
Particle Swarm with Self-Organized Criticality

 Carlos M. Fernandes1,2
cfernandes@laseeb.org

J.J. Merelo2
jjmerelo@gmail.com

Francisco Fernández3

fcofdez@unex.es
Agostinho C. Rosa1
acrosa@laseeb.org

1Technical Univ. of Lisbon
Av. Rovisco Pais, 1, TN 6.21,
1049-001, Lisbon, Portugal

2Univ. of Granada, Dept. of Computer
Architecture and Technology, ETSIIT;

18071, Granada, Spain

3University of Extremadura, Dept. of
Computer Architecture and Technology,

 Merida, Spain

ABSTRACT
This paper introduces a strategy for controlling the parameters of
the Particle Swarm Optimization (PSO) based on a Self-Organized
Criticality (SOC) system known as the Bak-Sneppen model of co-
evolution. An experimental setup compares the new algorithm
with a state-of-the-art PSO with dynamic variation of the inertia
weight value and perturbation of the particles’ positions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Theory.

Keywords: Particle Swarm Optimization, Self-Organized
Criticality, Parameter Control.

1. INTRODUCTION
PSO [3] is a population-based algorithm in which a group of
solutions travels through the search space according to a set of
rules that favor their movement towards optimal regions of the
space. The algorithm is described by a simple set of equations that
define the velocity and position of each particle. The position
vector of the i-th particle is given by Ԧܺ ൌ ሺݔ,ଵ, ,,ଶݔ … ,(ଵ,ݔ
where ܦ is the dimension of the search space. The velocity is
given by ሬܸԦ ൌ ሺݒ,ଵ, ,,ଶݒ … ଵ,). The particles are evaluated with aݒ

fitness function ݂ሺ Ԧܺሻ in each time step and then their positions
and velocities are updated by:

ሻݐ,ௗሺݒ ൌ ߱. ݐ,ௗሺݒ െ 1ሻ ܿଵݎଵ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯
 ܿଶݎଶ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯ (1)

ሻݐ,ௗሺݔ ൌ ݐ,ௗሺݔ െ 1ሻ ሻ (2)ݐ,ௗሺݒ

were is the best solution found so far by particle ݅ and is the
best solution found so far by the neighborhood; ݎଵand ݎଶ are
random numbers uniformly distributed in the range ሾ0,1]; ܿଵ and
ܿଶ are acceleration coefficients that tune the relative influence of
each term of the formula. Although PSO may be very efficient on
numerical optimization, it requires a proper balance between local
and global search, and it often gets trapped in local optima. In
order to achieve a balancing mechanism, Shi an Eberhart [5]
introduced a inertia weight ߱ (see the first term of equation 1).
This parameter may be hand-tuned in order to optimize the
performance. Another possible strategy, introduced in [5], is the
time-varying inertia weight: starting with an initial and pre-
defined value, the parameter value decreases linearly with time,

until it reaches the minimum. A more sophisticated approach is
given by Suresh et al. in [6]. The authors use the Euclidean
distance between the particle and the global best for computing ߱
in each time-step for each particle. In addition, the authors use a
perturbation mechanism of the particles’ positions, with a random
value in the range ሾ1, is a new parameter (see equation ߩ ሿ, whereߩ
3, which replaces equation 2). The authors report that the Inertia-
Adaptive PSO (IA-PSO) outperforms other PSOs in a 12-function
test. IA-PSO is included in the test set described in Section 2.

ሻݐ,ௗሺݔ ൌ ሺ1 .ሻߩ ݐ,ௗሺݔ െ 1ሻ ሻ (3)ݐ,ௗሺݒ

This paper proposes a method for tuning ߱ based on a Self-
Organized Criticality (SOC) system known as the Bak-Sneppen
model of co-evolution of species [1]. The resulting algorithm,
called Bak-Sneppen PSO (BS-PSO), uses the fitness values of the
population of species, which tend to evolve as a result of selection
and random variation. The dynamics of the model’s fitness values
provides a promising basis for modeling PSO’s working
mechanisms. In fact, SOC has been used in the past in population-
based metaheuristics (see [2] and [4]). In this paper, BS-PSO
controls the inertia weight values by assigning a weight for each
particle that is directly dependent on the fitness value of the
species mapped to that particle. Furthermore, the exact same value
is used for perturbing the particle’s position, thus introducing a
kind of mutation in the PSO equations, like in [6].

Algorithm 1 (Bak‐Sneppen Model)
1. Set ݉ݏ݊݅ݐܽݐݑ ൌ 0; max ൌ ݏ݊݅ݐܽݐݑ݉_ 2 ൈ ݁ݖ݅ݏ_݊݅ݐ݈ܽݑ
2. Find the index ݆ of the species with lowest bak‐sneppen fitness
3. Set ݉݅݊ݐ݅ܨ ൌ ሺݏݏ݁݊ݐ݂݅_ݏܾ ఫܺሬሬሬԦሻ
4. Replace the fitness of individuals with indices ݆, ݆ െ 1, and ݆ 1
by random values in the range ሾ0, 1.0ሿ

5. Increment mutations: ݏ݊݅ݐܽݐݑ݉
6. Find the index ݆ of the species with lowest fitness
7. If ܾݏݏ݁݊ݐ݂݅_ݏሺ ఫܺሬሬሬԦሻ ൏ ݐ݅ܨ݊݅݉ or ݉ݏ݊݅ݐܽݐݑ ൌ ,ݏ݊݅ݐܽݐݑ݉_ݔܽ݉
return to 4; else, end Alg. 1

Algorithm 2 (BS‐PSO)
1. Initialize velocity and position of each particle.
2. Evaluate each particle: ݂݅ݏݏ݁݊ݐ ൫ పܺሬሬሬԦ൯ ൌ ݂ሺ పܺሬሬሬԦሻ
3.Initialize bak‐sneppen fitness: ܾݏݏ݁݊ݐ݂݅_ݏሺ పܺሬሬሬԦሻ ൌ ,ሾ0݉݀݊ܽݎ 1.0ሿ

4. For each particle ݅:
5.Set ߱ ൌ ߩ ൌ 1 െ ሺܺపሬሬሬԦሻݏݏ݁݊ݐ݂݅_ݏܾ
6.Update velocity and position:

7. Update Bak‐Sneppen Model (Algorithm 1).

8. If (stop criteria not met) return to 4; else, end.

In the Bak-Sneppen model, a population of individuals (species) is
placed in a ring topology and a random real number in the range
ሾ0,1ሿ is assigned to each individual. In the BS-PSO, the size of
this ecosystem (number of species) is equal to the size of the

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

1397

swarm. Therefore, the algorithm may be implemented just by
assigning a second fitness value, called bak-sneppen fitness value
(bs_fitness) ݂௦൫ Ԧܺ൯ to each individual, i.e, an individual is both the
particle of PSO and the species of the co-evolutionary model, with
two independent fitness values: the quality measure fitness value

݂௦൫ Ԧܺ൯, computed by the objective function, and the bak-sneppen

fitness value ݂௦൫ Ԧܺ൯, which is modified according to Algorithm 1.

߱ሺݐሻ ൌ 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ (4)

ሻݐ,ௗሺݔ ൌ ሺ1 .ሻሻݐሺߩ ݐ,ௗሺݔ െ 1ሻ ሻ (5)ݐ,ௗሺݒ

The main body of BS-PSO is very similar to the basic PSO. The
differences are: Algorithm 1 is called in each time-step, modifying
three or more bak-sneppen fitness values; the inertia weigh of
each particle is defined in each time-step and for each particle ݅
using the bak-sneppen fitness values (see equation 4); the position
are updated using equation 5, where:

ሻݐሺߩ ൌ ,0ൣ݉݀݊ܽݎ ൫1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ൯൧ (6)

Algorithm 1 is executed in each time-step. At ݐ ൌ 0, the bak-
sneppen fitness values are randomly set. Then, at each ݐ, the
algorithm finds the worst species (lowest bs_fitness), stores its
fitness value (minFit) and mutates it by replacing its bs_fitness
with a random value in the range ሾ0, 1.0ሿ. The neighbors of the
worst species are also mutated. Then, the algorithm searches again
for the worst species. If its fitness is lower than minFit, the
process repeats: the species and its neighbors are mutated. This
cycle proceeds while the worst fitness in the population is bellow
minFit and the number of mutations is below a pre-defined limit.
When the worst fitness is above minFit, the algorithm proceeds to
the PSO’s standard procedures (see Algorithms 1 and 2).

Table 1: Numerical results (with standard deviation).

࣋ ൌ ࣋ ൌ . ࢇ െ ࢋࢋࡿ ࣋

IA-PSO BS-PSO IA-PSO BS-PSO IA-PSO BS-PSO

lbest

f1
5.19e‐02
(2.61e‐02

1.38e‐15
(3.21e‐15)

6.56e‐03
(5.34e‐03)

0.00e00
(0.00e00)

2.60e‐02
(1.70e‐02)

0.00e00
(0.00e00)

f2
3.10e+02
(7.25e+02)

1.64e+02
(4.30e+02)

2.90e+01
(9.81e‐01)

2.68e+01
(2.53e‐01)

2.94e+01
(8.42e‐01)

2.67e+01
(2.13e‐01)

f3
1.27e+07
(3.36e+07)

1.17e+02
(3.05e+01)

3.26e+01
(4.05e+01)

3.07e‐01
(1.44e+00)

2.68e+01
(3.16e‐01)

5.39e00
(1.33e+01)

f4
1.84e00

(1.27e+01)
1.25e‐02
(1.26e‐02)

1.11e‐02
(7.74e‐03)

4.74e‐03
(2.36e‐03)

1.30e‐02
(7.08e‐03)

5.24e‐03
(2.38e‐03)

 gbest

f1
1.22e+04
(1.11e+04)

9.41e+03
(8.08e+03

1.80e‐01
(1.17e‐01)

0.00e00
(0.00e00)

3.34e‐01
(3.76e‐01)

0.00e00
(0.00e00)

f2
1.12e+07
(2.80e+07)

1.27e+07
(3.36e+07)

3.35e+01
(9.48e+00)

3.26e+01
(4.05e+01)

2.94e+01
(1.86e+02)

2.68e+01
(3.16e‐01)

f3
1.18e+02
(5.05e+01)

1.99e+02
(6.72e+01)

4.33e+01
(4.18e+01)

3.68e+01
(4.36+01)

5.89e+01
(4.02e+01)

8.06+01
(5.41+01)

f4
9.76e+01
(8.72e+01)

9.58e+01
(8.69e+01)

1.36e‐01
(1.71e‐01)

3.02e‐02
(6.89e‐02)

2.70e‐01
(2.56e‐01)

1.65e‐02
(2.30e‐02)

Table 2: Kolmogorov-Smirnov statistical tests. A ‘+’ sign
means that BS-PSO is significantly better.

 lbest gbest
࣋ ൌ ࣋ ൌ . ࣋ ࢋࢋࡿࢇ ൌ ࣋ ൌ . ࢋࢋࡿࢇ

f1 + + + + + +
f2 ~ + + ~ ~ +
f3 + + + – ~ ~
f4 + + + ~ + +

2. RESULTS AND DISCUSSION
Four benchmark functions were used for testing BS-PSO and
compare it to IA-PSO: Sphere (1), Rosenbrock (2), Rastrigin (3),
Griewank (4). The dimension of the search space is set to ܦ ൌ 30.
The population size is set to 20 and ܿଵ ൌ ܿଶ ൌ 2. The maximum
number of generations is 3000. A total of 50 runs for each
experiment were conducted. The PSOs were tested with lbest
(݇ ൌ 2 in a ring topology) and gbest topologies. Assymetrical
initialization within the ranges defined in [6] is used. In order to
compare the efficiency of each perturbation scheme, ߩ was set to
0, 0.25, and “bak-sneppen controlled”. In the ݈ܾ݁ݐݏ topology, BS-
PSO attains better results than IA-PSO (Table 1), independently of
the perturbation strategy. The superiority of the proposed
algorithm is confirmed by the statistical tests in Table 3. As for
the gbest topology (Table 2), the results are more balanced.
However, IA-PSO is only significantly better than BS-PSO in one
scenario. When comparing the results with different ߩ we see that
the performance is more similar when ߩ ൌ 0. When the
parameter is controlled by the Bak-Sneppen model, BS-PSO is
clearly better than IA-PSO, except with f3 and ܾ݃݁ݐݏ topology, in
which the two algorithm’s results are statistically equivalent.

ACKNOWLEDGEMENTS
Authors wish to thank FCT (Ministério da Ciência e Tecnologia)
Fellowship SFRH/BPD/66876/2009; FCT (ISR/IST plurianual
funding) through the PIDDAC Program funds; projects TIN2011-
28627-C04-02, by Spanish Ministry of Science an Innovation and
P08-TIC-03903, by the Andalusian Regional Government.

REFERENCES
[1] Bak, P., and Sneppen, K. 1993. Punctuated Equilibrium and

Criticality in a Simple Model of Evolution. Physical Review
Letters, Vol. 71(24), 4083-4086.

[2] Fernandes, C.M., Merelo, J.J., Ramos, V., Rosa, A.C. 2008.
A Self-Organized Criticality Mutation Operator for Dynamic
Optimization Problems. In Proceedings of the 2008 Genetic
and Evolutionary Computation Conference, ACM, 937-944.

[3] Kennedy, J.; Eberhart, R. 1995. Particle Swarm
Optimization. In Proceedings of IEEE International
Conference on Neural Networks, Vol.4, 1942–1948.

[4] Løvbjerg, M., Krink, T. 2002. Extending particle swarm
optimizers with self-organized criticality. In Proc. of the
2002 IEEE Congress on Evolutionary Computation, Vol. 2,
IEEE Computer Society, 1588–1593.

[5] Shi, Y. Eberhart, R.C. 1998. A Modified Particle Swarm
Optimizer. In Pro. of IEEE 1998 International Conference on
Evolutionary Computation, IEEE Press, 69–73.

[6] Suresh, K., Ghosh, S., Kundu, D., Sen, A., Das, S., Abraham,
A. 2008. Inertia-Adaptive Particle Swarm Optimizer for
Improved Global Search. In Proceedings of the 8th Inter.
Conference on Intelligent Systems Design and Applications,
Vol. 2. IEEE, Washington, DC, USA, 253-258.

1398

