
Optimization Knowledge Base: An Open Database for
Algorithm and Problem Characteristics and Optimization

Results

Andreas Scheibenpflug, Stefan Wagner, Erik Pitzer, Michael Affenzeller
University of Applied Sciences Upper Austria

School of Informatics, Communication and Media
Softwarepark 11, 4232 Hagenberg, AUSTRIA

{ascheibe, swagner, epitzer, maffenze}@heuristiclab.com

ABSTRACT
This paper describes the optimization knowledge base (OKB),
a database for storing information about algorithms and
problems. The optimization knowledge base allows to save
results of algorithm executions as well as problem-specific in-
formation of fitness landscape analyses. This database can
be queried and gives researchers a tool for gaining a bet-
ter understanding of problems and algorithms and their be-
havior. Therefore the OKB supports parameter tuning and
keeping track of tested algorithm and parameter settings as
well as their results. Furthermore, the OKB and fitness land-
scape analysis can be used to not only explain the behavior
of algorithms but to calculate similarities between problem
instances and algorithms. Based on similarities and already
captured knowledge, parameter settings can be extracted
that could work well for new problem instances. Addition-
ally, the OKB can be used to publish results of experiments
for a broader audience, which advocates transparency of sci-
entific work in the area of metaheuristics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Experimentation

Keywords
parameter control, parameter tuning, knowledge base, meta-
heuristics, fitness landscape analysis, HeuristicLab

1. INTRODUCTION
Metaheuristics are a group of algorithms that are applied

to hard optimization problems. Metaheuristics provide an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7-11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

acceptable ratio between achievable quality and effort. The
generated solutions are in most cases not the best solutions,
but are good enough for practical applications and therefore
metaheuristics are frequently a promising way to generate
feasible solutions in reasonable time. When applying meta-
heuristics to a problem, the first step is to choose a suitable
algorithm, as metaheuristics are problem-independent and
some algorithms may work better on a certain problem then
others. The second step is to find good parameters to obtain
a satisfying quality as metaheuristics typically have a set of
parameters that can be configured. These parameters are
used to tailor the behavior of an algorithm to a problem (pa-
rameter tuning [5]). As good enough solutions can always be
improved and algorithm selection as well as parameter tun-
ing is a time consuming process, the last decades have seen
researchers trying to improve metaheuristics. These efforts
can be organized in two categories:

• Methods for generating better solutions.

• Techniques to reduce or eliminate algorithm selection
and/or manual parameter tuning.

In the following a short overview of previous works which
fall in one of the two categories is given.

1.1 New Algorithms
One of the most popular areas of ongoing research in the

field of metaheuristics is the development of new algorithms.
The idea is to find algorithms that are superior to the ex-
isting ones and therefore lead to better results. Besides cre-
ating completely new algorithms, there are also attempts to
combine existing algorithms to use the advantages that each
algorithm offers (hybrid metaheuristics [20]).

As mentioned in [6] finding a suitable algorithm and an
appropriate configuration for a problem or class of prob-
lems is regarded by many computer science researchers and
practitioners as the holy grail. This problem is called the
algorithm selection problem [17]. Hyperheuristics [14, 2] try
to solve this problem by combining simpler heuristics into
one heuristic that is able to solve a class of problems. The
information on how to combine heuristics is derived from
the performance of previously combined heuristics and their
parametrization.

The parameters of a metaheuristic can have a big influence
on the behavior of an algorithm and have to be tuned to the
problem which requires an expert with knowledge of the al-
gorithm and the problem at hand. Therefore parameterless

141

algorithms emerged which need little or no parameters to be
configured [1, 11, 15, 7]. The idea is to eliminate parameter
tuning which would result in huge time savings. There is
of course a quality trade-off between generating robust re-
sults over multiple problem instances and tuning parameters
for a certain problem instance. As parameterless algorithms
and hyperheuristics fall in the first category, it is difficult to
achieve similarly good results with parameterless algorithms
as compared to manually tune a metaheuristic for a specific
problem instance.

1.2 Parameter Tuning and Parameter Control
Depending on their parameter configuration, metaheuris-

tics can drastically change their behavior. This led to the
idea of defining rules for finding suitable parameters for
problems or problem classes [8, 10]. It turned out that it
is impossible to define parameter tuning rules which work
well on a broad range of different problems. Another idea
is to find a technique to tune parameters while executing
the algorithm (parameter control [18, 4, 13]). Like with pa-
rameterless algorithms, a user does not have to configure
the parameters of the algorithm. But in the contrast to a
parameterless algorithm, which has no parameters, an algo-
rithm which utilizes parameter control exhibits parameters,
but automatically changes the parameters based on the be-
havior of the algorithm during execution.

Seeing the problem of finding parameters for an algorithm
as a problem itself which can be optimized is the main idea
of metaoptimization [9, 12, 19]. As any metaheuristic can
be used as meta-level optimizer, metaoptimization does not
use any information about the problem but measures ob-
tained from the evaluated solution candidates (e.g. perfor-
mance, effort or robustness). Because solution candidates
are metaheuristics with a certain, generated parameteriza-
tion, metaoptimization often exhibits enormous runtime re-
quirements. Additionally, even though metaoptimization
optimizes the parameters of metaheuristics, the meta-level
algorithm still has to be parametrized and tuned by an ex-
pert.

1.3 Fitness Landscape Analysis
The techniques discussed in the previous sections focused

on improving solution quality by designing new algorithms
or reducing the amount of tuning needed for their param-
eters without making use of problem characteristics. If it
is not possible to find good algorithms and parameter con-
figuration strategies, another possibility is to analyse the
problem which should be optimized. Fitness landscape anal-
ysis (FLA) [16] tries to develop metrics for determining cer-
tain aspects of a problem and gather significant informa-
tion. Having more meaningful information about the prob-
lem at hand can provide crucial hints about which algorithm
with which configuration can lead to good results. Of course
the ultimate goal of predicting good parameter settings for
metaheuristics based on these metrics has yet to be reached
and is the goal of ongoing research in this area.

In our opinion there already exists a large number of so-
phisticated metaheuristics which lead to good results, if con-
figured properly. Wolpert and Macready state in [23] that
”These [No Free Lunch theorems] establish the equivalent
performance of all optimization algorithms when averaged
across all possible problems.” The No Free Lunch Theorem

[24] therefore restricts the idea of developing a general pur-
pose algorithm that works very well on all problems. And
even if such an algorithm could be found, the parameters
for this algorithm would still have to be tuned manually.
The above mentioned techniques for eliminating manual pa-
rameter tuning often don’t lead to good results for multiple
problems or exhibit enormous runtimes (e.g. metaoptimiza-
tion). On the other hand manual parameter tuning can lead
to good results for a certain problem instance but often lack
applicability for other instances. Figure 1 shows this conflict
between robust results and the achievable quality for some
of the above mentioned techniques.

Robustness

Q
u
a

lit
y

Manual

parameter

tuning
OKB

Self-adaptive alg.

Parameterless alg.

High quality solutions

Robust results

Figure 1: Conflict between robustness and achievable quality

We therefore propose a system that simulates manual pa-
rameter tuning by using FLA and knowledge collected from
previous experience to automatically discover suitable algo-
rithms with good parameter settings for new problem in-
stances.

The remainder of the paper is organized as follows: Sec-
tion 2 states the goals and requirements of the optimization
knowledge base. Section 3 gives an overview of the optimiza-
tion knowledge base and its architecture. It details on how
information for the OKB is collected and discusses in Sec-
tion 3.2 ideas on how to automate this process as well as how
this information can be used for predicting algorithm per-
formance. Section 3.3 presents a generic and extensible data
scheme capable of representing the collected information and
Section 3.4 gives an overview of the tools for querying the
OKB.

2. GOALS AND REQUIREMENTS FOR THE
OKB

The primary goal of the OKB is to establish an open plat-
form for storing information about problems and their rela-
tionship with different algorithms and parameter settings.

142

Information about problems is generated by applying fit-
ness landscape analysis to give a deeper insight into the
problem and it’s structure as well as a prediction of how
difficult the problem is to solve. The information of the re-
lationship between algorithms and problems is obtained by
running different algorithms with different parameter con-
figurations. The information that is stored is the parameter
configuration as well as the results of the runs. This informa-
tion is crucial in understanding how well an algorithm with
a certain parameter configuration works on a specific prob-
lem. The more information there is about a certain problem
and the behavior of algorithms applied to this problem, the
better an understanding can be developed for the problem
and the algorithms. The goal is to generate an algorithm-
problem mapping showing which algorithms work well on
which problem(-instance)s as shown in Figure 2.

Figure 2: Algorithm-problem mapping

This mapping shows which algorithms work well on which
problems, but not why this is the case. FLA can answer such
questions as it delivers information about the characteristics
of a problem which can be used to explain the performance
and behavior of an algorithm and parameter setting.

Besides giving researchers and practitioners a very com-
prehensive view of the problem-algorithm landscape, the in-
formation stored in the OKB can also be used by programs.
Metaoptimization algorithms can use the OKB as a cache for
storing already evaluated solution candidates. Metaheuris-
tics utilizing parameter control and agents (see Section 3.2)
can use the stored information for adjusting the configura-
tion of their parameters. Based on already acquired infor-
mation it’s possible for algorithms to pursue a much more
deliberate and informed optimization process in contrast to
classical metaheuristics that rely on repeated trial and er-
ror or hyperheuristics/metaoptimization which do not take
any problem characteristics into account. Such enhanced
methods can solve a problem much more like a experienced
researcher who can learn from mistakes and interpret inter-
mediate results.

The goal of the OKB is to enable predicting suitable al-
gorithms and their parameter settings for new problem in-
stances. Because the similarity of a new problem instance
to existing problems can be calculated, parameter settings
of these similar problems can be applied to the new prob-
lem and should therefore lead to reasonably good results.
In this way the OKB acts like an expert who has done ex-
tensive parameter tuning. It simulates the expert by having
knowledge about previous problems and what algorithms
and settings worked well on them. It can therefore, like

a human does, categorize the problem based on it’s char-
acteristics and, having a memory, know which algorithms
and parameter settings should work well. The advantage
of this approach is that having a knowledge, finding good
parameter settings for new problem instances could be done
fairly fast in contrast to metaoptimization or hyperheuris-
tics, which do not have a memory they can build on.

Another aspect of the OKB is that such a system, if pub-
licly available, allows research to be more transparent and
reproducible. Currently researchers often use custom imple-
mentations of well known algorithms which are not available
publicly. Furthermore experimentation and tests often lack
a detailed description of the used parameter settings which
makes it very hard to reproduce the results described in
papers. By having an open database for storing such in-
formation, algorithms and parameter settings could be very
well retraced and verified by other researchers. The OKB
also offers a platform for cooperation as researchers can ex-
change their experiences through such an open system more
easily.

2.1 Requirements
The proposed goals and features described in Section 2

lead to the following requirements:

• Central and open database: There has to be a central
database where the information collected from differ-
ent sources can be stored and queried. Because the
OKB should be available to all researchers interested
in the information the OKB contains, it has to be open
to everybody. Access should be as easy as possible as
researchers should be encourage to not only retrieve
but also publish their results.

• A general purpose, extensible, and machine readable
data schema: The schema has to be designed in a way
so that it can be used for any optimization and FLA
algorithm. If a new algorithm has new properties that
have to be stored in the OKB, the data schema must
be able to cope with the new data. Additionally the in-
formation must be represented in a way that programs
written in different languages can access and interpret
the information.

• Querying and filtering: As information grows, there
has to be a mechanism which not only allows to query
data but also to constrain the returned information so
that only relevant data can be accessed easily.

• A well-defined, standards-based Web service interface:
Because researchers should be encourage to use the
OKB, different clients (metaheuristic frameworks) must
be able to store and retrieve information, independent
of the used programming language and platform.

• Scalability: Because the system is open, it has to be
able to cope with large amounts of queries and a grow-
ing amount of data.

In the next section we describe the optimization knowl-
edge base as well as how the above mentioned requirements
have been implemented.

143

3. OPTIMIZATION KNOWLEDGE BASE
The OKB consists of a central database that contains the

collected information as well as tools for producing informa-
tion (Section 3.1) and querying information (Section 3.4).
The following image gives an overview of the OKB:

x x
xx
x

xx
x

xx
x

x
xx

OKB Services
xx x

OKB Query Client

xx x

OKB Run Creation Client

x `

x x
x

x

x
x

x

OKB Agent

x `

x x
x

x

x
x

x

OKB Agent

Knowledge Base

Run Creation Service

Administration Service

Query Service

xx x

OKB Administration Client

Figure 3: Overview of the OKB software system

The knowledge base is a relational database that stores
information about algorithms, problems, and results. The
OKB services are Web services that are used to access the
information stored in the knowledge base:

• Run creation service: The run creation service is used
for uploading runs to the OKB. A run contains the
parameters and results generated by applying an al-
gorithm to a problem. The service therefore offers a
Web service method AddRun which takes a Run object
and saves it in the database. Additionally the service
contains methods to obtain a list of algorithms and
problems so that a client can match the algorithm and
problem from which the run was obtained to an algo-
rithm and problem from the OKB.

• Query service: The query service is used to retrieve
data from the OKB. It allows to query filters which a
client can use to constrain the data a query returns.
Additionally to restrict the returned runs, the service
can return complete runs or partial runs which only
contain a subset of the information of a run. There-
fore GetFilters returns all available filters. These fil-
ters are then used when calling the GetRunIds method
which returns the ids of the runs which match the filter
criteria. With these ids the runs can be queried by call-
ing GetRuns for retrieving complete runs or GetRunsWith-
Values for retrieving partial runs. The second method
requires that a list of values is passed which defines the
data that should be returned.

• Administration service: The administration service pro-
vides create, read, update and delete (CRUD) methods
for algorithms and problems. Algorithms and prob-
lems have to be defined first in the OKB and can then
be used to associate runs with them.

The OKB Run Creation Client is the front-end for storing
information in the database. It collects information of an al-
gorithm run and sends this information to the run creation
service which stores it in the knowledge base. The OKB
Query Client is used to search the OKB for information. It
uses the filters provided by the query service to restrict the

returned results of a query. OKB Agents interact with the
OKB through the query and run creation service and per-
form various tasks to broaden and improve the information
stored in the OKB. OKB Agents are discussed in more detail
in Section 3.2.

The clients for creating and querying information are ex-
emplarily implemented for HeuristicLab1 [21]. HeuristicLab
(HL) is a software system for heuristic and evolutionary al-
gorithms. It contains a wide range of already implemented
algorithms and problems as well as support for implementing
new algorithms either by graphically designing them [22] or
by writing code. Because the OKB services are open, other
clients for the OKB can be written (there exists an experi-
mental OKB Connector for the ECJ framework). This en-
ables researchers to use their favourite tools and frameworks
for executing experiments but at the same time still allowing
them to store their results into the OKB.

3.1 Collecting information
Filling the optimization knowledge base with information

is done by executing algorithms and using the OKB run
creation service to store the gathered information in the
database. Even if there exists no information about a prob-
lem in the OKB it still supports the process of parameter
tuning as already tested configurations are recorded and can
be analysed again at a later time. Of course if the OKB
already contains information, parameter configurations can
be chosen based on the knowledge of already tested config-
urations. When testing new parameter settings the OKB
automatically receives new information and therefore the
knowledge about a certain problem grows. Seeing what pa-
rameter settings have already been applied to an algorithm
and problem prevents running the same configuration over
and over again. It can show what configurations other re-
searchers have previously tried leading to time savings when
doing parameter tuning. Another way of collecting infor-
mation is through metaoptimization or grid searches. These
methods lead to different parameter combinations which are
automatically generated, executed and the results can be au-
tomatically stored in the optimization knowledge base. In
the next section ideas for automatic collection and utiliza-
tion of information are discussed in detail.

3.2 Automatic information collection and use
for algorithm performance prediction

To support the process of collecting data we introduce
agents that take away most of the burden of manually per-
forming parameter tuning. In the following three agents for
gathering information are described:

• Diversification agents: This type of agent scans the
OKB for missing algorithms and parameter configura-
tions. If the agent finds that there are algorithms or
configurations which haven’t been tried, it runs these
configurations and saves the results back to the knowl-
edge base. This type of agent extends already existing
information by doing parameter grid searches.

• Meta-information agents: Meta-information agents run
special algorithms that generate meta-information about
problems using fitness landscape analyses.

1http://dev.heuristiclab.com

144

• Intensification agents: Intensification agents take the
information gathered by the first two types of agents
and try to actively find better solutions for poorly cov-
ered and new problem instances. While the first two
agents only broaden the gathered information, this
type of agent actually tries to find better parameter
settings based on the already known information. The
ultimate goal of intensification agents is to emulate
an expert doing parameter tuning. By learning from
a knowledge base, containing not only results of algo-
rithms and parametrizations but also meta-information
of problems, the agent should choose new parameter
settings intelligently based on this information with
the concrete goal of finding better configurations and
achieving better results.

The diversification agents need to be able to calculate the
distance between parameter configurations. Having a dis-
tance metric for configurations enables agents to do param-
eter clustering. Based on the clustering agents can choose
regions of the parameter landscape which haven’t been thor-
oughly explored and start new runs to explore these regions.

The most advanced agent is the intensification agent. It
can use the data collected by the FLA to determine similar
problem instances. If two problem instances are very sim-
ilar, the parameter setting which worked good on the first
problem instance may also work good on the similar prob-
lem instance. This of course assumes that the problem was
thoroughly searched and there are enough tested parameter
configurations which led to good results. The advantage of
this approach is that FLA is computationally far less ex-
pansive then parameter grid searches. The following pseudo
code summarizes this idea:

Algorithm 1 Predicting parameter settings by problem in-
stance distance

Calculate FLA for new problem instance p1
for all p ∈ P do
Calculate distance to p1
end for
Select p2 ∈ P with minimal distance to p1
for all c ∈ Cn(p2) do
Execute p1 with c
end for
return Best solution obtained by applying c to p1

P is the list of all problems stored in the OKB. Cn(p2)
returns the n best configurations of the most similar prob-
lem instance to the new problem instance.

Of course parameter grid searches are computational ex-
pensive. To improve runtime, instead of calculating a more
or less complete parameter grid, only a partial set could
be generated and learned by a machine learning algorithm.
This requires a technique that can learn collected parame-
ter configurations and use the achieved quality as the target
variable. If configurations are learnt, the quality of new con-
figuration settings could be predicted. This results in sig-
nificant runtime improvements as only parameter settings
which look promising should be evaluated.

To reduce the amount of parameter configurations that
have to be tested, the impact of parameters on the quality
can be analysed (variable impact analysis). This means that

it can be evaluated which parameter contributes how much
to the overall quality of a solution. This allows to evaluate
only parameter configurations with parameters that are pre-
dicted to improve the overall quality. Of course when one
parameter is changed, the other parameters could change
their behavior which also needs to be considered.

Automating parameter tuning leads to generating a lot
of parameter configurations that have to be run on prob-
lems which are missing sufficient coverage or satisfying re-
sults. To speed up the generation and execution of param-
eter configurations, a system is needed that can distribute
these tasks to multiple computers. Distribution of work is
essential for obtaining an initial stock of information which
can then be used by the intensification agent. HeuristicLab
offers such a system (HeuristicLab Hive) that executes meta-
heuristics in parallel by distributing them to multiple com-
puters. Through the OKB Services these systems can inter-
act and provide the needed computing power for exploring
algorithm configurations and problems.

3.3 Data model
All major metaheuristic frameworks support serialization

of results. Results are often stored in a custom, binary for-
mat which can only be read and interpreted by the frame-
work that generated it. This has the disadvantage that bi-
nary values are not human readable and also require appli-
cations handling the data to understand the binary format.
Binary data can be stored in the OKB but it makes it dif-
ficult for agents and other frameworks to read. Addition-
ally, the OKB needs values that it can understand to pro-
vide the filtering functionality to the query clients. There-
fore the OKB supports saving values according to their data
types which can be read by humans and used across differ-
ent frameworks. HeuristicLab’s OKB Run Creation Client
for example checks the results and parameters of runs for
known data types. If it finds a known data type this vari-
able is stored as an OKB value. If there is no known OKB
data type for the data type of a result or parameter value,
the value is stored in a binary format. This means that the
value can be retrieved by a framework which can interpret
it, but it can’t be used as a filter criteria by the OKB. The
OKB supports data types based on the data types provided
by the MS SQL Server 2008R22. Table 1 gives an overview
of OKB data types as well as an exemplarily mapping to
HeuristicLab’s data types.

OKB data type HL data type
Int int
BigInt long
Bit bool
Float double
Real float
NVarChar(MAX) string
VarBinary(MAX) byte[]

Table 1: Mapping of HeuristicLab data types to OKB data
types

Additionally, more advanced data types can be repre-
sented as basic data types. For example, the HeuristicLab

2http://msdn.microsoft.com/en-us/library/ms187752.
aspx

145

Value

PK Id

RunId

ValueNameId

DataTypeId

BoolValue

IntValue
LongValue

FloatValue

DoubleValue

StringValue

BinaryDataId

ValueName

PK,FK1 Id

Name

Category

Type

Run

PK Id

AlgorithmId

ProblemId

CreatedDate
UserId

ClientId

BinaryData

PK,FK1,FK2,FK3 Id

Data

Hash

DataType

PK,FK2,FK3,FK4 Id

Name

TypeName

CharacteristicValue

PK Id

ProblemId

CharacteristicId

DataTypeId

BoolValue

IntValue
LongValue

FloatValue

DoubleValue

StringValue

Characteristic

PK,FK1 Id

Name

Type

Platform

PK,FK1,FK2 Id

Name

Description

Problem

PK,FK2,FK3 Id

ProblemClassId

PlatformId
DataTypeId

BinaryDataId

Name

Description

ProblemClass

PK,FK1 Id

Name

Description

ProblemUser

PK ProblemId

PK UserGroupId

Algorithm

PK,FK2 Id

AlgorithmClassId

PlatformId
DataTypeId

BinaryDataId

Name

Description

AlgorithmClass

PK,FK1 Id

Name

Description

AlgorithmUser

PK AlgorithmId

PK UserGroupId

Figure 4: The data model of the OKB

OKB Clients additionally support HeuristicLab’s Percent-
Value type which is mapped to a Float or .NET’s TimeSpan
data type which is mapped to a BigInt data type.

Figure 4 shows the data model of the optimization knowl-
edge base. A Run is the container for the parameters and
results obtained by executing an algorithm. Therefore a run
contains the algorithm and the problem from which it was
obtained. The algorithm and the problem contain infor-
mation about themselves as well as the possibility to store
the actual algorithm or problem in the database (referenced
with BinaryDataId). Every algorithm and problem is cat-
egorized and belongs to a certain algorithm and problem
class. For every algorithm and problem at minimum one
user or user group has to be assigned. This can be used
to make certain algorithms or problems only available to a
selected group of people. Though the default case is that all
data is available to the public, this feature is needed if e.g.
confidential problem data is saved in the OKB. Algorithms
and problems are also bound to a Platform which is the
metaheuristic framework they originate from. Additionally,

the user and the computer (client) on which the run was ex-
ecuted is stored. Because the OKB stores the runtime of the
algorithm, there has to be additional information about the
computer to make the execution time interpretable. There-
fore every computer that is used to execute and upload runs
has to be registered in the OKB. In the process of regis-
tering a client, a benchmark algorithm (LINPACK [3]) is
executed. A benchmarking algorithm measures the perfor-
mance of a computer and therefore allows to interpret the
execution time of runs in context to the actual performance
of the computer.

Every run contains parameter settings and results. This
information is stored in the Value table. A value is one of the
above mentioned allowed data types. The ValueName table
contains the type of the value as well as it’s category. The
category is either that the value was obtained from the pa-
rameters or the results. The Name field contains the name of
the parameter. If the value is a binary value, then the value
is stored in the BinaryData table. In addition to the data
a SHA-1 hash function of the data is computed and saved
as well. This allows to prohibit duplicate storing of binary

146

(a) A sample query (b) Results returned from the query service

Figure 5: HeuristicLab’s OKB query client

data. The DataType table contains the source data types of
the values from the metaheuristic framework it was obtained
from. This makes it possible for the host framework to in-
terpret binary data. Because every algorithm and problem
is assigned to a metaheuristic framework, these frameworks
can additionally make use of the binary data of their algo-
rithms and problems by using the information stored in the
DataType table.

Because the Value and ValueName tables allow storing ar-
bitrary data, this structure is extensible and new parameters
and results can be added at any time. Of course this generic
structure has the disadvantage that any name can be cho-
sen for parameters and interpretation of the actual value is
not described. Therefore a common guideline for names and
values is needed so that cross-framework comparisons are
possible. Additionally, there is a similar data store as the
Value table that is called CharacteristicValue. This table
is used to store meta-information to problems and is used
for the results obtained by fitness landscape analysis.

3.4 Querying information
The OKB provides a service for querying the information

stored in the database. All information that is represented
as values can further be used to filter the results returned by
a query. Information that can be used for filtering includes
for example the algorithm and problem type, parameters of
algorithms and result values. The OKB offers a range of
filters for the supported data types. These filters can be
combined by the boolean operations AND and OR. This leads
to a very flexible query language allowing expressions such
as e.g.: Query all genetic algorithm runs performed with
HeuristicLab where the problem is the Travelling Salesman
Problem of type ch130 with edge recombination crossover
and a mutation rate higher then zero percent.

HeuristicLab provides an exemparily implementation of a
client for the OKB query service. Figure 5 shows a screen-
shot of the above query on the left and on the right the
results of the query. The results are displayed in Heuris-
ticLab’s run view allowing to use HeuristicLab’s tools for
analysing and exporting the results. Additionally it can be

defined which values of the runs should be returned to speed
up the download of the information.

4. CONCLUSION AND FUTURE WORK
We presented the optimization knowledge base, an open,

extensible and scalable database for storing information about
algorithms, parameter settings and problems. It offers a
well-defined, standards-based Web service interface, allow-
ing researchers and programs to easily interact with the data
stored in the knowledge base. The OKB can be used to sup-
port the parameter tuning process, provide an algorithm-
problem mapping and give researchers a better understand-
ing of the problem structure and algorithm behavior. The
OKB fills the gap between achieving high quality results ob-
tained by manual parameter tuning and generating robust
results using e.g. parameter control. An important part for
achieving this goal and subject of future work is automatic
information collection. Missing parameter configurations
and fitness landscape analyses have to be automatically de-
tected and executed. Based on the collected knowledge good
parameter configurations for new problem instances can be
predicted. Because filling the OKB with information is run-
time intensive, machine learning algorithms can be used to
predict the results of algorithm executions based on already
available results and problem characteristics. Therefore the
described system greatly reduces the time to find suitable
algorithms and parameters for new problem instances and
thus lifts the burden of manual parameter tuning from re-
searchers and experts. Furthermore, because the OKB is an
open system, it encourages researchers to publish their ex-
periments and make them available to a broader audience.
This promotes transparency and allows researchers to work
more efficiently together.

5. ACKNOWLEDGEMENTS
The work described in this paper was done within the

Josef Ressel-Centre HEUREKA! for Heuristic Optimization
sponsored by the Austrian Research Promotion Agency (FFG).
HeuristicLab, Hive and OKB are developed by the Heuristic

147

and Evolutionary Algorithm Laboratory3 and can be down-
loaded from the official HeuristicLab homepage4. The soft-
ware described in this paper is licensed under the GNU Gen-
eral Public License5.

6. REFERENCES
[1] T. Bäck, A. E. Eiben, and N. A. L. v. d. Vaart. An

empirical study on gas ”without parameters”. In
Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature, PPSN VI,
pages 315–324. Springer, 2000.

[2] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross,
and S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In F. Glover
and G. A. Kochenberger, editors, Handbook of
Metaheuristics, volume 57 of International Series in
Operations Research & Management Science,
chapter 16, pages 457–474. Kluwer, 2003.

[3] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W.
Stewart. LINPACK User’s Guide. SIAM, 1979.

[4] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and
J. Smith. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary
Computation, 3:124–141, 1999.

[5] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computation. Natural Computing Series.
Springer-Verlag, 2003.

[6] Y. Hamadi, E. Monfroy, and F. Saubion. Autonomous
Search. Springer, 2012.

[7] G. R. Harik and F. G. Lobo. A parameter-less genetic
algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference, volume 1,
pages 258–265. Morgan Kaufmann, 1999.

[8] M. d. l. Maza and B. Tidor. An analysis of selection
procedures with particular attention paid to
proportional and boltzmann selection. In Proceedings
of the 5th International Conference on Genetic
Algorithms, pages 124–131. Morgan Kaufmann, 1993.

[9] R. Mercer and J. Sampson. Adaptive search using a
reproductive metaplan. Kybernetes, 7:215–228, 1978.

[10] R. Myers and E. R. Hancock. Empirical modelling of
genetic algorithms. Evol. Comput., 9(4):461–493, 2001.

[11] F. Nadi and A. T. Khader. A parameter-less genetic
algorithm with customized crossover and mutation
operators. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation,
GECCO ’11, pages 901–908. ACM, 2011.

[12] V. Nannen and A. Eiben. A method for parameter
calibration and relevance estimation in evolutionary
algorithms. Genetic And Evolutionary Computation
Conference, pages 183–190, 2006.

[13] V. Nannen and A. E. Eiben. Relevance estimation and
value calibration of evolutionary algorithm
parameters. In Proceedings of the 20th international
joint conference on Artifical intelligence, IJCAI’07,
pages 975–980. Morgan Kaufmann, 2007.

[14] E. Özcan, B. Bilgin, and E. E. Korkmaz. A

3http://heal.heuristiclab.com/
4http://dev.heuristiclab.com/
5http://www.gnu.org/licenses/gpl.txt

comprehensive analysis of hyper-heuristics. Intell.
Data Anal., 12(1):3–23, 2008.

[15] G. Papa. Parameter-less evolutionary search. In
Proceedings of the 10th annual conference on Genetic
and evolutionary computation, GECCO ’08, pages
1133–1134. ACM, 2008.

[16] E. Pitzer and M. Affenzeller. A comprehensive survey
on fitness landscape analysis. In Recent Advances in
Intelligent Engineering Systems, volume 378 of Studies
in Computational Intelligence, pages 161–191.
Springer, 2012.

[17] M. Preuss. Adaptability of algorithms for real-valued
optimization. In Proceedings of the EvoWorkshops
2009 on Applications of Evolutionary Computing,
EvoWorkshops ’09, pages 665–674. Springer, 2009.

[18] I. Rechenberg. Evolutionsstrategie - Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, 1973.

[19] S. K. Smit and A. E. Eiben. Comparing parameter
tuning methods for evolutionary algorithms. In IEEE
Congress on Evolutionary Computation, pages
399–406, 2009.

[20] E.-G. Talbi. A taxonomy of hybrid metaheuristics.
Journal of Heuristics, 8(5):541–564, 2002.

[21] S. Wagner. Heuristic Optimization Software Systems:
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Johannes Kepler Universität Linz, 2009.

[22] S. Wagner, G. Kronberger, A. Beham, S. Winkler, and
M. Affenzeller. Model driven rapid prototyping of
heuristic optimization algorithms. computer aided
systems theory. In EUROCAST 2009, volume 5717,
pages 729–736. Springer, 2009.

[23] Wolpert and Macready. Coevolutionary Free Lunches.
IEEE Transactions on Evolutionary Computation,
9:721–735, 2005.

[24] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997.

148

