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ABSTRACT
This work proposes a controlled stochastic difference equa-
tion model of scheduling, with quadratic cost criteria, for
cancer chemotherapy. By reducing the problem to quadratic
control optimization and introducing a random search algo-
rithm, we seek an optimal chemotherapy schedule. Our ulti-
mate goal is to provide more realistic solutions than previous
models. To reach this goal, our model ideally kills the max-
imum number of cancer cells to eradicate the disease while
preserving the number of normal cells. Our results show the
proposed model works well for cancer chemotherapy. Our
algorithm is fast and helps produce practical schedules.

Categories and Subject Descriptors
G.1.6 [Optimization]: Quadratic programming methods;
G.3 [Probability and Statistics]: Stochastic processes;
J.3 [Life and Medical Sciences]: Biology and genetics

Keywords
Nonlinear dynamics, chemotherapy, cancer model, optimal
control, algorithm, controlled stochastic difference equation.

1. INTRODUCTION AND BACKGROUND
It is well known that cancer chemotherapy treatment is

a complex optimization problem involving many constraints
[1]. Chemotherapy consists of using anti-cancer drugs to
control or prevent growth of cancerous tumors. Anti-cancer
drugs are chemical compounds that kill cancer cells (and also
non-cancerous cells). A target is to kill a maximal number of
cancer cells while killing a minimal number of “normal” cells
for some fixed treatment period. This implies drug schedul-
ing and periodic control are essential in such a process [2].
Chemotherapy drugs attack rapidly dividing cells. Nor-

mal cells divide at a rate controlled by the body; in cancer
cells this division goes awry, leading to uncontrollable pro-
duction of new cells and formation of tumors. Chemother-
apy drugs interfere with this cell division and may cause the
cancer to recede, whereupon we hope to observe an increase
in normal cells until recovery. In practice, there are proto-
cols and approved doses for known drugs, but often oncolo-
gists tailor a treatment by patient characteristics and disease
progression, by trial and error. There also exist evolutionary
attempts to optimize chemotherapy schedules, based upon
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solving or finding an optimal control to a system of ODEs
[3], or an EDA minimizing cell response (modeled by Gom-
pertz’ equation) when a drug is applied [1]. However, these
methods are steady state based and non-stochastic.

We propose a new model based on controlled stochastic
difference equations to capture dynamics of cancer and nor-
mal cells over time. To find an optimal schedule, we re-
duce this task to solving a quadratic optimization problem
(QOP), and apply a random search algorithm to solve QOP
instances. The model has a control variable; thus we restrict
study to the related control in the objective functions of the
algorithm. We use this approach since we view the system
not as growing (as in Gompertz’ model) but as a controlled
environment. Our model respects random fluctuations at
the concentration level inside cells (and their intra-cellular
dynamics) and the cell-cell interactions due to concentration
variability over time, and is an applicable dynamical system.

2. OUR MODEL
The work of [2] considers a set of ODEs with a switch

action control. We extend this, adding noise to the dynamics
and a control process, obtaining the stochastic model below.
The cancer dynamic (2) follows the normal cells dynamic (1).

x1(t) = x1(0) +

T∑
t=1

a1x1(t− 1) +

T∑
t=1

b1y1(t− 1)

+

T∑
t=1

d1u(t− 1) + ε1(t)

y1(t) = C1 + ε′1(t) (1)

σ2
1(t) = k1 + g1σ

2
1(t− 1) + α1ε

′′2
1 (t− 1)

x2(t) = x2(0) +

T∑
t=1

a2x2(t− 1) +

T∑
t=1

b2y2(t− 1)

+

T∑
t=1

d2u(t− 1) + ε2(t)

y2(t) = C2 + ε′2(t) (2)

σ2
2(t) = k2 + g2σ

2
2(t− 1) + α2ε

′′2
2 (t− 1)

For time t, u(t) represents the schedule, y1(t), y2(t) the in-
ternal disturbances, x1(t), x2(t) the logarithms of numbers
of normal/cancer cells, and σ1(t), σ2(t) the spread of medi-
cation in normal/cancer cells. Parameters a1, a2, b1, b2, d1,
d2 are vectors of small numbers, with the remaining parame-
ters estimated. The disturbance noises are ε′1(t) ∼ N(0, σ2

1),
ε′2(t) ∼ N(0, σ2

2). The control dynamic u(t) is a T × T
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(−1, 1)-matrix, whose columns represent components and
rows treatments at times 1, . . . , T , and 1/-1 means to in-
crease/decrease the drug dose at the applicable time. As-
sume each cell has a measured concentration over time, and
that we may follow changes in number of cells via changes
in their concentrations. The model implies the dynamic of
each type of cell depends on all previous cell concentrations,
disturbances in chemical interactions, control and external
noise. We set the initial dynamics x1(0), x2(0) by experi-
mental cell concentration data [4] and σ1(0) = σ2(0) = 0.

3. THE ALGORITHM
Designing an effective chemotherapy schedule, two objec-

tives J1, J2 conflict: the drug must destroy a minimum num-
ber of normal cells (minimize J1) and a maximum number of
cancer cells (maximize J2). In search of such a schedule, we
convert our problem into one of optimal control: given the
coupled dynamical system (1)–(2) with control u, find the
optimal control u∗ producing the best desired behavior of
the system. From a quadratic programming standpoint, the
objective functions J1, J2 are measures we must optimize to
control variability in the numbers x1, x2 of normal/cancer
cells. The objective function for normal cells is

J1(u) =
1

T − 1


1
2
x′
1(0)Hx1(0) +

T∑
t=0

x′
1(t)Hx1(t)

+
T∑

t=0

y′
1(t)Ry1(t) +

T∑
t=0

u′(t)Qu(t)

 ,

(3)
representing the number of normal cells killed for a fixed
treatment period, T , with schedule u. Similarly we obtain
the following objective function for cancer cells.

J2(u) =
1

T − 1


1
2
x′
2(0)Hx2(0) +

T∑
t=0

x′
2(t)Hx2(t)

+
T∑

t=0

y′
2(t)Ry2(t) +

T∑
t=0

u′(t)(−Q)u(t)


(4)

Conforming to experimental data, matrices H, R have small
entries. The matrix Q represents the effect of u on cells at
each time. Constants d1, d2 serve the same function as Q.
The matrix entries in (3)–(4) are in line with the constants
in (1)–(2) (we wish all eigenvalues of the above matrices to
be inside the unit disc, to ensure stability of the problem).
To optimize u, we use a Random Mutation Hill Climb

(RMHC). This is justified, as the number of possible matri-
ces u is typically 2100×100. We begin with a random matrix
u with entries -1 or +1, and mutate u a number, q, times,
each time multiplying an entry chosen u.a.r. by -1, to give a
matrix λq(u). The values of J1, J2 are then compared for u
and λq(u). If J1 (λ

q(u)) < J1 (u) and/or J2 (λ
q(u)) > J2 (u)

then we let u← λq(u). The process repeats for a given num-
ber (m) of iterations. We then compute both dynamics x1,
x2 with control u∗, and vectors y1, y2, σ1, σ2 and all noises
are as with u. This enables comparison of the dynamics
computed for u with those computed for u∗.

4. RESULTS AND CONCLUSION
We ran the model (1)–(2) for 1000 iterations to generate

the dynamics of the normal and cancer cells, and took the
size of matrices H, Q, R to be 100 × 100. Fig. 1 depicts
typical dynamics for x1 (top) and x2 (bottom). The red dy-
namic on each represents the dynamic before u is optimized

(random u), with the green dynamic that after optimization.
Plots (omitted) of J1, J2 show that over subsequent itera-
tions the value of J1 decreases and that of J2 increases, with
the durations of local optima generally increasing. The al-
gorithm runtime is linear in the number of model iterations
and the number of steps in each mutation (q), and depen-
dent on the lengths of initial vectors x1(0), x2(0). In practice
the algorithm is consistent and stable (proof omitted).

Figure 1: Typical components of x1, x2 before (red)
and after (green) optimization. The random treat-
ment is ineffective; in particular, the number of can-
cer cells increases exponentially over time. After op-
timization the number of cancer cells increases more
slowly, implying improvement in the schedule u.

Although the results show good performance, improve-
ments to lower the risk of damaging other organs may be
possible in future work via improved models, a more so-
phisticated algorithm, or by using operators more suited to
the problem. To our knowledge, our approach is the first
stochastic model of this type employing reduction to a QOP
followed by an RMHC to find optimal solutions. Finally, we
believe our model will produce good results for other initial
datasets (the initial condition of the patient) besides [4]. An
extended version of this work is available from the authors.
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