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ABSTRACT 
Compared with fixed morphology robotic systems, self-
reconfigurable modular (SRM) robots can reconfigure themselves 
to form a variety of morphologies, and carry on various types of 
motions. Recently, some co-evolutionary approaches have been 
proposed to co-evolve the robot morphology and associated 
controller simultaneously for locomotion tasks.  However, these 
co-evolution approaches don’t consider some physical limitations 
of SRM robots and usually request longer evolution process due 
to extensive searching space. To address these issues, we 
proposed a species-based co-evolution (S-CoE) algorithm. The S-
CoE algorithm is applied on a simulated modular robot system 
and evaluated under two testing scenarios.  
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1. INTRODUCTION 
Compared with fixed morphology robotic systems, self-
reconfigurable modular (SRM) robots can reconfigure themselves 
to form a variety of morphologies. Currently various SRM robots 
have been developed. The major limitation of the current state-of-
the-art SRM robotic system is that the human users have to 
explicitly predefine target structures and motion controllers of 
SRM robots.  This process could be tedious and heavily rely on 
users’ design experiences. To make this process more efficient 
and autonomous, evolutionary approaches have been proposed to 
reconfigure the structures and controllers of SRM robots [1]. 
Furthermore, some approaches have been proposed to co-evolve 
the morphology and controller of robotic systems simultaneously 
in [2-4]. However, most existing co-evolution algorithms have 
taken little considerations on some physical limitations of SRM 
robots, such as module’s limited connection capacity, and fixed 
number of total modules in the system. In addition, as the number 

of the robot modules increases, the searching space of 
morphology and controller increases drastically. In this paper, we 
introduced a new co-evolution approach to address these 
challenges, called species-based co-evolution (S-CoE) approach. 
By using building blocks and species, the major contribution of S-
CoE is that the co-evolutionary process is expedited significantly 
by focusing on those important parts to be evolved.   

2. THE METHOD 
2.1 Representation Models 
To provide more flexibility on morphology transformation, we 
proposed a new SRM robotic system called Cross-Ball in [5]. 
Basically a robot module is a ball with an arm system. The body 
of the module has 6 stationary attachments in orthogonal 
directions so a module can be locked with 6 neighbors. The arm 
system has two degrees of freedom: rolling and pitching. First, we 
propose a tree-based method for morphology representation based 
on building blocks. Building blocks are atoms of a morphology, 
and each building block may consist of multiple robot modules 
which are grouped together in a specified manner. Currently, 
building blocks are predefined before the co-evolution process 
starts.  Target morphology can be described by a tree structure of 
building blocks. Each building block is a node of the tree. The 
connection relationships among modules are edges of the tree. 
Then, we adopt  the continuous time recurrent boolean neural 
network (CTRNN) [6] as the controller representation for SMRs, 

which is defined as 
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internal time constant of neuron i. iy  is the activation level of 

neuron i. ijw  is the connection weight from neuron j to neuron i. 

( )x  is a sigmoid function. The bi-directional connections 

between neurons can have weight as 1, -1 or 0. At each time step, 
the activation level iy  is readjusted by the sign function. Two 

nodes are assigned to each module so that it can control two 
degrees of freedom of each module’s dynamic joints. Therefore, 
given N modules, the controller is composed of a network with 2N 
nodes. At each time step, the activation level of two neurons 1ix  

and 2ix  of module i will affect the module’s behavior in the 

follow four cases: (1) if 1ix >0 and 2ix >0, the arm roll 15 and 

pitch15 ; (2) if 1ix >0 and 2ix <0, the arm roll 15 and pitch -15 ;  

if 1ix <0 and 2ix  >0, the arm roll -15 and pitch15 ; if 1ix <0 and  

2ix <0, the arm roll -15 and pitch -15 . 
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2.2 Co-Evolutionary Process 
Given the total number of modules and predefined building blocks, 
all possible combination of building blocks can be easily 
enumerated. We call this kind of combination as the species. For 
each species, these building blocks can be combined in different 
ways to generate various morphologies, called individuals. To 
improve the searching efficiency of co-evolutionary process, a 
species-based co-evolution (S-CoE) algorithm is proposed to 
efficiently utilize building blocks and species for robot 
morphology reconfiguration.  The objective of the S-CoE is to 
first discover appropriate species and then focus on those selected 
species with better fitness values to generate better individuals 
more efficiently. In short this S-CoE has the following steps. (1) 
Enumerate species based on building block types and total 
amount of modules, where each species randomly generates equal 
amount of individuals. (2) Evaluate all individuals. (3) Each 
species adjusts the number of generated children based on: 
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of species i at generation t+1. t
nFitness  is the best child from 

species i at generation t. (4) Each species reproduces its own 
children by using the roulette-wheel selection, where the 
morphology operation is crossover (switch two building blocks 
and the all their children) and controller operator is mutation 
(randomly mutate 5% of connection weights of neuron networks). 
Then the system goes back to Step 2 until the max generation 
threshold is hit.  

3. EXPERIMENTAL RESULTS 
The S-CoE algorithm have been verified in the simulated Cross-
Ball systems on two case studies, where physical constraints (i.e., 
connection constraints) of the Cross-Ball have been taken into 
considerations in the PhysX engine based simulator. As shown in 
Fig. 1, the first case study is to generate a SRM robot which can 
escape from a jail with some low fences, and the second case is to 
generate a SRM robot which can carry locomotion in an open 
space. The fitness value is defined as the moving distance of the 
SRM robot from the mass center after certain iteration of the 
CTRNN controller update and motor movements. The system 
parameters are: the number of modules is 10, building block types 
include single and arm, number of children is 10, and maximum 
number of generation of evolution is 20. Species are listed in 
Table 1. For the comparison purpose, we also implemented a 
vanilla co-evolution algorithm, which is similar to the proposed 
hierarchical co-evolution algorithm, but it doesn’t have the 
building blocks and inner species competition.  

  

Figure 1. Two case studies: jail break and open space. 

Each case has conducted for 4 runs. Fig. 2 and 3 compare the 
achieved best performance using the S-CoE and the vanilla co-
evolution algorithm. Obviously the former one significantly 
outperforms the other one on locomotion performance because it 
can generate morphology and motion controller solution more 
efficiently.  

Table 1. The number of building blocks in each species  

 Species 1 Species 2 Species 3 
# of Single Building Block 10 6 2 
# of Arm Building Block 0 1 2 

 

 

Figure 2. The performance of the hierarchical and vanilla co-
evolution algorithm on jail break experiment.  

 

Figure 3. The locomotion performance comparison of the 
hierarchical and vanilla co-evolution algorithms in a 2D open 
space. 

4. CONCLUSION  
In this paper, we proposed a S-CoE algorithm to discover efficient 
morphology and motion controller for SRM robotic systems 
simultaneously. The S-CoE algorithm has been verified on two 
case studies in a physics-engine based simulation. The 
experimental results have demonstrated the feasibility and 
efficiency of S-CoE on Cross-Ball SRM with physical constraints. 
In the future, we will develop new approaches to automatically 
discover valuable building blocks for SRM robots.   
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