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ABSTRACT 
This paper introduces a strategy for controlling the parameters of 
the Particle Swarm Optimization (PSO) based on a Self-Organized 
Criticality (SOC) system known as the Bak-Sneppen model of co-
evolution. An experimental setup compares the new algorithm 
with a state-of-the-art PSO with dynamic variation of the inertia 
weight value and perturbation of the particles’ positions.    

Categories and Subject Descriptors  
H.4 [Information Systems Applications]: Miscellaneous 

General Terms 
Algorithms, Theory. 

Keywords: Particle Swarm Optimization, Self-Organized 
Criticality, Parameter Control. 

1. INTRODUCTION 
PSO [3] is a population-based algorithm in which a group of 
solutions travels through the search space according to a set of 
rules that favor their movement towards optimal regions of the 
space. The algorithm is described by a simple set of equations that 
define the velocity and position of each particle. The position 
vector of the i-th particle is given by Ԧܺ ൌ ሺݔ,ଵ, ,,ଶݔ …  ,(ଵ,ݔ
where ܦ is the dimension of the search space. The velocity is 
given by ሬܸԦ ൌ ሺݒ,ଵ, ,,ଶݒ …  ଵ,). The particles are evaluated with aݒ

fitness function ݂ሺ Ԧܺሻ in each time step and then their positions 
and velocities are updated by: 

ሻݐ,ௗሺݒ ൌ ߱. ݐ,ௗሺݒ െ 1ሻ  ܿଵݎଵ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯
 ܿଶݎଶ൫,ௗ െ ݐ,ௗሺݔ െ 1ሻ൯ (1)

ሻݐ,ௗሺݔ ൌ ݐ,ௗሺݔ െ 1ሻ  ሻ (2)ݐ,ௗሺݒ

were  is the best solution found so far by particle ݅ and  is the 
best solution found so far by the neighborhood; ݎଵand ݎଶ are 
random numbers uniformly distributed in the range ሾ0,1]; ܿଵ and 
ܿଶ are acceleration coefficients that tune the relative influence of 
each term of the formula. Although PSO may be very efficient on 
numerical optimization, it requires a proper balance between local 
and global search, and it often gets trapped in local optima. In 
order to achieve a balancing mechanism, Shi an Eberhart [5] 
introduced a inertia weight ߱ (see the first term of equation 1). 
This parameter may be hand-tuned in order to optimize the 
performance. Another possible strategy, introduced in [5], is the 
time-varying inertia weight: starting with an initial and pre-
defined value, the parameter value decreases linearly with time, 

until it reaches the minimum. A more sophisticated approach is 
given by Suresh et al. in [6]. The authors use the Euclidean 
distance between the particle and the global best for computing ߱ 
in each time-step for each particle. In addition, the authors use a 
perturbation mechanism of the particles’ positions, with a random 
value in the range ሾ1,  is a new parameter (see equation ߩ ሿ, whereߩ
3, which replaces equation 2). The authors report that the Inertia-
Adaptive PSO (IA-PSO) outperforms other PSOs in a 12-function 
test. IA-PSO is included in the test set described in Section 2. 

ሻݐ,ௗሺݔ ൌ ሺ1  .ሻߩ ݐ,ௗሺݔ െ 1ሻ  ሻ (3)ݐ,ௗሺݒ

This paper proposes a method for tuning ߱ based on a Self-
Organized Criticality (SOC) system known as the Bak-Sneppen 
model of co-evolution of species [1]. The resulting algorithm, 
called Bak-Sneppen PSO (BS-PSO), uses the fitness values of the 
population of species, which tend to evolve as a result of selection 
and random variation. The dynamics of the model’s fitness values 
provides a promising basis for modeling PSO’s working 
mechanisms. In fact, SOC has been used in the past in population-
based metaheuristics (see [2] and [4]). In this paper, BS-PSO 
controls the inertia weight values by assigning a weight for each 
particle that is directly dependent on the fitness value of the 
species mapped to that particle. Furthermore, the exact same value 
is used for perturbing the particle’s position, thus introducing a 
kind of mutation in the PSO equations, like in [6].  

Algorithm 1 (Bak‐Sneppen Model) 
1. Set ݉ݏ݊݅ݐܽݐݑ ൌ 0; max ൌ ݏ݊݅ݐܽݐݑ݉_  2 ൈ ݁ݖ݅ݏ_݊݅ݐ݈ܽݑ
2. Find the index ݆ of the species with lowest bak‐sneppen fitness 
3. Set ݉݅݊ݐ݅ܨ ൌ ሺݏݏ݁݊ݐ݂݅_ݏܾ ఫܺሬሬሬԦሻ 
4. Replace the fitness of  individuals with  indices ݆, ݆ െ 1, and ݆   1
by random values in the range ሾ0, 1.0ሿ 

5. Increment mutations:     ݏ݊݅ݐܽݐݑ݉
6. Find the index ݆ of the species with lowest fitness 
7. If ܾݏݏ݁݊ݐ݂݅_ݏሺ ఫܺሬሬሬԦሻ ൏ ݐ݅ܨ݊݅݉  or ݉ݏ݊݅ݐܽݐݑ ൌ  ,ݏ݊݅ݐܽݐݑ݉_ݔܽ݉ 
return to 4; else, end Alg. 1

Algorithm 2 (BS‐PSO) 
1. Initialize velocity and position of each particle. 
2. Evaluate each particle: ݂݅ݏݏ݁݊ݐ ൫ పܺሬሬሬԦ൯ ൌ ݂ሺ పܺሬሬሬԦሻ 
3.Initialize bak‐sneppen fitness: ܾݏݏ݁݊ݐ݂݅_ݏሺ పܺሬሬሬԦሻ ൌ ,ሾ0݉݀݊ܽݎ 1.0ሿ

4. For each particle ݅: 
5.Set ߱ ൌ ߩ ൌ 1 െ  ሺܺపሬሬሬԦሻݏݏ݁݊ݐ݂݅_ݏܾ
6.Update velocity and position: 

7. Update Bak‐Sneppen Model (Algorithm 1). 

8. If (stop criteria not met) return to 4; else, end. 

In the Bak-Sneppen model, a population of individuals (species) is 
placed in a ring topology and a random real number in the range 
ሾ0,1ሿ is assigned to each individual. In the BS-PSO, the size of 
this ecosystem (number of species) is equal to the size of the 
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swarm. Therefore, the algorithm may be implemented just by 
assigning a second fitness value, called bak-sneppen fitness value 
(bs_fitness) ݂௦൫ Ԧܺ൯ to each individual, i.e, an individual is both the 
particle of PSO and the species of the co-evolutionary model, with 
two independent fitness values: the quality measure fitness value 

݂௦൫ Ԧܺ൯, computed by the objective function, and the bak-sneppen 

fitness value ݂௦൫ Ԧܺ൯, which is modified according to Algorithm 1.  

߱ሺݐሻ ൌ 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ  పܺሬሬሬԦሻ (4)

ሻݐ,ௗሺݔ ൌ ሺ1  .ሻሻݐሺߩ ݐ,ௗሺݔ െ 1ሻ  ሻ (5)ݐ,ௗሺݒ

The main body of BS-PSO is very similar to the basic PSO. The 
differences are: Algorithm 1 is called in each time-step, modifying 
three or more bak-sneppen fitness values; the inertia weigh of 
each particle is defined in each time-step and for each particle ݅ 
using the bak-sneppen fitness values (see equation 4); the position 
are updated using equation 5, where: 

ሻݐሺߩ ൌ ,0ൣ݉݀݊ܽݎ ൫1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ൯൧ (6) 

Algorithm 1 is executed in each time-step. At ݐ ൌ  0, the bak-
sneppen fitness values are randomly set.  Then, at each ݐ, the 
algorithm finds the worst species (lowest bs_fitness), stores its 
fitness value (minFit) and mutates it by replacing its bs_fitness 
with a random value in the range ሾ0, 1.0ሿ. The neighbors of the 
worst species are also mutated. Then, the algorithm searches again 
for the worst species. If its fitness is lower than minFit, the 
process repeats: the species and its neighbors are mutated. This 
cycle proceeds while the worst fitness in the population is bellow 
minFit and the number of mutations is below a pre-defined limit. 
When the worst fitness is above minFit, the algorithm proceeds to 
the PSO’s standard procedures (see Algorithms 1 and 2).  
 

Table 1: Numerical results (with standard deviation).  

 
࣋ ൌ  ࣋ ൌ .  ࢇ െ ࢋࢋࡿ ࣋

IA-PSO BS-PSO IA-PSO BS-PSO IA-PSO BS-PSO

lbest 

f1 
5.19e‐02 
(2.61e‐02 

1.38e‐15 
(3.21e‐15) 

6.56e‐03 
(5.34e‐03) 

0.00e00 
(0.00e00) 

2.60e‐02
(1.70e‐02)

0.00e00
(0.00e00)

f2 
3.10e+02 
(7.25e+02) 

1.64e+02 
(4.30e+02) 

2.90e+01 
(9.81e‐01) 

2.68e+01 
(2.53e‐01) 

2.94e+01
(8.42e‐01)

2.67e+01
(2.13e‐01)

f3 
1.27e+07 
(3.36e+07) 

1.17e+02 
(3.05e+01) 

3.26e+01 
(4.05e+01) 

3.07e‐01 
(1.44e+00) 

2.68e+01
(3.16e‐01)

5.39e00
(1.33e+01)

f4 
1.84e00 

(1.27e+01) 
1.25e‐02 
(1.26e‐02) 

1.11e‐02 
(7.74e‐03) 

4.74e‐03 
(2.36e‐03) 

1.30e‐02
(7.08e‐03)

5.24e‐03
(2.38e‐03)

 gbest 

f1 
1.22e+04 
(1.11e+04) 

9.41e+03 
(8.08e+03 

1.80e‐01 
(1.17e‐01) 

0.00e00 
(0.00e00) 

3.34e‐01
(3.76e‐01)

0.00e00
(0.00e00)

f2 
1.12e+07 
(2.80e+07) 

1.27e+07 
(3.36e+07) 

3.35e+01 
(9.48e+00) 

3.26e+01 
(4.05e+01) 

2.94e+01
(1.86e+02)

2.68e+01
(3.16e‐01)

f3 
1.18e+02 
(5.05e+01) 

1.99e+02 
(6.72e+01) 

4.33e+01 
(4.18e+01) 

3.68e+01 
(4.36+01) 

5.89e+01
(4.02e+01)

8.06+01
(5.41+01)

f4 
9.76e+01 
(8.72e+01) 

9.58e+01 
(8.69e+01) 

1.36e‐01 
(1.71e‐01) 

3.02e‐02 
(6.89e‐02) 

2.70e‐01
(2.56e‐01)

1.65e‐02
(2.30e‐02)

Table 2: Kolmogorov-Smirnov statistical tests. A ‘+’ sign 
means that BS-PSO is significantly better. 

 lbest gbest
࣋  ൌ  ࣋ ൌ .  ࣋  ࢋࢋࡿࢇ ൌ  ࣋ ൌ .  ࢋࢋࡿࢇ

f1 + + + + + + 
f2 ~ + + ~ ~ + 
f3 + + + – ~ ~ 
f4 + + + ~ + + 

2. RESULTS AND DISCUSSION 
Four benchmark functions were used for testing BS-PSO and 
compare it to IA-PSO: Sphere (1), Rosenbrock (2), Rastrigin (3), 
Griewank (4). The dimension of the search space is set to ܦ ൌ 30. 
The population size is set to 20 and ܿଵ ൌ ܿଶ ൌ 2. The maximum 
number of generations is 3000. A total of 50 runs for each 
experiment were conducted. The PSOs were tested with lbest 
(݇ ൌ 2 in a ring topology) and gbest topologies. Assymetrical 
initialization within the ranges defined in [6] is used. In order to 
compare the efficiency of each perturbation scheme, ߩ was set to 
0, 0.25, and “bak-sneppen controlled”. In the ݈ܾ݁ݐݏ topology, BS-
PSO attains better results than IA-PSO (Table 1), independently of 
the perturbation strategy. The superiority of the proposed 
algorithm is confirmed by the statistical tests in Table 3. As for 
the gbest topology (Table 2), the results are more balanced. 
However, IA-PSO is only significantly better than BS-PSO in one 
scenario. When comparing the results with different ߩ we see that 
the performance is more similar when ߩ ൌ  0. When the 
parameter is controlled by the Bak-Sneppen model, BS-PSO is 
clearly better than IA-PSO, except with f3 and ܾ݃݁ݐݏ topology, in 
which the two algorithm’s results are statistically equivalent. 
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