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ABSTRACT

The continuity of edges is very important in some image proces-

sing applications. The Canonical Particle Swarm Optimisation

(CanPSO) has been used for the detection of continuous edges. The

Fully Informed Particle Swarm (FIPS) is another well-known ver-

sion of PSO with interesting features to overcome noise but it has

never been used to detect edges in noisy images. In this paper,

the performance of CanPSO and FIPS is investigated for detecting

edges in noisy images when they utilise different topologies. A

novel spatial random-meaningful topology is also developed and

utilised within the PSO-based edge detection algorithm. Experi-

mental results indicate that the localisation accuracy of the PSO-

based edge detector with the novel topology is higher than other

static and dynamic topologies in most cases.

Categories and Subject Descriptors

I.4 [Image Processing and Computer Vision]: Miscellaneous;

G.1.6 [Optimization]: Constrained optimization
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1. INTRODUCTION
The continuity of the edges recognised by an edge detector is

very important in many image processing applications. Many algo-

rithms have been proposed to detect edges in noisy images in dif-

ferent frameworks. Their performance generally decreases in noisy

and illuminated images and most of them produce broken edges in

such images.

In our previous work [5], we applied Particle Swarm Optimi-

sation (PSO) to detect continuous edges in real grey level images

corrupted by Gaussian and impulsive noise through developing a

novel optimisation criterion. We showed that the accuracy of the

PSO-based algorithm was higher than the Canny edge detector as

a Gaussian-based edge detector and the robust rank-order (RRO)

detector as a statistical-based edge detector.

The Canonical PSO (CanPSO) [1] and the Fully Informed Par-

ticle Swarm (FIPS) [4] are two well-known versions of PSO with

different features. Although FIPS has interesting features to over-

come noise, only CanPSO has been used to detect edges in noisy

images and the fully connected graph has been chosen as its neigh-
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bourhood structure. Bratton and Kennedy [1] used PSO for the

optimisation of different functions from different areas and de-

monstrated that a complete experimentation is required to choose

an ideal topology for a particular problem. Since the performance

of static and dynamic topologies is different in various applications

and in various versions of PSO [4], in this paper, we aim to in-

vestigate the performance of CanPSO and FIPS on the detection

of edges in noisy images, compare their accuracy when they are

equipped with different well-known static (fully connected, ring

and toroidal topologies) and two dynamic topologies (gradually in-

creasing directed neighbourhood (GIDN) [3] and random dynamic

topology), and improve the performance of the PSO-based edge

detector through developing a novel dynamic topology which uses

spatial-meaningful information.

2. BACKGROUND
FIPS [4] is a well-known version of PSO in which each particle

is influenced by all of its neighbours specified by a neighbourhood

topology, whereas in CanPSO, each particle shares information

just with the best neighbour. Therefore, in FIPS there is a stron-

ger swarm influence than CanPSO. Since the particles in FIPS are

usually influenced by a more local neighbourhood than CanPSO,

FIPS’s population usually has higher diversity. Since each par-

ticle’s velocity is influenced by the average between its neighbours’

positions and its current position, we expect that FIPS can deal with

noisy images better than CanPSO.

The topology is an important feature of PSO as it defines the

neighbourhood structure among the particles and shows how they

exchange information. The neighbourhood topology specifies the

speed of information flow among particles. Since the exploration

and exploitation abilities of the PSO algorithm can be controlled by

adjusting the speed of information flow, the topology can be used

as a mechanism to tune these abilities of the algorithm.

3. SPATIAL RANDOM-MEANINGFUL TO-

POLOGY (SRMT) FOR A PSO-BASED

EDGE DETECTOR
In the GIDN topology proposed in [3], the number of neigh-

bours of each particle is gradually increased; new neighbours are

randomly chosen from the particles which are not still connected to

the particle and added to the particle’s neighbourhood. In GIDN,

the number of connections are gradually increased based on Equa-

tion (1) and these directed connections are randomly selected. The
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number of neighbours for particle Pi is calculated as:

|HK(Pi)| =

⌊(

K

MaxIter

)α

×N + β

⌋

(1)

where N is the number of particles, HK(Pi) is the set of the

neighbours of particle Pi at iteration K, ⌊.⌋ is the floor function,

MaxIter is the maximum number of iterations, α is a parame-

ter to control the speed of information flow through increasing the

neighbourhood size, and β is the initial neighbourhood size at the

first iteration (K = 0). In this model, each particle starts with

β neighbours and randomly adds |HK(Pi)| − |HK−1(Pi)| par-

ticles to its neighbourhood without taking their spatial informa-

tion into account. There are several versions of PSO that utilise

spatial information to update the velocity and position of the par-

ticles. In SRMT, we aim to use spatial-meaningful information in

order to more effectively select the neighbours of each particle at

a random way. To meaningfully choose the neighbours of a par-

ticle (P ), we first assign a neighbourhood probability to each par-

ticle (Pn) in the PSO population at iteration K. We then select

|HK(P )| − |HK−1(P )| distinct particles which still do not have

any connection with P and add them to its neighbourhood. Since

the closest particles to a particle are expected to have a higher pro-

bability to be a neighbour of the particle, we define this probability

as:

ProbK(Pn is a neighbour of P ) = 1−
DistK(P, Pn)

∑
Pi /∈HK−1(P ) DistK(P, Pi)

(2)

where DistK(P, Pi) is the distance between particles P and Pi in

fitness space at iteration K. So, DistK(P, Pi) = |Fitness(P )−
Fitness(Pi)|. In Equation (2), if particle Pn is closer to P in the

fitness space, its probability of being a neighbour of particle P is

higher and if their distance is larger, the probability is lower.

4. RESULTS AND DISCUSSION
To compare the performance of CanPSO and FIPS with dif-

ferent topologies and validate the performance of the novel topo-

logy (SRMT), we apply these algorithms on a set of benchmark

images from [2].

Our experiments showed that CanPSO with the ring topology

(RT) can work better than CanPSO with the fully connected graph

(FCG) and the toroidal (TRO) topologies in 92.5% of the cases.

Unlike CanPSO whose accuracy becomes higher when the ring to-

pology is chosen, the accuracy of FIPS is higher in 98.7% of the

cases when TRO is chosen as a neighbourhood structure. FIPS

with TRO increases the accuracy over FIPS-RT and FIPS-FCG

by approximatly 1.8% and 3.9% on average respectively. The

comparison of FIPS-SRMT with other dynamic topologies sho-

wed that FIPS-SRMT is statistically better or equal in 83.5%
of the cases. The accuracy of FIPS-SRMT is statistically the

same as FIPS-GIDN in 38 cases out of 40 while CanPSO-SRMT

is the same as CanPSO-GIDN in 13 cases and is better in 26

cases. This implies that SRMT can work better within CanPSO

than FIPS. The dynamic topologies can be approximately ranked

as {FIPS-SRMT, FIPS-GIDN}, CanPSO-SRMT, CanPSO-GIDN,

CanPSO-Random, FIPS-Random from highest to lowest accuracy.

FIPS with SRMT increases the accuracy over FIPS-GIDN, FIPS-

Random, CanPSO-SRMT, CanPSO-GIDN, CanPSORandom by

approximatly 1%, 1.3%, 1%, 1.5% and 1.2% on average respecti-

vely. FIPS-SRMT also performs better than CanPSO-RT and FIPS-

TRO and its accuracy is statistically better or equal to CanPSO-RT

in 75% of the cases and that of FIPS-SRMT is higher or equal with

FIPS-TRO in 100% of the cases. Our comparison also showed

CanPSO-FCG [5] FIPS-TRO FIPS-GIDN FIPS-SRMT

Figure 1: The resulting images from applying CapPSO-FCG,

FIPS-TRO, FIPS-GIDN and FIPS-SRMT.

that the novel dynamic topology increases the accuracy by 7.4%
on average over CanPSO-FCG and by 1.5% over CanPSO-GIDN.

Figure 1 shows some images resulting from CanPSO with FCG

and FIPS with TRO, GIDN and SRMT. The second row shows an

enlarged version of a small region of the resulting images in the

first row. For the street image, CanPSO-RT does not work well on

the areas in shadow on the road; the dynamic topologies perform

better. These areas are very cluttered. FIPS-SRMT can deal with

the detection of edges in such areas better than the other two dyna-

mic topologies (see the bottom of enlarged versions for the street

image and the edges in the areas in shadow).

5. CONCLUSIONS
In this paper, different static and dynamic topologies were imple-

mented in CanPSO and FIPS, and were applied within a PSO-based

edge detection algorithm. Our experiments showed that CanPSO

performs better when it uses the ring topology. Unlike CanPSO,

FIPS with TRO has a higher accuracy than the other static topo-

logies. We also developed a novel dynamic topology which uses

spatial meaningful information in order to compute the neighbou-

rhood probability of each particle to be a neighbour of another par-

ticle. We used this probability to randomly choose the neighbours

of each particle at each iteration. Our experiments showed that

using SRMT improves the accuracy of the two versions of PSO-

based edge detection algorithms in comparison to other topologies.
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