorem: PGX is a geometric crossover under the distance d = 
d1+d2

Crossover Design: Sudoku Example

Fill in the grid so that every row,

every column, and every 3x3 box

contains the digits 1 through 9 

4 types of constraints:

1) Fixed Elements

2) Rows are permutations

3) Columns are permutations

4) Boxes are permutations

Crossover Design: Sudoku Example

� We start from an initial population of solutions (filled grids) 

correct with respect to constraints 1) and 2)

� We want a geometric crossover defined on the entire Sudoku 

grid that preserves constraints 1) and 2) so that we search a 

smaller search space

� Constraints 3) and 4) are treated as soft constrains and the 

fitness of a solution is the number of unsatisfied constraints (to 

minimze)

� The Hamming distance between grids gives rise to a smooth 

landscape because close grids have similar fitness
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Crossover Design: Sudoku Example

� The cycle crossover on a row preserves constraints 1) and 2) 

and it is geometric under Hamming distance

� For the product geometric crossover theorem, the row-wise 

cycle crossover is geometric under Hamming distance on the 

entire grid

� The fitness landscape seen by this crossover is smooth

� This crossover performed very well in experiments compared 

with other recombinations

Path-relinking = Crossover

� The meta-heuristic path-relinking (Glover) searches on a path 
between solutions in the neighbourhood structure 
(not necessarily on a shortest path/segment). It has been 
successfully applied to many combinatorial problems.

� From a design viewpoint, geometric crossover can be 
understood as a formalized generalization (to metric spaces) 
of path-relinking that gives a formal recipe to design new 
crossover operators rather than suggesting heuristically how to 
search the neighbourhood structure.

� Geometric crossover unifies the notions of recombination 
(i) as manipulation of the parental representation and
(ii) as neighbourhood search between parental location.
It shows that the dichotomy neighbourhood search vs. 
representation-based search is only illusory and that essentially 
path-relinking is dual and equivalent to crossover. 

Principled Generalization 
of Search Algorithms

Motivations

� Problem: ad hoc extensions of continuous search algorithms to 

combinatorial spaces. 

Is there a systematic way? 

� Solution: Principled generalization: formal generalization of 

continuous search algorithm via geometric interpretation of 

operators

� Applied to

• Particle Swarm, Differential Evolution, Nelder&Mead

• Binary strings, Permutations, GP trees
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Generalization Methodology

1. Take a continuous optimization algorithm

2. Rewrite search operators using geometric objects as 

functions of only the Euclidean distance

3. Substitute Euclidean distance with a generic metric � formal 

geometric algorithm

4. Plug a new distance in the formal algorithm � instance of the 

algorithm for a new space

5. Rewrite the search operators getting rid of the distance and 

using the associated representation

Differential Evolution Example

DM

DX

Differential Mutation

Construction of U using vectors

Convex Combination & Extension Ray

A

B

C=?

Convex Combination

C=CX(A,B)
A

C

B=?Extension Ray

B=ER(A,C)

• Extension ray is the inverse operation of convex combination

• They are wellThey are well--defined defined in any metric space
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Differential Mutation

Construction of U using convex combination and extension ray

Weighted CX and ER

• C = CX(A,B) with weights WAC and WBC 

• Weights are attraction coefficients

• Distances inversely proportional to weights

• B = ER(A,C) with weights WAC and WBC 

• Weights have the same meaning in CX & ER

• But different givens and unknowns

WAC=0.7 WBC=0.3

A C=? B

A C B=?

CX:

ER:

Formal Geometric Differential Evolution

DM

DX

Specialization (Hamming space)

� The GDE is a formal algorithm that is specialized to the 

Hamming space once all its operators (DM and DX) are 

specialized to the Hamming space

� DM and DX can be rewritten solely in terms of convex 

combination and extension ray combination

� So, to obtain the specialization of the GDE to the Hamming 

space, we only need the specializations of convex combination 

and extension ray
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Convex Combination & Extension Ray 

(Hamming space)

� Convex combination: it is a form of biased uniform crossover 

which prefers bits form one or the other parents according to 

their weights

� Extension ray recombination: the offspring C of binary 

extension ray originating in parent A and passing through parent 

B can be obtained by starting from B and with a suitable 

probability flipping those bits that, at the same time, increase 

the Hamming distance form B and from A

� These operators are provably conforming to the geometric 

formal definitions of convex combination and extension ray 

under Hamming distance

Results
� When ported from continuous to Hamming space all the 

algorithms (DE, PSO, NM) worked very well out-of-the-box. 

This shows that continuous algorithm can be ported using this 

methodology to discrete spaces.

� When specified to permutations and GP trees spaces a number 

of surprising behaviours appeared.

� As we applied the very same algorithms to different spaces, the 

cause of their specific behaviours are specific geometric 

properties of the underlying search space they are applied to. 

This allows us in principle to create a taxonomy of search 

spaces according to their corresponding effects on search 

behaviour. 

� Relevant properties: symmetry, curvature, deformation.

Unified Theory
of Evolutionary Algorithms

Formal Evolutionary Algorithm

� Geometric Crossover can be understood as a functional form 

taking the distance d as argument.

� An evolutionary algorithm with geometric crossover can be 

understood as a function of the metric d (d is a parameter as 

e.g., the mutation rate).

� From an abstract point of view, an evolutionary algorithm with 

geometric crossover with any metric is a well-defined 

representation-independent formal specification of a search 

algorithms whose properties derive form the metric axioms 

(formal evolutionary algorithm (see also Radcliffe)).
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Abstract Evolutionary Search

� What happens if we “run” a formal evolutionary algorithm?

� A formal model of a search algorithm can be used to infer 

(some properties of) the behaviour of a partially-specified 

algorithm, where the metric parameter is left unspecified.

� Abstract evolutionary search: the behaviour obtained by 

“running” a formal evolutionary algorithm. This can be 

described axiomatically (from the metric axioms). 

� The abstract evolutionary search process is the behaviour of 

the formal evolutionary algorithm on ALL possible search 

(metric) spaces and associated representations.

Abstract Convex Evolutionary Search

� Theorem: For any evolutionary algorithm repeating the cycle 

selection, crossover, replacement we have that the convex hulls 

of the populations form a nested chain:

� This is very general: it holds for any representation, any 

distance, any problem (landscape), any offspring distribution of 

geometric crossover, any selection and replacement. It even 

applies to varying population sizes. 

)()()()( 011 popcopopcopopcopopco nn ⊆⊆⊆⊆
+

K

Abstract Convex Evolutionary Search Matching Abstract Search & 

Abstract Landscape

� NFLT: any non-futile theory which aims at proving performance 

better than random search of a class of search algorithms must 

indicate w.r.t. which class of fitness landscapes.

� Are there general conditions on the fitness landscape that 

guarantee good performance of the convex search for any 

space/representation?

� At an abstract level, all evolutionary algorithms (with geometric 

crossover) present a unitary behaviour.

Is there a class of fitness landscapes well-defined at an abstract 

level that leads to good performance independently from the 

specific d?
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Concave Fitness Landscapes

This generalises to general metric spaces with ANY representation

Convex search works well on (approximately) concave landscapes 

Steady-Improvement Theorem

� On a concave fitness landscape, by applying geometric 

crossover to parents sampled uniformly at random from ANY 

population of parents, the expected average fitness of the 

offspring population is not less than the average fitness of the 

parent population.

� As (non-adversary) selection cannot get the fitness of the 

offspring worse, this is a statement about the one-step 
performance of the formal evolutionary algorithm on an 
abstract fitness landscape.

� Performance degrades nicely as landscapes become less 

concave.

Two Remarks

� 1) Good News: this result shows that concave landscapes in this 

sense are extremely “crossover-friendly” as normally to achieve 

avg. fitness of the offspring not worse than the avg. fitness of the 

parent one does require selection!

� 2) Bad News: this result cannot be reiterated to obtain not trivial 

lower-bound after n-steps.

Work in Progress

� Looking at fitness landscapes arising from combinatorial 

problems (big valley HP)

� N-step performance (curvature of the concave landscape)

� How can mutation be naturally included in this framework? 

(from accessibility to probability)

� How far can a theory be pushed forward at this level of 

abstraction? Only time will tell…
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A Vision of the Future:
Automatic Evolutionary 
Problem Solving

A Future Scenario

� Goal: automated design of efficient EAs for any problem

� Time line:

• PAST: original GA: we thought we had a magic solver 

� NFL said no

• PRESENT: black art: how to tailor EA to the problem at 

hand? 

• FUTURE (theory): formal general theory of design of 
provably efficient EA

• FUTURE (practice): automated design, automated 
implementation, theory-led parameter settings 

“Magic” Evolutionary Meta Solver

� INPUT: Problem Description 

-> Magic Evolutionary Meta Solver ->

OUTPUT: Solution with Guaranteed Approximation

� NFL does not apply because the Meta Solver uses full 
knowledge of the problem to derive a problem-tailored 

evolutionary algorithm which is provably efficient by the theory

� At this point the human designer would be made redundant, 

people would not even know or care what is inside the magic 

box, they will just use it!

� This is a desirable remote future scenario, is it in principle at all 

possible? Is it pure science fiction?

From Problem to Solution

� INPUT: problem description

� 1) Formulation: choice of solution representation and space 

structure (e.g., distance, neighbourhood structure) such that the 

problem is turned into a EA easy class (e.g., “smooth” landscape)

� 2) Adaptation: the EA scheme is applied to the chosen 

representation and space structure

� 3) Implementation: the specific EA for the problem at hand with 

a given representation and structure is derived

� 4) Tuning: parameter values are chosen

� 5) Execution: the problem specific algorithm is executed and the 

best solution obtained

� OUTPUT: solution
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Automatic Formulation

� A theory should be abstract and accept as input parameters: 

landscapes based on different representations and 

neighbourhood structures

� A theory should relate performance guarantee of the EA on the 

landscape as a function of its degree of smoothness

� From the algebraic description of the problem, the system 

should be able to infer the degree of smoothness (e.g., Lipchitz 

continuity) without experiments for any choice of representation 

and neighbourhood structure

� The choice of representation and neighbourhood structure 

available have to be restricted to those that admit an efficient 
implementation of search operators

Automatic Formulation

� Each combination of representation and neighbourhood 

structure gives rise to a certain degree of smoothness of the 

landscape for the problem at hand

� Choose the combination of representation and neighbourhood 

structure such that the theory predicts the best performance 

guarantee

� As the theory is sound, the solution obtained by the problem-

specific EA that will be constructed will meet this guarantee

Automatic Adaptation

� Automatic Adaptation: the formal specification of the problem 

specific EA can be obtained unambiguously by instantiation of 

the formal EA on the specific fitness landscape (solution 

representation, neighbourhood structure and fitness function)

Automatic Implementation

� Automatic Implementation: the implementation of the 

specification of the problem-specific EA can be obtained by 

deriving operational descriptions in terms of representation 

manipulation of the geometric operators for the specific 

representation and space structure. This can be done using a 

library of pre-implemented operators meeting the specifications, 

by operators compositions or by operator synthesis.

� Differently from pre-existing software-suite that allow the user to 

build custom EA by combining components, the specific EA 

obtained as above has a formal semantic dictated by the 

theory which certifies that the solution found by the specific EA 

will conform to the theoretical performance guarantees 
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Automatic Parameter Setting

� The performance guarantee produced by the theory is 

expressed as a functions of the parameters of the EA (e.g., 

crossover rate, selection intensity). The optimal values of the 

parameters can be obtained analytically by choosing those 

values that give the best guarantee. 

How far are we?

� The geometric framework makes in principle possible the 

outlined scenario as it covers all the necessary conceptual steps

� The necessary theory for the performance guarantee can be 

hard to obtain, but it may be possible (e.g., the general results 

on convex evolutionary search is promising)

� The formal synthesis machinery to pass from specifications to 

implementation may be within reach (see also Fonseca). If we 

replace the missing formal theory by a “heuristic theory” or by 

experiments, we could be able to implement a prototype of the 

system.   

Conclusions and Future Work

Summary

� Motivations: 
• fragmentation, no formal design, no general theory.

� Geometric Operators: 
• Search operators can be defined formally across 

representations using simple geometric shapes.

� Fitness Landscape:
• Geometric mutation and crossover see the same simple 

fitness landscape but they navigate it in different ways.

� Unification:
• Many crossover operators across representations are 

geometric crossover under some distance.
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Summary

� Crossover Principled Design:
• Plugging in an edit distance associated with a new 

representation it is possible to derive operational definition of 
the specific geometric crossover.

� Principled Generalization of Search Algorithms:
• Generalization by replacing the Euclidean distance in 

continuous search algorithm with a generic metric.

� Unified Theory of Evolutionary Algorithms:
• All evolutionary algorithms with geometric crossover do a 

form of convex search. They work well on concave-like 
landscapes.

� A Vision of the Future:
• Automated design of efficient EAs for any problem.

Current/Future Work
� Generalizing:

• Established Algorithms, e.g., Estimation of Distribution 

Algorithms

• Established Concepts, e.g., Schema

• Older and newer theories, e.g., Schema Theorem, Run-Time 

Analysis

� Reformulating non-geometric theories in geometric terms:

• Elementary Landscapes (Stadler) 

• Forma Analysis (Radcliffe)

� Formalizing and making rigorous practical theories geometric in 

flavour: 

• Landscape Analysis, e.g., Global Convexity (Boese)

• Locality and Redundancy of Genotype-Phenotype map 

(Rothlauf)

� Applying the framework to specific domain & problems:

• Semantic Crossover for Genetic Programming (Krawiek)

Take home message

� There are fundamental geometric principles lurking behind the 

scene of all evolutionary algorithms, which are made explicit by 

the geometric view.

� The geometric view is also a unifying way of thinking about 

evolutionary algorithms which is general, rigorous and intuitive at 

the same time, with interesting consequences for (bridging) 

theory and practice.

� I hope from now on you will think geometrically about whatever 

aspect of evolution interests you! ☺

� Collaborations are most welcome! Thank you!
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