
Exploring the Evolution of Internal Control Structure
using Digital Enzymes

Chad M. Byers, Betty H.C. Cheng, and Philip K. McKinley
BEACON Center for the Study of Evolution in Action
Department of Computer Science and Engineering

Michigan State University
{byerscha, chengb, mckinle3}@msu.edu

ABSTRACT
The Digital Enzyme [2] model of control is based on the bottom-
up, reactive process of signal transduction found in cells. An earlier
study applied a specific instance of the this model to the foraging
problem. Here, we extend the system and use it to explore a fun-
damental question in both biology and evolutionary computation,
namely, whether environmental complexity is a driving factor for
an organism’s internal control structure. To address this question,
we extended the original system to allow the open-ended evolu-
tion of the unique programs, instructions, and threads within each
controller. With the extended model, we were able to evolve suc-
cessful foraging strategies that nearly doubled the performance of
strategies found in the earlier work. In response to increasing en-
vironmental complexity, we discovered a high degree of variation
for the number of programs, threads, and instructions that produced
successful strategies. These results highlight the importance of evo-
lutionary search techniques that enable the open-ended evolution of
key internal control components.
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1. INTRODUCTION
As the basic unit of life, the cell performs an ongoing process

of sensing information from the environment in the form of en-
ergy and molecules, harnessing these molecules to drive internal
reactions, and ultimately, producing a response. This biological
control process strongly parallels many human-designed embed-
ded system controllers, where hardware sensors collect information
from the environment, perform internal computations, and translate
the results into specific activations of actuators. Sensing informa-
tion from the environment and activating actuators are relatively
straightforward tasks in the design of embedded controllers. How-
ever, the internal decision process used to translate environmental
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information into meaningful, robust behaviors is often a black box
design question, as shown at the top of Figure 1.

Figure 1: [Top]: A typical embedded system containing sen-
sors and actuators interacting with the environment. [Bottom]:
A broad range of controller designs are possible to produce the
desired system behavior, ranging from single-program-single-
instance designs (1:1) to multi-program-multi-thread designs
(T:P).

The design used to implement a controller’s decision logic can
take on a vast number of possibilities with respect to the number
of parallel programs (P) and the number of threads (T) executing
each parallel program. How should the decision logic be imple-
mented within the controller with respect to these two variables?
Should control be managed by one executing thread of one pro-
gram (a 1:1 design), many executing threads of one program (T:1),
one executing thread of many different programs (1:P), or many
executing threads of many different programs (T:P)? Of course,
these designs are only key transition points along an entire spec-
trum towards more distributed control, as shown at the bottom of
Figure 1. Advantages and disadvantages in terms of human design
efforts and performance tradeoffs exist along this spectrum. For
example, the 1:1 controller design is pervasive because a developer
is not burdened by synchronization nor the overhead required to
support parallel execution, such as memory and threading libraries.
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On the other hand, parallelism and multithreading might greatly
enhance functionality and improve performance. However, as con-
troller complexity moves farther to the right along this spectrum, it
becomes more difficult for developers to conceptualize the decision
logic while also providing beneficial qualities such as cooperation,
robustness, fault tolerancy, and efficiency, especially when apply-
ing a top-down design approach.

An alternative approach involves uses a bottom-up, population-
based search technique, evolutionary computation. By allowing
random mutation to make changes to each of these design features,
the developer can study the internal control structures naturally se-
lected for during evolution as well as their relationship to environ-
mental complexity. Biological evolution is theorized to have al-
ready provided us with one example of a natural progression from
a 1:1 RNA-dominated world to the complex, DNA-dominated T:P
lifeforms inhabiting the diverse environments of the world today
[4]. Perhaps evolutionary computation will also naturally select
for a distributed control design to drive organisms into more chal-
lenging, complex environments or to maintain the integrity of the
solution within these environments.

An earlier study [2] introduced the digital enzyme (DE) model of
controller design, which is based on the biological process of signal
transduction within a cell. Within each controller, stimuli from the
environment are encoded into bitstrings that can be loaded, manipu-
lated, and outputted to actuators for mapping to specific responses.
An evolved controller’s decision logic is encoded in assembly-like
programs, referred to as genes, each being executed in parallel by
threads, referred to as digital enzymes. In the model described in
[2], the number of genes and digital enzymes was statically defined,
allowing only instructions to mutate during evolution. To address
the fundamental question of whether environmental complexity in-
fluences internal control structure, we modified the original design
to allow (1) the number of genes, (2) their instructions, and (3) the
number of digital enzymes executing each gene, to evolve freely.

To experimentally control an increase in environmental com-
plexity and to provide a direct comparison to previous results, we
applied this system to a unique version of the central-place foraging
problem. Each evolved controller was evaluated in a homogeneous
colony on its ability to find and return food from a randomly placed
clump. As an individual strategy became more successful, the dis-
tance that food was placed from home’s perimeter during evalu-
ation was increased. We imposed a maximum bound on the food
placement distance within each evolutionary run, allowing us to an-
alyze the bound’s effect on the average number of genes, enzymes,
and instructions selected for.

With respect to the evolution of parallel programs, a variety of
approaches exist in the area of genetic programming [1] including
Cartesian Genetic Programming [5, 8], Parallel Distributed Genetic
Programming [6], Genetic Parallel Programming [3], and Concur-
rent Genetic Programming [7]. However, each of these approaches
contain one of the following drawbacks: (1) the maximum size of
the genetic program’s grid, graph, or tree must be predefined, (2)
a crossover operator imposes a high rate of disruption and genetic
bloat, (3) instructions are coarse-grained requiring each actuator
action to be encoded as an instruction, or (4) their application does
not include evolving reactive controllers. In contrast, the digital en-
zyme model does not impose restrictions on the size of programs
within a controller’s genome and each controller is asexual to avoid
the disruptive effect of crossover, often found in sexually reproduc-
ing systems. Moreover, the previously mentioned approaches do
not explore the effect of environmental complexity on the number
of parallel programs executed within an evolved solution.

The results of our experiments demonstrate that open-ended evo-

lution enabled the discovery of more effective solutions, nearly
doubling the performance of previous foraging solutions [2]. In
response to increasing environmental complexity, we found a high
degree of variation in the number of programs, threads, and in-
structions necessary for successful strategies. For researchers in
evolutionary computation, these results reveal that environmental
complexity does not impose requirements on the types of evolu-
tionary search methods that are used to find solutions. In this study,
evolutionary search techniques employing a single program, sin-
gle thread approach would find strategies equally as successful as
techniques using multiple programs and threads. However, the ap-
proaches limited to a single program and thread would find only a
subset of the evolved successful strategies. The discovery of suc-
cessful strategies within regions of the search space characterized
by parallel and distributed control emphasizes how techniques, en-
abling open-ended evolution, can successfully explore larger re-
gions of the search space.
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