REAL-WORLD
DATA MODELING

MARK KOTANCHEK

EVOLVED ANALYTICS LLC

WWW.EVOLVED-ANALYTICS.COM

COPYRIGHT IS HELD BY EVOLVED ANALYTICS LLC.
GECCO’12 COMPANION, JULY 7—11, 2012, PHILADELPHIA, PA, USA.
ACM 978-1-4503-1178-6/12/07.

MONEY

Specifically, we want to convert data into money

www.evolved-analytics.com
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WHY ARE WE HERE?

DEALING WITH THE
DATA DELUGE

Conventional technologies struggle ...
® too much data
® too many variables
® ugly data
® too little time

e the simplifying assumptions are not
valid

® models are big piles of “trust-me”

Multi-objective symbolic regression ...

® can help to make sense ... and
money ... out of the data deluge.

® trustable models are possible

® cheaper-better-faster really IS possible!

www.evolved-analytics.com



THE ESSENCE IS NUMBERS

DATA, DATA EVERYWHERE (AND SOME CONTEXT)
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WE WANT TO CONVERT
NUMBERS INTO ...

VARIABLE
IDENTIFY SELECTION

OUTLIERS

PREDICTION

GUIDANCE

ONEY

VARIABLE INSIGHT &
RELATIONSHIPS UNDERSTANDING

Simply knowing which of the inputs
EMULATORS & EARLY WARNING & VARIABLE SELECTION REALLY matter can be important and

valuable
OPTIMIZATION RISK MANAGEMENT

www.evolved-anal;

com www.evolved-analytics.com
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VARIABLE
RELATIONSHIPS

Identifying key variable combinations
(metavariables) can lead to insights and
better models

www.evolved-analytics.com

Ensemble Variables| Ensemble Models| Ensemble Predictions

60000

Underpredicted and Overpredicted countries

GDP per Capita Model-based Outliers
oulier rank country oulier distance |  classification
1 Caymanlslands 14.83 Overpredicted
2 Qatar -1223 Underpredicted
3 Greece 11.81 Overpredicted
4 Switzerland —8.70 Underpredicted
5 Spain 7.63 Overpredicted
6 Singapore =774 Underpredicted
7 Bermuda -6.42 Underpredicted
8 Iceland 598 Overpredicted
9 UnitedStates -5.89 Underpredicted
10 Canada =553 Underpredicted
11 SaudiArabia =522 Underpredicted
12 Estonia 377 Overpredicted
13 Japan 4389 Underpredicted
14 Oman —4.48 Underpredicted
15 Denmark 3.14 Overpredicted
16 Bahamas 304 Overpredicted
17 Bahrain 329 Underpredicted
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OUTLIER

DETECTION

An outlier is either a nuisance or a critical

nugget of information. The first step in that

assessment is to identify them

www.evolved-analytics.com
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PREDICTION

Inferring from observables the current or
future quality, price, temperature, demand,
etc. can be valuable.

www.evolved-analytics.com

| x1, %2, %3, x5, 6

x1 and x2 - pressures
%3 and x5 - temperatures
x6 = feed Nlow

x7 and x22 - flows
%23 = bottom temperature

X7, %22, x23

x13

x14, x15, 216

2021 N,
I .

4~ reflux flow
y — process quality variable

*8 —x12 and x14 — x19 - lemperatures
%13 — material balance

20 and x21 = flows

EMULATORS &
OPTIMIZATION

A surrogate for a real system can be useful
for coarse optimization or training or
exploring what-if scenarios

www.evolved-analytics.com
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Knowing when the the system has changed
RISK MANAG EMENT or the model SHOULDN'T be trusted can

be very valuable.

www.evolved-analytics.com

INSIGHT &
UNDERSTANDING

The most exciting phrase to hear in science, the
one that heralds new discoveries, is not
‘Eurekal” (I found it!) but ‘That's funny ..."

— Isaac Asimov (1920 - 1992)

www.evolved-analytics.com
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GUIDANCE

Where should we look for better solutions?
How can we drive uncertainty out of the models?
What are the key factors?

www.evolved-analytics.com

THE HUMAN FACTOR

* Modeling Objective
e Data Characteristics

* Context & a priori Knowledge

www.evolved-analytics.com



WHY MODELING? WHY MODELING?

9[ FIRST PRINCIPLE MODELING ; FIRST PRINCIPLE MODELING ° Insight
x m
O py e Actionable
[_-u or) = Bo(r) l'l'l Data
; INSIGHT > Physics PREDICTION  Data
-l PHYSICS UNDERSTANDING DATA < e
Ifl sl KNOWLEDGE E irection
, N
E | /)%} .A o) ¢ Optimization
z ] p A EMPIRICAL MODELING
E * Design
< A EMPIRICAL MODELING [J
WHAT IS SYMBOLIC
MODELING OPTIONS REGRESSION?
p ﬁ f * Must discover BOTH the model structure
Drivin
variaﬁﬁs AND the embedded coefficients
B e This is a MUCH more difficult problem than
| — . conventional regression or neural network
/ > modeling — the search space is infinite & an
/ NeURALL & pae infinite number of models will fit the data
— NETWORKS,
NON-LINEAR  SVM, GMDH, e The Basic Problem:
REGRESSION RATIONAL
P o
LINEAR ESTMATION  SvmsoLic | e How do we efficiently search for models
REGRESSION T REGRESSION
LINEAR SYSTEM L ke e How do we know when we are done?
& DRIVING DRIVING STRUCTURE BUT
VARIABLES ARE VARIABLES DRIVING VARIABLES

KNOWN e e ARE KNOWN
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AGENDA TUTORIAL GOALS

Understanding of the modeling context & motivation

* Modeling & Motivations

Understanding of GP-based symbolic regression
e Conventional GP Overview & Limitations * vanilla GP

: ; : : e Pareto GP

e The ParetoGP (Multi-Objective) Perspective e n—
e Ensembles & Trustable Models e common issues, problems, good practices and rules-of-thumb

e ) e Foundations and implications of ensembles & trustable models
e Trustability & Active DOE & L oo
e (Qutlier Identification * case studies using industrial data

e Awareness that GP-based symbolic regression (ParetoGP) is
* (Case Studies something truly special
www.evolved-analytics.com www.evolved-analytics.com

WHAT IS TRUTH?

WHAT IS TRUTH? ‘
We only know the

data

ouput

input

www.evolved-analytics.com
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WHAT IS TRUTH? WHAT IS TRUTH?

Perhaps we need to

Maybe the linear H 3
model is correct? be more open-
: minded?
WHAT IS TRUTH? CONFOUNDING FACTORS

E.ach of these models With many variables
fits the data and limited data,
EXACTLY

determining which
inputs are truly
drivers and which
correlations are
accidental is difficult

ouput

We need more

information to make
an intelligent model
selection

input




CONFOUNDING FACTORS TRUST & TREPIDATION

¢ Using data-driven
models is like driving
fast with the
windshield painted
over and using only
the rear-view mirrors

Again, all models fit
e data EXACTLY

How do we

determine which e This might work as
long as the model is
perfectly accurate and

there aren’t any curves

variables are real?

* Are you feeling lucky?

www.evolved-analytics.c

KEY POINT

All of the previous response
surfaces were generated via
symbolic regression.

The only constraint is the
supplied building blocks.

WHAT ARE GOOD
SYMBOLIC i HYPOTHESIS MODELS?
REGRESSION GENERATOR

We can exploit this creativity
to produce trustable data
models.

Human limits of imagination &
possibility are not imposed!




WHAT ARE GOOD MODELS?

e Credible

SYMBOLIC
REGRESSION CAN
DELIVER AGAINST

ALL OF THESE

* Interpretable
» (Cost-effective

¢ Extrapolate
Well

e Robust

OBJECTIVES —
WHICH MAKES IT
VERY UNIQUE IN

: ITS CAPABILITIES!
* Self-Assessing

www.evolved-analytics.com

VANILLA GP

IN THE BEGINNING, THERE WAS THE VOID AND DARKNESS.

AND KOZA SPOKE ...

1357

REASONS TO MODEL

Understand Variable
Relationships

System Modelin
Research
Acceleration

Cues to Physical
Mechanisms

Emulators

Infer System States
Inferential
Online Monitoring el e

& Alarm

Coarse Optimization

Insight into System
Explore Multivariate

t Meaningful

Variable _Combinations

Transforms .
Sp Convert into less

nonlinear problem

Identify Variables
which drive system

Variable
Sensitivity

Focus Data Gathering

Model
Discrimination DOE

Active DOE

There are lots of good reasons to develop empirical models; however, not
knowing WHICH reason(s) are applicable is a recipe for disaster

www.evolved-analytics.com

EVOLUTIONARY .
COMPUTING

EC VARIANTS:
e GENETIC ALGORITHMS (GA)

¢ EVOLUTIONARY STRATEGIES
(ES)

. EVOLUTIONARY
PROGRAMMING (EP)

o GENETIC PROGRAMMING (GP)

Fithess-Based ¢ PARTICLE SWARM
Propagation OPTIMIZATION (PSO)

o ETC.

c GENETIC PROGRAMMING

Improved

N 0 GENOME (GENETIC CODE)
Population

EVOLVES

Population

o PHENOTYPE (REALIZATION)
JUDGED FOR FITNESS

. GOAL IS TO EVOLVE
PROGRAMS WHICH SOLVE
PROBLEMS

Diversity
Introduction

It is this simple!

® THE SEARCH SPACE IS
INFINITE!

- SYMBOLIC REGRESSION IS
ONE GP APPLICATION

. MANY VARIANTS OF GP Now
www.evolved-analytics.com



CONVENTIONAL GENETIC

SYMBOLIC REGRESSION VIA GP PROGRAMMING PROBLEMS

e RELATIVELY SLOW DISCOVERY

) n N SUMMARY , ,
o /ﬂg\ M 1 e Computational demands are intense
S 54
v N /‘l£ \m‘z THERE ARE MANY ¢ SELECTION OF “QUALITY” SOLUTIONS
4 * POSSIBLE VARIANTS

¢ Trade-off of Complexity vs. Performance

OF SYMBOLIC
REGRESSION. THESE
CAN EITHER MAKE

e GOOD-BUT-NOT-GREAT SOLUTIONS

e Other nonlinear techniques outperform in raw

THE MODEL SEARCH performance
MORE EFFICIENT OR + BLOAT

N
Lt VIRV CAN walds Tz e The “best” model explodes in complexity
SEARCH INEFFECTIVE
Parent| z [0.185107(1-z)|-1-1 STAGNATION
NES AND SLOW.

Mc‘:;:‘ - 1'376:9‘y = e The search cannot innovate out of local optima.

- : www.evolved-analytics.com www.evolved-analytics.com

THE WAY WE USED TO DO
REPRESENTATIONS DATA MODELING

e There are many GP variants which use different underlying > : - : ¢
genome structures 1. Use “stacked analytic networks” to identify the

e Tree-Based (the Koza original) driving variables

B etical Evolution 2. Use support vector regression (SVR) to identify

e Cartesian GP — graph based the key data records
e GEP — Gene Expression Programming (closer to a GA

representation) 3. Apply GP (slowly) to the reduced data set

L ool machinecode diredily) 4. Painfully search through the developed

e TS models for simple and high-quality

e TFunctionally, they are pretty similar despite the passion of some : T
e 3 - expressions or to extract insight.
of their proponents

e HOWEVER, implementation details can produce orders-of- 5. Think that there HAD to be a better way
magnitude differences in performance & model quality

www.evolved-analytics.com www.evolved-analytics.com
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WHAT DO WE REALLY
WANT?

Accuracy, of course, is
PA R E TO dominant

e Accurate

( M ULTI'OBJ ECTIVE) * Simple If we focus on model

* No spurious variables simplicity, then most of
G P * Robust the other goals will be
e Limited nonlinearity achieved as a side-effect
3+ ORDERS-OF-MAGNITUDE SPEED IMPROVEMENT
OPENS LOTS OF POSSIBILITIES! e Dimensional Con81stency

However, we have and
do use more than just
L] ° etc. simplicity as the

: additional goal

www.evolved-analytics.com

¢ Smoothness

e What is complexity? jecti o
s P Y . Model Performance vs. Objectives o Identifies tradecit 1B
PN e {#ofnodes? = ; e
2y " 050 between competing objectives
1 % |i] 9 | /\ e Tree depth? TR
% |0
x 1711 X =27 X e Included functions? 0.20 U ® e.g, accuracy vs.
e Number of variables? f 0.10 & ‘ cole = s Complex1ty
o ——y | et ;
Complexity=36  _ _ 27 y Complexity bty 005 Y& s . =1 e Pareto front solutions are the
X e = A u Lo i 1
e Chosen function is sum of sum of ~ 0.02 best “bang-for-the-buck
ny nts of genom % o 5
C§QO &) & & e E 0/\ 200 400 600 800 1000 ;1’21;1; o Unwarranied coms S
e Provides more resolution at low end ; . .
: } ; . ; N 5 of complexity hon simply using node Complexity pumshed automatlcally
e 2 4 4 @ & 3 count Models at the “knee”of the Pareto front are e spurious variables
PO c P . I N o cnicrally preferred since they have the best
layers balance; however, we don’t know the e introns

complexity vs. accuracy trade-off until

e  Maarten Keijzer has renamed this

“visitation length” AFTER we have built the models. * unnecessary terms
www.evolved-analytics.com www.evolved-analytics.com
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THE PARETO FRONT

Model Performance vs. Objectives

1.00 55

0.50

0.20 .4

0.10 i X AL

1-K~

0.05 g S

0.02

0.01 e K

0 200 400 600 800 1000 1200
Complexity

How DO WE
EXPLOIT THE
PARETO FRONT?

1400

¢ Identifies trade-off surface
between competing objectives

PARETO PERFORMANCE

e Multiple ways to characterize
Pareto Performance

* e.g., accuracy vs. Dominance e Computational Issues
complexity Domination e Brute force is MN?

¢ Pareto front solutions are the ¢ CandoM N.IOgM-1(N) orM
best “bang-for-the-buck” N logm-(N) if clever

¢ Unwarranted complexity is * M= # of objectives
punished automatically Bett * N = population size

etter : :

e spurious variables Layers e (Global comparison is

® introns

® unnecessary terms

www.evolved-analytics.com

PARETO TOURNAMENTS

winners Pareto Tournament Losers

1.00 el ="+ 7;

[ @e ¥y

0.50 i

° This Example:

0.20 3%
e Population = 300
® Tournament size = 30

1-R*
8

0.10

. . T e Winners = variable

(0 S

[ Sefggel~ o & °

002t “Yepfideses | ‘ .

0 100 200 300 400
Complexity

Pareto Tournaments
select a random pool of N models to
compete
models on the multi-objective Pareto front
getting breeding rights
repeat until sufficient parents are selected

expensive & doesn’t scale well

e Pareto tournaments are an
alternative

www.evolved-analytics.com

PARETO TOURNAMENTS

Winners Pareto Tournament Losers

e Tournaments are the 1.00 fomes—s
[ @e o'y
standard in EC 050 W 1=
. 707. This Example:
° Slmple L i e Population = 300
2l ® Tournament size = 30
s . e Winners = variable |
e robust
005+——+* }
R T tefgpelt *
* tunable selectivity . e Siie
0 100 200 300 400
C lexit
e scalable — NO global L

awareness
e Pareto tournaments have
the same properties

www.evolved-analytics.com
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Pareto Tournaments
select a random pool of N models to
compete
models on the multi-objective Pareto front
getting breeding rights
repeat until sufficient parents are selected

# Identifying Pareto front of a
local tourney is easier &
faster than establishing the
global pecking order

2« The selection focus is
automatically the knee of the

Pareto front

s Note that this is NOT the
commonly used approach of
pairwise comparison —
which is NOT tunable

www.evolved-analytics.com



CONVENTIONAL GP

EVOLUTION

ConventionalGP: Model Quality for Generation 1

0.20

% 010

0.05

0.02

o 500 1000 1500 2000
Complexity

Lots of Effort &
Minimal Results!

Inferential sensor data
set

Single objective
tournaments based
upon accuracy

Upper bound on
complexity

Best model survives
across generations

“Best” models are
WAY too complex

www.evolved-analytics.com

BUT THAT’S NOT

ALL...

BEHIND DOOR #2, WE HAVE ...

1361

PARETO TOURNAMENT

IMPACT

MultiObjective: Model Quality for Generation 1

1.00 e
0.50 E N

N
020

o
% o010

0.05

0.02

g

1000 1500

Complexity

Less Effort &
Better Results

2000

Same data set

Minor changes:
e Pareto Tourney (30)

e Pareto front survives
across generations

50% more model
search in same time

Continual
improvement

MUCH better models

www.evolved-analytics.com

THE PARETOGP ESSENCE

Original
Model Set
Cascade Results Cascade
Start?
Multi- - - -
Objective Multi-Objective
Selection Population Methuselah

(Archive)

parallel
independent
runs

000

Consolidated
Results

Reported
Models

Multi-Objective
Selection

Multi-Objective
Archive

Niching

Continual New
Genetics Influx

www.evolved-analytics.com



GOOD IDEAS

ARCHIVES (METHUSELAHS)
e preserve good models
MULTIPLE OBJECTIVES
e focus on the real goal
e primary/secondary objectives
e alternating objectives
NICHING
* model protection during
development
SCALE & TRANSLATION INVARIANCE
® e.g., absolute correlation
e calculating scale & translation is
straightforward
ELIMINATE REDUNDANT MODELS

® clean out duplicates

RESCALE

* mapping variables to a common
range can make them more
interchangeable

e this will create bigger
expressions when returning to
the natural scaling

LAMARCKIAN EVOLUTION

e simplify & optimize models
during evolution

INTERVAL ARITHMETIC

e focus on models which can be
deployed safely

ORDINALGP & ESSENCE

e dynamic environment

e data balancing

www.evolved-analytics.com

NICHING

Accuracy

(Simiarty )

Subspace

Niching is a foundation of diversity
and continuous innovation

There are many ways to implement
niching
e Multiple Objectives (ParetoGP)

e HFC — Hierarchical Fair
Competition

e ALPS —Age-Layered Population
Structure

e Simple Geographies
e Islands
oF cic:

The key is to let models develop in a
protected way

www.evolved-analytics.com

MULTIPLE OBJECTIVES

Primary
Objectives
Modeling
Obijectives
Secondary
Objectives

Alternating objectives

can mitigate the curse-of-
dimensionality

Absolute
Correlation

Scale-Invariant

Aceuracy Noise Power
L

Model
Complexity

Stability )— Nonlinearity

Response
Range

Model Age Number

Variables

Structure Subspace

Functions
Used

www.evolved-analytics.com

INTERVAL ARITHMETIC &
ROBUSTNESS

rangeMap = {
x1 - Interval[{1l, 4}],
X2 » Interval[{2, 10}]
}i
x1

— /. rangeMap
x2

Interval [{1—10 . 2}]

x1%2-x1 /. rangeMap

Interval[{-3, 15}]

1362

* Rapid test for model

stability

e two-orders of magnitude
faster than nonlinear search

e assumes hypercube of
parameter ranges

e Testis conservative —

rejects well behaved
models

e restricts model structure

e can be implemented during
model evolution for rapid

p athOIOgy rej e Cti%w.evolved-analﬁics.com



BivariatePlot of what we know

RAPID MODELING

What we Know is NOT that y = (;_:1 + z)z
"

record # | vart var2 var3 vard vars | response
m 1 0.329258 | 8.11465 | 7.12105 |1.03291 | 3.40657 14.757
e 2 4.84938 | 4.66287 |0.0189522 |5.90275 | 2.36361 | 11.4668
3 7.93757 (0.973329 | 0.982196 |3.88811 | 7.52169 | 4.46992
4 0.324429 | 9.32384 | 3.88377 |7.67598 |0.162064 | 100.471
5 7.82642 | 6.71559 | 2.22499 |1.36682 | 3.29299 | 12.7043
6 5.79561 | 5.14337 | 5.42646 |8.24253 | 4.30972 8.813
I he 7 8.373 | 5.68092 | 3.48945 |5.25569 | 6.61319 | 7.54158
8 1.30168 | 7.21797 | 2.95179 |[7.11198 | 5.94553 | 9.23689
9 1.1921 1.87904 | 553493 |(7.25667 | 1.84713 | 7.07547
l l l e f l ) Ci e Cy 10 2.04239 | 3.23745 | 4.26614 | 6.1096 | 6.89175 | 5.80922
C an b e Model Selection Table
Complexity 1-R? Vars Function
1 11.000 0.513 X5 .73 , 5,977
5
remarkable! .
319000 R0 03T A 4
; s x5
. ¢ 4 29.000 0.001 = bl
Is of Modeling 5 %5
# 4.994 [x,-
ariable Presence Map e Pe¥22) |4 6
5960 S = *
0.500 r-
o §
0.100 o 7
g 000 | 6 72.000 7.671x10% 32 -4.926 |~ - 22| ,4.096
= 0010 s 7 )
0.005
Ll O DT N DU AU % o]
50 100 150 200 250 7 88.000 5.427x10% 12 5.091 |7 - T2 | .4.105
Complexity R 2 7
www.evolved-analytics.com
We have a big FAT data set — 30 records and 100 variables
Summary from the initial fat array SymbolicRegressio
Lots of data doesn't necessarily mean lots of information
One variables having >10% presence in models with R*>0.8 Y Balanced Data => Faster & Better Models
A . 2250 data points available Subset Content = s s =
H Models | % of Models | Variable | Meaning s P 10 0.50 info => 30 data points 0.60 info => 73 data points
5 T 113 o7 X5 vars /—f—'
minute of B L 2 B .
3 o7 218 Xi4 varid e
5 7 24 194 X86 Varg6 i
‘ P l I 1me 5 24 194 Xa6 Varas £ 08
TS 185 x16 varie £
T = 77 X95 Vargs 2 04
8 6 129 & vard £
Modeling the FAT data array 5 % =3 5 o B
Pareto Front Log Plot Variable Presence in All Models 10 15 121 x15 varls e
= T 13 105 X29 var2g 0ol
Model Selection Report 3 a1 001 00052 2000
2 # of (balanced) data records
2 R SfEERs 3
£ Complexify|ToR F“"“::':s 0.70 info = 157 data points
1 1 0.605 8.498 + 2248
vars
: X 2 15 0516 |  56.185+-19.686 Y var5 R d d t d t 1
o 100 150 G Y e 0.368 |0.981+0.100 var15 varl6 var2 eadundan data 1S
Complexity Model Index
y 4 19 0.164 7318k oA .
Presence in models with K% > 0.9 Presence in ParetoFront Models. vars common in closed
— 3 ————— 5 23 0.044 _ol50g; 2 ASONAIZ
- = I lik
2 o 0.602 var2 var
2 fi o| o Jooo] reens 00p systems like
5 8 vars
2 Zas 0482 var2?
- 1 7 27 0.032 2{6o ;402 3 d t g 1
NN - = industrial processes
= = 4
RO o 60 L 2ot SO TS, 8 29 0.019 6,837, S008VaLZ,
Model Index Model Index L ———wwevolved-analysics.com www.evolved-analytics.com
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LARGE DATA SET
STRATEGIES CORRELATED DATA

Uniformly distributed data records are not necessarily of equal value

2000 data points available Subset Information Content

O MOI'e CPU Time Coupled observed inputs and observed response

////f e Balanced Data F wz g.‘ ’ ‘ 15 Seconds of Modeling
Subset gé’ ; ; ggs Complexity 1-R* Vars Function

11.000 0.564 X7 0:334¢ 021688

[y

5

) - 3 ] s 3
: 7 'f » . 03+
2 * OrdinalGP ‘//( D’%‘. 19.000 0.167 X2 _0.482-— =8
oy ) 500 1000 1500 2000 s s 5 X2
Rt (randomly ‘ ' , ’ “ @
. L 27.000 D DES +0.294

N

X,  0.106x52

w

X
BalanceData prioritizes the data records Changlng SUbsetS) "\\‘ / ‘ 2 *2
0.4 info = 44 pts | 0.5 info ? 109 pts 0.6 info = 245 pts 0.7 info 3;456 pts WZ | 25000 0000 23 1.000 x5
|| * ESSENCE FeuHN®,/ @ 0 202 S0
(incrementaly B@O®H®® T

adding balanced

S

data)
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Noisy DATA Noisy DATA

Thls is some nonsy data Th1s is some n01sy data models with R2>80% Ensemble Prediction
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OUTLIER DETECTION

OUTLIER DETECTION

x1

Model #1 Model #2
x1

Model #3 Model £#4
1

ParetoFront models
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I
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TRUSTABLE MODELS

detection HAS
to be model-
based!
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TRUSTABLE MODELS

A sampled sigmoid, ————
1+ etax

Ensemble Performance vs. Known Data

TRUSTABLE MODELS

1
A sampled sigmoid, ———
Teev7s

Models From Four IndependentEvolutions of 15 Seconds

Pareto Front Log Plot

ParetoFront models

Model 11 Model 52

E E
Model #3 Model 24

Noise Power

0.0035
0.0030
0.0025
0.0020
0.0015
0.0010

0.0005

The Selected Models o
08
e

B 0.6

3

° B
o 04
02

40 60 80 100

Complexity

00

Ensemble Prediction Plot

:

Models From Four IndependentEvolutions of 15 Seconds

Pareto Front Log Plot

ParetoFront models

Model #11 Model 322

B «
Model #3 Model 224

02

04 06 08
Observed

Ensemble Performance vs. Known Data

EXTRAPOLATION

Linear Models vs Data

Poly Order - 1

Poly Order -2

Poly Order - 3

x1

Poly Order - 5

Poly Order - 6

x1

x1

Poly Order -7

Poly Order > 8§

Trustable Ensemble

x1

www.evolved-analytics.com

1 0 The Selected Models [Ensemble Prediction Plot
o L i
o
. oonspe
; 3 06
2 r z &
£ oos s £ o
oovs|-o— 8 b b
o0
W @ W w 00" 02 03 05 05 10
Compesity Observed

EXTRAPOLATION

Ensemble vs. Truth vs. Extrapolation

the true model

truth £100%

e

response

trust measure

trust measure +100%

L

Linear Models vs Data & +100% RangeExpansions

Poly Order - 1

Poly Order -2

Poly Order -3

x1

x1

x1

Poly Order -» 4

Poly Order - 5

Poly Order - 6

x1

=

x1

Poly Order 7

Poly Order » 8

\

Trustable Ensemble

www.evolved-analytics.com
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EXTRAPOLATION

Linear Models vs Data & +100% RangeExpansions

. - . Nature does not E NS E =1 E S
know it is MANY WORKING TOGETHER CAN ACHIEVE GREAT
supposed to be a THINGS
/ / low-order
Poly Order 7 \Po]y Order > 8 Trustable Ensemb% 2 p Olyn Omi al!
www.evolved-anal
How DO WE CHOOSE How DO WE CHOOSE
THE MODEL? THE MODEL?
- Model Quality: Gen 750 ° Many mOdelS are
'-‘- developed during the
R evolutionary search w D O N , T '
., ’ ¢ These models have E Y
1 .. different structures
despite having
: comparable performance
e S ol e Different evolutions will

CCCCCCCCC discover different model
forms




How DO WE CHOOSE
THE MODEL?

e Instead, we exploit the DIVERSITY of
structural forms vig#hodel ensembles

Recall
that the models are

constrained by the data and NOT
by physics or preconceived
assumptions!

WHAT IS AN ENSEMBLE?

e A collection of models which are ...
e diverse and

e “good enough” complexity and
accuracy

OTHER THINGS TO
CONSIDER

model forms for INSIGHT ...
variable presence for DRIVERS
variable combinations (metavariables)

Pareto front shape (modeling potential
& difficulty)

WHY IS AN ENSEMBLE
SPECIAL?

The constituent models ...

e AGREE where constrained by the
observed data (otherwise, they would not
be good models)

e DIVERGE where they are not
constrained by experience (otherwise,
they would not be diverse)

Thus, we have a high-quality prediction
AND a trust metric to accompany that
prediction!

www.evolved-analytics.cos




TRUSTABLE MODELS!!

No more “Trust me”

e This is a classic issue for use of data-derived

models

This is VERY unique and made possible by the
diverse structures coming out of ParetoGP

Knowing when NOT to trust the prediction can be

very valuable

We can also exploit ensembles for adaptive data

collection

Identified systems also tend to extrapolate well

www.evolved-analytics.com

DIVERSE MODELS

Diversity Aspects
model structure
constituent variables
(lack of) error correlation

e observed data
prediction disagreement

e synthetic data

A Definition Algorithm

® build covariance matrix
® select most uncorrelated pair

e delete all models not uncorrelated

(within threshold) to pair
® repeat until no models left
® Divide-and-conquer for large

numbers of models to avoid scaling

problems

ALTERNATE: choose a reference and

work from there

www.evolved-analytics.com

0.07

ENSEMBLES ARE/ARE

NOT ...

ARE NOT ...

collections of weak-
learners

¢ diverse due to using
different training data

* collections of locally-good
models

ARES

extrapolate reasonably
white-box

robust predictors (use
median average for
prediction)

diverse due to
uncorrelated prediction
residuals

www.evolved-analytics.com

ASSEMBLING THE
ENSEMBLE

Ensemble Models

L_JURC TYSHPR g ®° e

50

100

150
Complexity

The definition of “uncorrelated”

needs to be relaxed from the
conventional statistics criteria.

e Astrategy that
seems to work is:

e uncorrelated models

from model
population

uncorrelated models
from Pareto front

“most typical”
model from Pareto
front

www.evolved-analytics.com



MAKING IT TANGIBLE

(AN INFERENTIAL SENSOR EXAMPLE)

Quality Distribution

08f The knee of

the Pareto

0 500 1000 1500
Complexity

2000

020
0.18

0

Zoomed In

200 400 600 800 1000 1200
Complexity

1755 Robust Rodels

Training Data Test Data
‘@..£®%@@-ﬂ§§§%§Kﬁé
BIFPREOFE 5T RENT £
BHT FREBEE DD SEICD
OFF L PRPE TFE LRI ¢
FAE IR DR AN
CFPeR T BBF GIGENTOI Y
LRBHBRI Y @@ WS TG
(AL LAY GO E A AN
WIPTCI BT . VIRIRIOS L

The test data covers a
bigger area than the training

vs. Test Data

0 50 100

Complexity

13 Ensemble Model:
.

150 200 250

s

ool
100 150 200
Complexity

Variable Presence Map

Model Index

Peformance vs. Training Data

iRy

- NN
A

20 40 60 80 100 120 140 0 50 100 15(
Observed served

The ensemble detects
extrapolation!

SUMMARY:
TRUSTABLE MODELS!

e Ensembles of diverse models address a
fundamental problem with empirical

models

e We have outlined a straight-forward
approach to assembling those models

e We can now use models with an
awareness of the prediction risk

¢ The windshield has been cleaned!

www.evolved-analytics.com
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Predicted

EVALUATING THE
ENSEMBLE

Response Surface Under Extrapnlatmn
templ

* Response:

* median, median average or mean

s ¢ Consensus:

weight

* extrema range, inter-quantile
range or standard deviation

Divergence burt'ace Under Exrrapolatlon

temp1

I

150 3
www.evolved-analytics.com

FOUNDATIONS SUMMARY

e Appropriate complexity models

e Automatic variable selection s A smart ParetoGP
* Able to handle “fat” data sets implementation is
e continual innovation >1 ,OOOX faster than
vanilla GP and

e More aware models (no need pI‘OdU.CGS better

for data partitioning during models

model development?)
e Trustable predictions % That speed
* Interesting models for expert improvement

insight — “hypothesis CHANGES what is

selection”

possible and redefines

e Ability to implement Active :
best practices!

DOE

www.evolved-analytics.com



THE CURSE OF
DIMENSIONALITY

ACTIVE DESIGN-OF- o Rt + Adding more

variables makes

EXPERIMENTS - MEARN

difficulty
ACCELERATING LEARNING VIA FOCUSED DATA / ’ explode
COLLECTION “ e [t is often
difficult or

impossible to
initially collect
enough of the
right data

HOW TO GET THERE?

e ParetoGP lets us:

Adaptive Data Collection = ® explore diverse model
structures and

e different variable
combinations

e identify the true
driving variables

e Diverse model ensembles let

* reject spurious models
us:

* increase model
fidelity (global
accuracy)

* identify regions of lower
model fidelity (the models
are presumably accurate
in the sense that they fit
the observed data)

www.evolved-ai

Guiding Principle: We want a diverse collection of accurate but simple models
.evolved-analytics.c

www.evolved-an:




MOTIVATIONS & SCENARIOS:
OPERATIONS OPTIMIZATION

¢ Operating plants “walk
away” from their optimal
set-points

* Many available variables
with unknown interactions

* Most historical data is
essentially identical

* New data is precious &
risky

Data collection is severely constrained

www.evolved-analytics.c

MOTIVATIONS & SCENARIOS:
DESIGN & EMULATION

e The REAL system
takes a long time to
- e generate data

ron e Want an emulator for
coarse optimization &
human insight

* Want better products
and faster time-to-
market

Limited ability to collect data

MOTIVATIONS & SCENARIOS:
HIGH-THROUGHPUT RESEARCH

e LOTS of options
being explored

e Want to quickly
identify key factors
& relationships

e Want to search for
global rather than

local optimum

Many variables of unknown significance

www.evolved-analytics.co

MOTIVATIONS & SCENARIOS:
BIOREACTOR STARTUP

¢ Nonlinear dynamics
Lots of control settings

Full-scale reactors
VERY different from
lab-scale used for
development

New yeast strain likely
behaves differently than
previous




MOTIVATIONS & SCENARIOS:
MAXIMIZING MODEL VALIDITY

e Knowing that the
model is not a good
predictor is not enough

¢ We want the model to
be accurate over the
entire operating range

¢ Example: modeling
price-volume elasticity

Need to maximize the model fidelity & range

www.evolved-analytics.co:

ADAPTIVE DATA
COLLECTION SEQUENCE

1. build models from the
available data

2. assemble ensembles
from those models

3. identify the locations of
model uncertainty and
potential optima

4. collect new data

5. repeat

MOTIVATIONS & SCENARIOS:
COMMON THEMES

® Data is precious
* Many variables of unknown significance
e Data collection is difficult and / or expensive

e BOTH variable selection AND a good model is
desired

e Delivery time pressure (Aren’t you done YET?)

WHAT WE HAVEN’T DONE

e assumed which variables are important

e harshly constrained the number of
variables

e assumed variables are independent &
uncorrelated

e assumed a model form

* collected data blindly




Ensemble response vs data iteration for 1-D problem
Iteration 1 Iteration 2 Iteration 3

.

Al D
ADAPTIVE

_ Iteration 4

Iteration 5 _Iteration 6

i

3

DOE

e Using only the
divergence in the
constituent models for
guidance, the adaptive

Iteration 7 Iteration 8 Iteration 9

>

DOE process was able to
collect data to produce a
high-quality predictor

Iteration 10

www.evolved-analytics.com

MAKING THE PROBLEM HARDER

o o 1S

e We have 10 dimensions (variables)
* Only two variables are real ’
e We start with 12 data points

e After each round of model building, we
collect data at the predicted maximum,
predicted minimum and the point of
maximum ensemble uncertainty

www.evolved-analytics.com
1374

ENSEMBLE UNDER
EXTRAPOLATION

1-D Ensemble Under Extrapolation

Divergence Surface Plot Individual Model Predictions
T T T T T T

Note that the ensemble models agree where there
is data and diverge where not constrained by data

www.evolved-analytics.com

20 ROUNDS OF ACTIVE DOE

DOE Round 1

12 sample pts

¢ Only the data projection into
the true variables is shown

¢ All data inputs are 10-D

¢ Note that the early stages
feature high accuracy but
low fidelity

* Response surface only
shown for variables which
are in >50% of models in the
“interesting region”

www.evolved-analytics.com



Fidelity is not the same as accuracy!

12 sample pts

SELECTED
ROUNDS WHAT HAVE WE SEEN?

vs current vs new data

DOE Round 9
X0,

pre—

e In the early stages the

< g - M e Exploiting the DIVERSITY of candidate models
> : shatter many candidate generated by ParetoGP,
' models

* we can use a model ensemble prediction
e Inlater stages the ; X ! ;
incremental is less divergence to identify regions of UNCERTAINTY

3 :
I destructive to . 4
e cndidaiae 8 e and target data collection at reducing that
® Spurious variables uncertalnty‘
v e May appedsdaE, e This results in HIGH-FIDELITY and TRUSTABLE
L= = in the early going but : .
: additiopaldnl B models and the REJECTION of spurious inputs.
to their rejection
www.evolved-analytics.com www.evolved-analytics.com
The selected data consists of 109 attributes l'rnm‘ISZ'munlries G D P P E R
CAPITA
e Source:
Mathematica
CASE STUDIES CountryData

¢ Looking at
GDP Ece
Capita

THE PROOF IS IN THE PUDDING

¢ Using numeric
e e input and
output

GDPPerCapita

www.evolved-analytics.com
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Incremental Information

GDP PER CAPITA

Correlations of 108 attributes and target response

|"' ST | ki = ‘
Fy b Wi P Ry

I | #'

wfoB i l—‘- A

e (Correlated

inputs!

GDP PER CAPITA
INFORMATION CONTENT

‘Cumulative information of 132 countries based upon 108 attributes
o

Which countries are outliers? Which attributes are most important?

GDP PER CAPITA

Attributes

E__ L Li, e

B R R A R

www.evolved-analytics.com

Countries

® FAT data —nearly as many
inputs as data records

¢ Highly correlated inputs

e Which variables are
important?

e Which variables are sufficient?

e Which countries are most
typical?

e Which countries are most

atypical?

e Alinear modeling approach is
not viable

www.evolved-analytics.com

GDP PER CAPITA

ATTRIBUTE INFORMATION CONTENT

scores of 109 attributes based upon 132 countries

500
L
'I
N,
L .W.‘\
Information content of each g
06 b S~
“, - £ 050
record (country) based upon SMITS data £ s
04 balancing algorithm g A
; =
. 0.0 .
e -
025 The top & bottom ranked countries (datp records) 005 +*
.
Top Countries Bottom Cquntries é 20 40 60 80 100
Attribute | Information Score | | [ Rank | Attribute | ifformation Score Ranking
UnitedStates 116833 [ Honduras 770778 ;
China 650173 2 | CostaRica 160934 "The top & bottom ranked attributes"
Each added Lecotho EEET i {Nicarsgie] jieang Top Attributes for Country Discrimination Bottom Attributes for Country Discrimination
ihdia EEE 4l Namibia] 4851 Rank “Attribute symbol | _Information Score. Rank Attribute symbol | _ Information Score
= . Russia 54,6371 5 | Panama 16086 - . = = du
= 5
COllrltl} prOVIdeb Canada 54.0747 6 Lithuania 1.57268 2 ‘GovernmentSurplus x41  [5.8615011580969805 91 x36 | O.
= T 455030 + I Baag TEE 3 Fomalel a 3 T X76 | O176171T5305516608
the maximum ok it 7 v 1= % |0
UnitedKingdom | 20.7679 8 | Bahamas 153422 g AL Ik : = 2 =L
information content to e LD O [ A 152782 v Countyindex P % o @ [
= Turkmenistan 23,0736 10 | Tunsa 1.40837 7 TieExpectancy ERE % i %70 [0:
the prev10uslv selected Ttaly 16.2112 11 | ElSalvador 151878 8 ArableLandFraction £ 97 X104_| 0. 138
) B B
d 1 Tran 17.263 12| Dominica 1.49238 o G i = Eopator) a
data records Indonesia 15.077 13 | Slovenia 1.36972 £ CropsLandFraction X7 00 o X8 | 01
SaudiArabia 13.9068 4 | Siovakia 131135 7 Fe) 01 = %20 [0
Australia 124714 15 | Jamaica 1.2543 15| Expe 102 102 BavedpOrs 2B0R [0
g T T .
France 11,9526 6 | Cameroon 724504 i} o A i3 =
Peru 115849 17 [ SaniLucia 124261 S w0 |2 05 o )
Qatar 176882 18 | Beize 118521 7 e 105 ol e
Germany 10,9553 19 | Malta 1.04347 :: ": 5698 471910565¢ ‘:: ol *‘:‘j
x T I f
20 | Nigera 58855 20 | i 0916755 J = -
www.evolved-analytics.com 2 2 108 o 5l
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® Scores using
SMITS
algorithm

¢ Ranking of
attributes for
discriminating
between
countries

www.evolved-analytics.com



Variable

SUMMARY: INFORMATION GDP PER CAPITA
CONTENT & DATA BALANCING MODELING RESULTS

18053 models retrieved from disk

e Lots of 10 minute runs

e We have a means to create a balanced data set
from unbalanced data

¢ Note the variable selection

11

e Balanced data avoids inappropriate weighting of
data regions = better models AND faster modeling

STTAE e 1207 different variable
: combinations in developed
o models

Complexity Variables present in >5% of models

e We can also detect (some) outliers during the data

balanCing 3914 interesting models selected from jon > (150,003) cmmnT b EE, o e
e The SMITS algorithm does not assume a data R
model (just an information metric) Lo = -
e Identifying the dominant records can be insightful I K
— these are the prototypes R e e
www.evolved-analytics.com 2 [wwaw.evplved-dnadyt

GDP PER CAPITA GDP PER CAPITA
VARIABLE SELECTION & NICHING OUTLIER DETECTION

and G icted countries.

Variables in > 5 % of models having at most S variables e Despite the fact that we have a fat array and correlated

g ‘ : ST 5 S . . f\f; 0P pe Coota Mo e OB
£ NN inputs, we managed to identify and isolate driving Outlier Detection H s
variables S 1
FemaleAdultPopulation |- ‘ ‘ 2l 7T
remateropatscon (1T T \ . ; tob del-b d } I E)
ructmercel (L ([ MIINNIMEMI|  ©  Diverse model structures were uncovered that ft the OF1o(= 102010 -l SIE0 L e
GovernmentConsumption |- 11 | [ | data = - Ol
GovernmentExpenditures | ‘ ‘ Models in the Selected Ensemble z e o5
L & %0 —6.38
oo ([N NI | . T discovered models eature diversiy in numbers of t
> 1 a o000 Bt 541 ‘Overpredicted
rosstnvesanent | AN T ERMATIERT EX NN models (dimensionality) and different variable N S r
HouseholdCor F 2 > o i X
s 1..3:"5;:: BN L combinations (subspaces) i A == i &
B
poputaion [ TTIT TR NN ; S B o
totconsmrio I NN R e We can select models for use which have limited e - S e S
= dimensionality or targeted variable combinations 2 O
DA Ol Ensemble Variables
. 336 models contaning ony the variables with atleast 30 % presence ool $19seconds 9 produce 173 nique model after ' ; {:ﬂ AdultPopulation || l l l l
Lol . Exportvalue |||
. Il 5 FemaleAdultPopulation |- I l I
0025 e 00 H o rensieropusion ]
. : . . ' : m - g T [ | | H BN
L L ¥ oom|— e ] P = T oo | | | I I
° .; : .‘ .o . .. piion GovernmentSurplus |- l
A . PR . " 6 o018 = =
0015 CREEXER R T2 ] h..'qu .',‘:“‘,: gl 106 wy L lgtagut . NERE . — . HouseholdConsumption - l lll l
AR o : oot F Fopiaion Population! | l l l I
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SYMBOLIC REGRESSION:
SUMMARY BENEFITS

Compact Nonlinear Models

. Compact empirical models can titable
for online implementation
Model(s) can be used as an emulator f
coarse system optimization

Driving able Selection & Identification

. Appropriate models may be developed
from poorly structured data sets (too many
variables & not enough measurements)
Identified driving variables may be used as
inputs into other modeling tools

Metasensor (Variable Transform) Identification
Identifying variable coup an give
insight into underlying physical
mechanisms
Identified metavariables can enable
linearizing transforms to meld symbo
regression and more traditional statistical
analy

Diverse Model Ensembles

The independent evolutions will produce
independent models. Independent (but
comparable) models may be stacked into
ensembles whose divergence in prediction
may be an indicator of extrapolation &
model trustworthiness. This is an issue in
high dimensional parameter spaces.

Human Insight

. The transparency of the evolved models as
well as the explicit identification of the
model complexity-accuracy trade-off is
very compelling
Examining an expression can be viewed as
a visualization technique for high-
dimensional data

Rapid Modeling

. Exploitation of the Pareto front has resulted
in orders-of-magnitude in the symbolic
regression performance relative to more
traditional GP. This greatly increases the
range of possible applications.

Metavariables can also be used as inputs into
other modeling tools

MORE INFORMATION

www.evolved-analytics.com

EC IN Dow CHEMICAL

Application Domains Examples

* Color Matching

* Appearance Engineering
* Polymer Design

* Synthetic Leather

Material Design

* Diverse Chemical Library Selection
* Fundamental Model Building
Materials Research | Reaction Kinetics Modeling

* Combi-Chem Catalyst Exploration
* Combi-Chem Data Analysis

* Acicular Mullite Emul ator
Production Design EDC/VCM Nonlinear DOE
Bioreactor Optimization

Epoxy Holdup Monitoring
Isocyanate Level Estimation

: : : * FTIR Calibration Variable Selection
Production Mor,"*ormg * Poly-3 Volatile Emission Monitoring
& Analysis * Epoxy Intelligent Alarm Processing
* PerTet Emulator for Online Optimization
* Emissions Monitoring

* Diffusion of Innovation @(
* Hydrocarbon Trading & Energy Systems Optimization

* Scheduling Heuristics .
* Plant Capacity Drivers

Business Modeling
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