
The SEEDS Platform for Evolutionary and Ecological
Simulations

Brian D. Connelly, Luis Zaman, and Philip K. McKinley
BEACON Center for the Study of Evolution in Action
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI USA

bdc@msu.edu

ABSTRACT
Over the past few decades, evolutionary computation (EC)
has grown substantially in use for biologists and engineers
alike. Its transparency makes it an indispensable tool for
studying evolutionary and ecological dynamics, and it has
provided researchers with new insights that would be tremen-
dously difficult, if not impossible, to gain using natural sys-
tems. In addition, EC has proven to be a powerful search
algorithm for engineering applications, and has produced nu-
merous novel and human-competitive solutions to complex
problems.

Although several well-established packages are readily avail-
able, it seems that when most users harness the power of evo-
lutionary computation, they do so using “home-grown” so-
lutions. This can likely be attributed to the ease with which
simple models are created, the user’s need for customiza-
tion, and the sizeable learning barrier imposed by available
solutions, as well as difficulties in extending them.

We present SEEDS, a modular, open-source platform for
conducting evolutionary computation experiments. SEEDS
provides a simple, flexible, and extensible foundation that
enables users with minimal programming experience to per-
form complex evolutionary and ecological simulations with-
out having to first implement core functionality. In addition,
SEEDS provides the tools necessary to make sharing data
and reproducing experiments both easy and convenient.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life andMedical Sciences—
Biology and genetics; D.m [Software]: Miscellaneous; I.6.3
[Computing Methodologies]: Simulation andModeling—
Applications

General Terms
Design,Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

Keywords
evolution,ecology,simulation,platform

1. INTRODUCTION
Evolutionary computation (EC) focuses on populations

of individuals subjected to processes that are the necessary
and sufficient conditions for evolution, such as mutation, se-
lection, and inheritance [3]. Through the evolutionary pro-
cess, individuals become better suited to their environments,
which are defined by the user. Individuals can represent any-
thing from candidate solutions to an optimization problem,
such as equations fitting a dataset, to natural organisms
that interact with each other and their environment. In any
instance, evolution can be seen as a guided search process.

Digital evolution and other forms of evolutionary compu-
tation have been successfully used to address a number of
fundamental questions in biology. (e.g., [12, 10]). In these
areas, EC provides benefits that are not easily obtained, or
simply impossible, when studying natural systems. Among
these is the ability to study populations over thousands or
even millions of generations, which is not feasible in most
natural species. A second major benefit offered by EC is the
complete transparency it provides to researchers, allowing
them to observe each individual in the population, as well as
its behaviors, interactions, and even its complete genetic en-
coding. These features offer researchers unique insights into
the evolutionary trajectories of behaviors over evolutionary
timescales, including how those behaviors evolve, whether
they can be maintained, and the abundances at which they
exist in populations. Because of these benefits, there is great
interest within the biological sciences to use EC techniques
to generate and test hypotheses, supplement research using
natural systems, and study phenomena that simply cannot
be addressed otherwise.

Evolutionary computation has also been successfully used
in engineering during the design and optimization processes
(e.g, [6, 7]). In many instances, EC has produced novel and
human-competitive results [11], cementing its status as a
valuable tool throughout engineering.

Although several EC platforms are available, their wide-
spread use is often limited by a number of factors. One
of these is a sharp learning curve, which often presents a
formidable barrier to those would-be users from biological
fields who may lack significant computer programming expe-
rience. A second factor is the inflexibility of many platforms,
which makes alterations or additions in functionality cum-
bersome. Because of these and other shortcomings, users

133

often either create their own EC system, re-implementing
standard functionality such as populations and selection, or
avoid using EC altogether.

The SEEDS platform is intended to address these prob-
lems by providing a foundation upon which researchers can
conduct experiments using a wide variety of techniques and
models. Because meeting the needs of all researchers would
be an impossible task, SEEDS is designed as a modular sys-
tem, where users can easily modify or extend its capabilities
without also having to implement fundamentals. Through
its well-defined interfaces and implementation in the Python
programming language, researchers of all levels of program-
ming experience are able to both use and extend SEEDS.
Additionally, SEEDS places an emphasis on repeatability
and data sharing, allowing users to easily recreate experi-
ments and share their models.

To date, SEEDS has been used to explore a wide vari-
ety of topics related to evolution and ecology. SEEDS was
initially developed in order to study the role spatial struc-
ture plays in maintaining diversity [2]. Additional studies
have used SEEDS to explore the use and maintenance of
horizontal gene transfer [1], the evolution of public goods
cooperation, the evolution of cooperation in probabilistic
game theoretic models, and speciation and sexual dimor-
phism resulting from divergent selection in limited resource
environments.

The SEEDS distribution includes several prebuilt compo-
nents that enable experiments to be run immediately after
installation. Among these is a model of the Rock-Paper-
Scissors (RPS) game—RPSCell. Although this common
game may seem trivial, it allows users of all ages and back-
grounds to both experience and interact with many aspects
that affect population dynamics. Such hands-on experimen-
tation can be a powerful tool for learning fundamental pro-
cesses in evolution and ecology. We will refer to the RPS
example throughout the remainder this paper.

We introduce SEEDS as follows. Section 2 presents the
design of SEEDS and its organization. Section 3 discusses
how experiments are configured and performed. The plugin
system and how it can be used to extend the functionality of
SEEDS to match the research questions at hand is described
in Section 4. Finally, the significant additions planned for
near-term inclusion are outlined in Section 5.

2. THE SEEDS PLATFORM
In recent years, the Python programming language has ex-

perienced an enormous growth in its use in scientific comput-
ing. Part of this growth can be attributed to the fact that, in
contrast to many scientific computing environments, Python
is a general purpose programming language with a great deal
of flexibility [15]. A second reason for Python’s success is its
broad user community, which has produced several power-
ful and easily-approachable packages for manipulating, an-
alyzing, and displaying scientific datasets; examples include
NumPy [14], SciPy [9], and Matplotlib [8]. These and many
other packages are easily obtained through Python’s vari-
ous package management utilities or Python distributions
targeted specifically for use in science. Python’s ubiquity
is another major benefit, with versions available for most
operating systems. Finally, Python is open source software,
which means it does not impose a financial barrier to adop-
tion. Although Python often does not always match lower-
level languages such as C, C++, and Java in performance,

especially in numerically-intense tasks, its ease of develop-
ment and maintenance often more than make up for differ-
ences in performance on modern computing resources.

Figure 1 shows the class diagram for SEEDS. A SEEDS
Experiment consists of a Population of Cells. The possible
phenotypes of a Cell are limited only by its implementation,
which allows Cells to capture a wide variety of behaviors
and genetic representations. The interactions among Cells
are defined by the underlying Topology, an arbitrary graph
structure which orients Cells in space. Cells also have ac-
cess to Resources, which are distributed throughout space
using a separate Topology. Finally, Actions allow the user
to modify the environment, interact with cells, and produce
output data during the Experiment. Each of these classes
is a Plugin, and users can easily modify and extend SEEDS
through the development of custom Plugins. In the following
sections, we describe each of these classes in more detail.

Figure 1: SEEDS Class Diagram

2.1 Experiment
The Experiment object controls all aspects of an ex-

periment. This includes managing the configuration, the
population, and any available resources. During initializa-
tion, the Experiment object loads the specified configuration
file and uses this information to create a population of indi-
viduals, environmental resources, and any actions scheduled
to be performed, such as writing data or interacting with
the population or resources, each of which is described be-
low. During each unit of time, or epoch, the Experiment ob-
ject updates the state of the population and resources, and
executes any scheduled actions. Upon initialization, each
Experiment is given a globally-unique identifier (GUID), al-
lowing experiment data to be easily catalogued.

2.2 Population
A population consists of a collection of individuals that

reside on nodes in a graph structure. The graph defines
the potential interactions of individuals. If the nodes in
which two individuals reside are connected by an edge, those
individuals have the potential to interact with each other,
depending on the implementation of their Cell type. The
use of arbitrary graphs to define the interactions within a
population is one of the most powerful features of SEEDS.
Experiments focus on one Population object; however, the
interactions within that Population can be defined such that
multiple independent subpopulations exist.

When a population is updated, a preconfigured number

134

of individuals are chosen randomly with replacement, and
the state of these individuals is updated based on the rules
defined by the corresponding Cell instance. By default, the
number of individuals updated is equal to the size of the
population, so each individual is expected to be updated
during each epoch, on average.

2.3 Cell
In SEEDS, the Cell object is used to represent each indi-

vidual, and is therefore often the primary focus of an Experi-
ment. All Cells must define three methods: __init__ (a con-
structor), update, and teardown. The constructor initializes
all properties associated with that object, perhaps reading
values from the configuration file. The update method is
intended to update the state of that organism, and is exe-
cuted during each epoch of the experiment, on average. The
update method may cause the Cell to reproduce, to con-
sume resource, to produce some resource, to interact with
a neighboring Cell, to die, or be subject to any other event
pertinent to an individual in the simulation. During each
epoch, a subset of Cells from the population is chosen ran-
domly and updated using this method. Finally, the tear-

down method is called whenever a Cell is removed from the
population. This method is intended to handle any cleanup
tasks necessary, such as the closing of files or the freeing of
references. These methods are defined in the Cell base class.
Any Cell object must be a subclass of this class, which also
provides methods for retrieving and managing the neighbor
list of each cell in the population.

A SEEDS cell is agnostic with respect to any particu-
lar evolutionary algorithm. What defines an individual is
decided by the user: its representation, its behaviors and
capabilities, its interactions, and ultimately its fitness. By
creating a Cell subclass, users can implement a Cell class to
suit their particular needs. For example, each cell could rep-
resent a state, such as alive or dead, as in Conway’s Game
of Life [4]. Alternately, each cell could encapsulate an ar-
tificial neural network, such as those evolved using NEAT
[16]. A cell could even represent a program and have virtual
hardware associated with it, as in the Avida system [13].

Continuing our example, RPSCell is a cellular automaton
model. Each Cell in the Population plays either the Rock,
Paper, or Scissors strategy. When a Rock cell encounters
a Paper cell, it becomes a Paper cell, because Paper covers
Rock. However, if that Rock cell encountered a Scissors
cell, it would remain a Rock, because Rock is not beaten by
Scissors.

2.4 Topology
The interactions of individuals within a population are

defined by their Topology. In many forms of evolution-
ary computation, the interactions among individuals are de-
fined by a lattice, where an individual residing in a node
can interact with any of its 4 or 8 neighbors. To allow for
more flexibility, SEEDS models interactions using arbitrary
graphs. As with lattices, each individual occupies a node
in the graph, and edges between two nodes represent a po-
tential interaction between those corresponding individuals.
The distribution of these edges, however, need not be regular
as in a lattice, but can instead define more complex inter-
action networks. This includes disconnected graphs, where
certain subsets of the population do not interact with others.

Graphs are created and maintained using NetworkX [5],

which provides a vast library of graph generators and al-
lows for the creation of custom graph structures. Addition-
ally, NetworkX offers functions that calculate many common
graph metrics, which aid in understanding and comparing
graphs.

Several topologies are included with the SEEDS distri-
bution. As one example, the CartesianTopology topology is
created by randomly placing nodes in a unit Cartesian plane
and adding edges between nodes that are within a distance
yielding an expected number of neighbors per node [2]. The
CartesianTopology allows neighborhood sizes to grow lin-
early, instead of the geometric increase seen in lattice models
as radius is increased.

Topologies are created by subclassing the Topology class,
which provides a number of methods for maintaining the
structure of the graph. Each topology must implement the
__init__ constructor method, which creates the appropri-
ate graph, and the teardown method, which performs any
necessary tasks before a topology is deleted. Topologies that
support changes in structure during an experiment can addi-
tionally implement the add_node, remove_node, add_edge,
and remove_edge methods, which handle the necessary
changes to the graph.

2.5 Config
The Config object manages the configuration for an Ex-

periment. By wrapping Python’s ConfigParser module, the
Config object organizes the configuration into sections, one
for each Experiment, Population, Cell, Resource, Topology,
and Action. Each configuration section contains a set of
parameter-value pairs, which define the value for a property
in the respective object. These values can represent param-
eters for the object or define how that object behaves.

Typically, an Experiment will create a configuration from
an input file. Cells such as RPSCell, for example, can query
the Config object to obtain values to be used from the RP-
SCell section. RPSCell includes the distance dependent pa-
rameter, which takes a boolean value specifying whether or
not cell interaction is directly proportional to their proxim-
ity. When querying the Config object, default values can
also be specified for use when that parameter is unspecified
in the configuration file.

The portion of an example configuration file that deals
with RPSCell is shown in Listing 1. This configuration will
be expanded upon in Section 3.3.

[RPSCell]
d i s tance dependent = True

Listing 1: Segment of a configuration file that defines
the behavior of RPSCells in a Population. Here,
cells will be more likely to interact with nearby cells.

The Config object can also export an Experiment’s cur-
rent configuration. The resulting configuration file includes
all parameters defined in the original configuration file, as
well as all default values used and the seed for the random
number generator. This feature greatly aids in reproducing
experiments.

2.6 Resource
Individuals can interact with each other and their envi-

ronment through the consumption and production of re-
sources. As shown in Figure 2, each Resource specifies

135

its own topology, which allows the distribution for each re-
source to be controlled. Each node in a resource contains a
ResourceCell object, which defines the resource at that point
in space. For example, SEEDS’s NormalResource Resource-
Cell defines a resource as a level, an inflow, a decay, and
a diffusion. The level defines the amount of resource cur-
rently present in that cell. Inflow defines the rate at which
new resource enters that cell. Decay and diffusion result
in resource being lost from the environment at a configured
rate and resource flowing into neighboring ResourceCells at
a configured rate, respectively.

Figure 2: Population and resource topologies. Each
exists in the same unit Cartesian space; however,
they partition that space differently. (a) The pop-
ulation topology is independent from the three re-
source topologies (b-d). The resource in (b) par-
titions the resource as a 6×6 lattice, while the re-
source in (c) is global, and resource in (d) partitions
the resource topology as a 3×3 lattice.

The SEEDS distribution also contains the SineResource
and SquareResource types, which vary the level of resource
in a given cell according to a sine and square function, re-
spectively. By subclassing the ResourceCell class, new re-
source types can easily be defined.

New resources must implement three common methods.
The __init__ constructor method, which is executed when
a ResourceCell is created, initializes the object and sets the
initial level as configured. The update method adjusts the
level of the resource according to the inflow, decay, and diffu-
sion properties of that ResourceCell. Finally, the teardown

method allows the ResourceCell to clean up its state before
being deleted.

When a cell interacts with a resource, its coordinates in
unit Cartesian space are projected onto the resource’s topol-
ogy. This interaction will then affect the level of the Re-
sourceCell nearest to that coordinate. Therefore, the extent
to which individuals share a particular resource pool de-
pends on the partitioning of that resource’s ResourceCells.
A topology with fewer nodes will likely experience more
overall competition for resource than a topology with more
nodes. Although Resources use the same topology classes as
do populations, they are currently limited to lattices. This
restriction will be lifted in a future release.

2.7 Action
Actions define events that occur at specified times during

Table 1: Sample Actions Included with SEEDS
Action Description

PrintExperimentInformation Print detailed information
about the experiment and the
software environment

PrintCellTypeCount Print the abundances of each
cell type in the population

SetResourceAvailability Toggle the availability of a re-
source

StopOnConvergence Stop the experiment when
the number of different types
of cells in the population falls
below a threshold

an experiment. An action can affect any apsect of the exper-
iment, from the population and its individuals to resources.
Actions are also the primary way in which output data are
produced. Some examples of actions included with SEEDS
are listed in Table 1.

As an example, the PrintCellTypeCount action creates a
comma-separated values (csv) file containing the number of
each cell type present in the population at that time. These
data can be used for further analysis following the experi-
ment, or plotted, as demonstrated in Figure 3. The Print-
CellLocations action writes a csv file containing the location
of each cell in the population, which can be used to visualize
the distribution of strategies in space, as shown in Figure 4.

Figure 3: Abundances of Rock (red), Paper (green),
and Scissors (blue) cells over time in a population
containing 1,000 RPSCell cells

All actions inherit from the Action class. Like most other
SEEDS classes, actions must implement __init__, update,
and teardown methods, which are executed when instances
of that action are created, updated, and deleted, respec-
tively. Each action also specifies an epoch start, epoch end,
and frequency, which define when the action begins, when it
stops, and how frequently it occurs within that window of
time, respectively. Plots similar to those shown in Figures 3
and 4 can be produced through the creation of Actions that
plot population data during or after an Experiment. Several
Actions that create plots are contained in the contrib direc-
tory in the SEEDS distribution, including the PlotCellType-
Stack and DrawPopulation actions used to create Figures 3
and 4, respectively.

136

Figure 4: Snapshot of a population of 1,000 Rock
(red), Paper (green), and Scissors (blue) cells dur-
ing an experiment using the CartesianTopology. In
this example, each cell interacts with its 10 nearest
neighbors, on average.

2.8 Plugin
In SEEDS, each custom Cell, Topology, ResourceCell, and

Action is also an instance of the Plugin class. These Plu-
gins, described in detail in Section 4 allow the functionality
of SEEDS to be extended without recompilation or mod-
ification of the SEEDS installation. Plugins also contain
version information and other metadata, which allow for ex-
periments to be replicated exactly.

2.9 Plugin Manager
ThePluginManager object receives and handles requests

for Cell, Topology, Resource, and Action Plugins. The plu-
gin manager scans the Plugins available in the directories
specified by the configuration. If the plugin (and version)
specified is available, an object of that type will be returned.
Otherwise, an exception will be raised.

3. USING SEEDS
This section describes how SEEDS is typically used. First,

Section 3.1 discusses how SEEDS can be obtained and in-
stalled. Section 3.2 details how experiments can be per-
formed. Finally, Section 3.3 introduces the SEEDS configu-
ration file, which can be used to define a single experiment
or family of experiments.

3.1 Obtaining and Installing
SEEDS is open-source software, released under the Apache

License 2.01, and is publicly available via a number of chan-
nels. The most straightforward way to install SEEDS is us-
ing the pip or easy_install tools. Alternately, all versions
of SEEDS are available on the SEEDS GitHub page2, which

1http://www.apache.org/licenses/LICENSE-2.0
2https://github.com/briandconnelly/seeds

also contains documentation, issue tracking, and develop-
ment history. SEEDS can be installed from source using the
standard Python Distribution Utilities.

SEEDS is designed to have minimal dependencies. A
working installation will require Python 2.6.5 or greater (in-
cluding 3.2) and NetworkX [5]. Although not required, SciPy
[9], NumPy [14], and Matplotlib [8] are also recommended,
due to their frequent use in third-party plugins for analysis
and plotting.

3.2 Running an Experiment
The most common way to conduct experiments is using

the runseeds.py script. This script is installed with SEEDS,
and includes a number of command-line options for config-
uring and running experiments.

Typically, a user will create a directory in which the ex-
periment will be managed. That directory contains a con-
figuration file, further described below, and an optional sub-
directory containing any plugins to be used.

Experiments can also be run from within a Python inter-
preter or another script. Doing so simply requires creating
an Experiment object and iterating over that object. A
simple example of this is shown in Listing 2. This flexibility
allows experiments to easily be run in a number of ways,
from command line tools and graphical user interfaces to
web-based apps.

import s eed s as S
experiment = S . Experiment (’ examples /Rock−

Paper−S c i s s o r s / seed s . c f g ’)

for epoch in experiment :
print (’ Epoch {e} done ’ . format (e=epoch))

Listing 2: Python code to create a SEEDS
experiment, load the configuration file for the
Rock-Paper-Scissors experiment, and perform the
experiment.

3.3 Configuration
Configuration files define all aspects of an experiment,

from the duration of the experiment, the Cell type and
Topology to use, which resources are defined, which actions
to run, and where to place resulting data.

As shown in Listing 3, a configuration file places each
configurable item in its own section, indicated by brackets.
In this example, the experiment, as defined in the Exper-
iment section, will run for 1,000 epochs. It will use the
PrintCellTypeCount and StopOnConvergence actions, each
of which is configured below. It will find any third-party
plugins in the plugins and customcells directories. Finally,
any data written during this experiment will be placed in
the data directory.

The population, defined in the Population section, will
use the RPSCell cell type connected using the Cartesian
Topology topology. Here, the :large label appended to the
topology indicates that the experiment will use the con-
figuration specified in the CartesianTopology:large sec-
tion, as opposed to the CartesianTopology:small section,
which is also defined. This labeling allows a single config-
uration file to define multiple settings for each item, which
simplifies managing the configuration of ensembles of exper-
iments.

137

When this experiment is run, the data directory will be
created. Any actions that produce data will write to this di-
rectory. An example is PrintCellTypeCount, which writes a
comma-separated-values (csv) file containing the abundance
of each type of cell for a cellular automaton model.

[Experiment]
epochs = 1000
ac t i on s = PrintCellTypeCount ,

Pr in tCe l lLocat ion s , StopOnConvergence
p l u g i n d i r s = plugins , cu s t omce l l s
d a t a d i r = data

[Population]
c e l l = RPSCell
topology = CartesianTopology : l a r g e

[RPSCell]
d i s tance dependent = False

[CartesianTopology : small]
s i z e = 2500
p e r i o d i c = True
expec ted ne ighbor s = 10
remove d isconnected = False

[CartesianTopology : large]
s i z e = 250000
p e r i o d i c = True
expec ted ne ighbor s = 10

[PrintCellTypeCount]
s t a r t ep och = 100
frequency = 1

[StopOnConvergence]
th r e sho ld = 3

Listing 3: Example configuration for the Rock-
Paper-Scissors experiment in which each cell plays
either the Rock, Paper, or Scissors strategy against
a randomly-chosen neighbor. This configuration
file is available in the SEEDS distribution under
examples/Rock-Paper-Scissors.

Configuration files, including all default values and ran-
dom number generator seeds necessary to replicate an ex-
periment, are automatically created by SEEDS when run
using the runseeds.py script with the -genconfig flag.

4. EXTENDING SEEDS
Although the SEEDS distribution includes a large num-

ber of Cells, Topologies, Actions, and Resources, it can be
extended to address many other types of questions involv-
ing interactions within and among populations. Specifically,
SEEDS has been designed to provide maximum customiza-
tion and extensibility through a plugin system.

Plugins allow users to specify the behaviors, the environ-
ments, and the resources that best describe their model’s
needs through the creation of new Cells, Topologies, Re-
source Cells and Actions. By using plugins, users do not
need to delve into SEEDS internals, modify the SEEDS in-
stallation, or wait for future releases in order to gain new
capabilities. Instead, plugins are created locally and can be
integrated into experiments immediately.

Plugins are created by subclassing the Plugin class. All
plugin classes must define a number of properties that de-
scribe the plugin and allow experiments to specify specific

Table 2: Properties Defined by Each Plugin
Property Description

name The name of the plugin
description A detailed description of the plugin
version A tuple containing the major and minor

version of this plugin
author The plugin author
credits Additional credits
type An integer specifying the type of the

plugin (e.g., Cell, Topology, etc.)
requirements A list of required plugins and their ver-

sion numbers

versions to be used. These properties are listed in Table
2. Additionally, plugins must implement the __init__, up-
date, and teardown methods, which initialize the plugin,
update its state, and perform any necessary cleanup activi-
ties, respectively.

All of SEEDS’s built-in Cells, Topologies, Resource Cells,
and Actions are implemented as plugins located in a system-
wide plugin directory. These plugins can be modified or
extended by creating local versions of them, allowing users
to alter how they use SEEDS without affecting other users
of the same SEEDS installation. The SEEDS distribution
contains templates to aid in the development of plugins of
all types. A number of user-contributed plugins that are
likely to be of use to a wider audience are included in the
contrib directory of the SEEDS distribution.

Our running Rock-Paper-Scissors example is a cellular au-
tomaton model. SEEDS Cells, however, can represent other
types of models as well. In this example, we will construct
a simple genetic algorithm model in which populations of
individuals evolve to produce a target string. Here, the
“genome” of each individual is an array of characters. At
the beginning of the experiment, these genomes are initial-
ized randomly using the 26-character Latin alphabet and the
space character. The implementation of this cell is shown in
Listing 4. For brevity, comments and error checking are not
included.

When a cell is updated, two random neighbors are chosen
as parents with probability proportional to their fitness us-
ing roulette-wheel selection. A random, two-point crossover
is then performed using their genomes, and mutations are
applied site-by-site on the recombined genome. This design
approximates a tournament selection with tournament size
equal to the number of neighbors that each cell has.

5. FUTURE DIRECTIONS
SEEDS is feature-rich, and has been used in several previ-

ous and ongoing research projects (e.g., [2, 1]). Nevertheless,
a number of additions are planned that will increase repeata-
bility of experiments, allow for easier distribution of plugins
and configurations, offer new avenues for storing and inter-
acting with resulting data sets, and make SEEDS a more
approachable platform for use in education. This section
details the significant enhancements planned for the near
future.

5.1 Unit Testing Framework
One of the primary goals for SEEDS is to maintain a de-

pendable platform that is backed by solid software engineer-
ing practices. Among these are unit tests, which are cur-

138

rently being integrated at all levels, from the core modules
to plugins. By enabling the platform to be tested from ex-
periment to experiment and version to version, we hope to
maintain high levels of reliability and reproducibility.

5.2 Self-Contained Experiments
SEEDS’s flexible plugin system allows users to easily ex-

tend its functionality; however, this feature might also make
sharing experiments that use many custom plugins and con-
figurations more difficult. In order to facilitate sharing among
users, a container format is being developed, which will per-
mit users to include all files associated with a given ex-
periment in a single file. These container files will use a
compressed, self-contained archive containing a manifest file
describing the contents of the archive, one or more configu-
ration files used to recreate an experiment, and all custom
plugins used. The SEEDS distribution will include utilities
for creating and editing these archives, as well as extracting
individual elements from them.

5.3 Flexible File IO
Although the comma-separated values (csv) files created

by actions that write data are fairly standard and readable
by a wide variety of software packages, greater flexibility in
the output formats produced by SEEDS and its actions can
allow users to easily incorporate experiments into their own
workflow, such as the use of relational databases to merge,
query, and analyze data sets. To support such functional-
ity, SEEDS will integrate a modular layer for reading and
writing data that allows plugins to be created for different
data formats. Methods provided by this layer to read and
write data would allow Actions to write data in the format
specified by the user.

5.4 Graphical User Interface
Although SEEDS can be used to conduct research in a

number of fields, it is also intended as a hands-on learning
tool for use in the classroom. Through educational mod-
ules containing well-defined experiments, necessary configu-
rations and plugins, as well as additional background infor-
mation and prompts for exploration, SEEDS has the capa-
bility to be a powerful tool for students of all ages to observe
and affect fundamental properties of evolution and ecology.

Currently, experiments can only be performed from the
command line. In order to reach a wider audience, an easy-
to-use graphical user interface (GUI) will be developed to
allow users to interact with experiments in a more intuitive
way. Although this extension will be a major undertaking,
SEEDS’s modularity promises to enable the development of
first-class interfaces of all kinds.

Acknowledgments
The authors are grateful to Anuraag Pakanati for his feed-
back. This material is based in part upon work supported by
the National Science Foundation under grants DBI-0939454,
CNS-1059373, CNS-0915855, CCF-0820220, and CNS-
0751155. Luis Zaman was supported by an AT&T Labs
Fellowship. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

6. REFERENCES
[1] B. D. Connelly, L. Zaman, P. K. McKinley, and

C. Ofria. Modeling the evolutionary dynamics of
plasmids in spatial populations. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 227–233, 2011.

[2] B. D. Connelly, L. Zaman, C. Ofria, and P. K.
McKinley. Social structure and the maintenance of
biodiversity. In Proceedings of the 12th International
Conference on the Synthesis and Simulation of Living
Systems (ALIFE), pages 461–468, 2010.

[3] A. Eiben and J. Smith. Introduction to evolutionary
computing. Springer Verlag, 2003.

[4] M. Gardner. Mathematical games: The fantastic
combinations of John Conway’s new solitaire game
“Life”. Scientific American, 223:120–123, 1970.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart.
Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in
Science Conference, pages 11–15, Aug. 2008.

[6] G. Hornby, J. Lohn, and D. Linden.
Computer-automated evolution of an X-band antenna
for NASA’s space technology 5 mission. Evolutionary
Computation, 19:1–23, 2011.

[7] J. Hu, E. Goodman, S. Li, and R. Rosenberg.
Automated synthesis of mechanical vibration
absorbers using genetic programming. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, 22:207–217, 2008.

[8] J. D. Hunter. Matplotlib: A 2d graphics environment.
Computing In Science & Engineering, 9(3):90–95,
May-Jun 2007.

[9] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open
source scientific tools for Python, 2001.

[10] B. Kerr, M. Riley, M. Feldman, and B. Bohannan.
Local dispersal promotes biodiversity in a real-life
game of rock-paper-scissors. Nature, 418:171–174,
2002.

[11] J. Koza. Human-competitive results produced by
genetic programming. Genetic Programming and
Evolvable Machines, 11:251–284, 2010.

[12] R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami.
The evolutionary origin of complex features. Nature,
423:139–144, 2003.

[13] C. Ofria and C. Wilke. Avida: A software platform for
research in computational evolutionary biology.
Artificial Life, 10:191–229, 2004.

[14] T. E. Oliphant. A Guide to NumPy, volume 1. Trelgol
Publishing, 2006.

[15] F. Pérez, B. E. Granger, and J. D. Hunter. Python:
An ecosystem for scientific computing. Computing in
Science and Engineering, 13:13–21, 2011.

[16] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:99–127, 2002.

139

import random
import s t r i n g

from s eed s . Ce l l import ∗
from s eed s . Plugin import ∗
from s eed s . SEEDSError import ∗
from s eed s . u t i l s . sampling import r o u l e t t e s e l e c t

name = ’ Sent enceCe l l ’
d e s c r i p t i o n = ’ Evolving con f igu red t a r g e t sen t ence us ing GAs ’
v e r s i o n = (1 ,0)
au tho r = ’ Brian Connelly <bdc@msu . edu> ’
c r e d i t s = ’ Brian Connelly and Luis Zaman ’
t yp e = 1

class SentenceCe l l (Cel l , Plugin) :
a lphabet = s t r i n g . a s c i i l ow e r c a s e + s t r i n g . a s c i i u p p e r c a s e + ’ ’
types = [’ Sentence ’]

def i n i t (s e l f , experiment , popu lat ion , node , type=None ,
name=”SentenceCe l l ” , l a b e l=None) :

super (SentenceCel l , s e l f) . i n i t (experiment , popu lat ion ,
node=node , type=0, name=name , l a b e l=l ab e l)

s e l f . t a r g e t = s e l f . experiment . c on f i g . get (s e l f . c o n f i g s e c t i o n , ’ t a r g e t ’)
s e l f . genome length = len (s e l f . t a r g e t)
s e l f . mutation = s e l f . experiment . c on f i g . g e t f l o a t (s e l f . c o n f i g s e c t i o n , ’ mutation ’ ,

d e f au l t =0)

s e l f . genome = random . sample (s e l f . alphabet , s e l f . genome length)
s e l f . c a l c u l a t e f i t n e s s ()

def update (s e l f) :
s e l f . ne ighbors = s e l f . ge t ne ighbor s ()
n e i g h b o r f i t n e s s e s = [n . f i t n e s s for n in s e l f . ne ighbors]

Use r o u l e t t e wheel to f i nd the most f i t paren t s
parents = r o u l e t t e s e l e c t (items=s e l f . ne ighbors , f i t n e s s e s=n e i g h b o r f i t n e s s e s , k=2)

Choose random crossover po i n t s
cp1 = random . rand int (0 , s e l f . genome length −1)
cp2 = random . rand int (0 , s e l f . genome length −1)

s e l f . genome [: cp1] = parents [0] . genome [: cp1]
s e l f . genome [cp1 : cp2] = parents [1] . genome [cp1 : cp2]
s e l f . genome [cp2 :] = parents [0] . genome [cp2 :]

Apply mutations to the o f f s p r i n g
for i in range (s e l f . genome length) :

i f random . random () < s e l f . mutation :
s e l f . genome [i] = random . cho i c e (s e l f . a lphabet)

s e l f . c a l c u l a t e f i t n e s s ()

def c a l c u l a t e f i t n e s s (s e l f) :
”””Fi tness i s 2ˆ(number o f matching cha rac t e r s) ”””
s e l f . f i t n e s s = 1
for i in range (s e l f . genome length) :

i f s e l f . genome [i] == s e l f . t a r g e t [i] :
s e l f . f i t n e s s ∗= 2

Listing 4: SEEDS Cell implementing a genetic algorithm to evolve to match a target string. This cell’s two
parameters, target and mutation, can be defined in the SentenceCell section of a configuration file.

140

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

