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ABSTRACT
We present a parameter estimation method, based on par-
ticle swarm optimization (PSO) and embedding the tau-
leaping algorithm, for the efficient estimation of reaction
constants in stochastic models of biological systems, using
as target a set of discrete-time measurements of molecular
amounts sampled in different experimental conditions. To
account for the multiplicity of data, we consider a multi-
swarm formulation of PSO. The whole method is developed
for GPGPU architecture to reduce the computational costs.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Mod-
eling; J.3 [Computing Applications]: Life and Medical
Sciences; C.1.2 [Processor Architecture]: Multiproces-
sors—SIMD
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1. INTRODUCTION
The development of computational methods for the anal-

ysis of biological systems is one of the foremost goals of
Systems Biology. In order to gain insights into the func-
tioning of these complex systems, we need to identify the
system structure and a proper parameterization, which are
indispensable to analyze the behavior of these systems in
both physiological and perturbed conditions. Except for
special cases where the experimental values of parameters
are known, most of the times they are not available or inac-
curate, since carrying out their measurement in vivo can be
tangling or even impossible. Parameter estimation (PE) is a
computational problem consisting in the automatic determi-
nation of the unknown parameters, which can be performed
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by means of optimization techniques [2]. The method for
PE proposed hereby combines particle swarm optimization
(PSO) [3] with stochastic simulation algorithms, and it is in-
spired by the common scenario of biological research, where
multiple experiments on a system of interest are carried
out under different conditions and each experiment is re-
peated a number of times, in order to account for possible
measurement errors. The result of this process is a set of
discrete-time target series (DTTS) – corresponding to sam-
pled amounts of some molecular species – which represent
the input of our PE method. In particular, to account for
the multiplicity of target data, we designed a multi-swarm
version of PSO, where each swarm is assigned to a differ-
ent experimental condition and, in a synergistic way, they
cooperate for the estimation of a common set of kinetic val-
ues – that can simultaneously fit all the measures in the
analyzed conditions – by exchanging their best particles at
regular intervals. To account for the intrinsic stochastic fluc-
tuations of molecular reactions, the fitness function of each
candidate solution has been defined as the average distance
between the target data and a set of independent stochastic
simulations of the system dynamics. In order to provide a
reduction of the computational costs, our PE method has
been entirely developed for the GPGPU architecture.

2. METHODS
We consider mathematical models of biological systems

defined according to the stochastic formulation of chemical
kinetics, i.e., we specify the set S={S1, . . . , SN} of molecular
species occurring in the system and the setR={R1, . . . , RM}
of biochemical reactions. Each reaction Rµ is characterized
by a stochastic constant cµ∈R+ that encompasses the phys-
ical and chemical properties of the reaction. The vector of
parameters γc=(c1, . . . , cM ), able to generate a dynamics
comparable to the DTTS, is the goal of the PE. In our PE
implementation we consider D different initial conditions for
the biological system of interest, each one characterized by
a set of DTTS needed for the optimization process. In our
multi-swarm version of PSO, each initial condition is inde-
pendently processed by a swarm consisting of n particles.
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The D swarms can then cooperate by means of a migra-
tion process, used to share information of the best solutions
found. The fitness function used to evaluate the quality
of the estimated solutions γ=(γ1, . . . , γM ) is defined as a
relative point-to-point distance between the DTTS and the
dynamics simulated by means of stochastic simulation algo-
rithms. With respect to the PE method presented in [4],
to compute the fitness value of each particle we perform
here G parallel simulations with tau-leaping [1], in order
to tame the error due to stochastic fluctuations. The total
number of fitness values computed at each PSO iteration is
D ×G× n. Since each fitness evaluation can be performed
independently from the others, we implemented our method
on a parallel architecture: the GPGPU computing (specif-
ically, Nvidia’s CUDA) which exploits the computational
power of modern multi-core GPUs. In our CUDA imple-
mentation, for each initial condition we create G blocks com-
posed of n threads (corresponding to G parallel tau-leaping
simulations for each particle), obtaining a D ×G grid.

3. RESULTS
We tested our method with two reference models: the

well known Michaelis-Menten (MM) enzymatic kinetics and
a prokaryotic auto-regulatory gene network (PGN) [5]. For
both systems, the DTTS we considered correspond to D=4
initial conditions, E=3 experiment repetitions and C=10
sampling time instants. To determine how much the esti-
mated values of stochastic constants of a particle γ are close
to the vector γc of real parameters, we consider the mean
error εγ [5] and the average mean error ⟨εγ⟩, calculated by
averaging the values of εγ obtained at the last iteration of
each PE run [4]. We performed several tests on the MM
model to determine the best setting of our PE method. The
first test was focused on the importance of swarm size n on
the estimation performances. Our results show that a num-
ber of particles n<32 produces the worst estimates, while
for n>64 the improvement is so slight that it does not jus-
tify the computational effort. In the second test we analyzed
the influence of the number G of parallel tau-leaping simu-
lations, used to evaluate the fitness value of a particle. By
increasing G, the method yields a lower ⟨εγ⟩, but for G>40
the quality does not increase anymore, whilst requiring a
greater amount of CUDA resources. We have also tested
different settings for the migration interval ITmig, trying
values ranging from 0 (no migration) up to 40, and observ-
ing that values between 5 and 25 yield the best results.
According to these analyses we determined the follow-

ing best setting: population size n=64, inertia w linearly
decrementing from 0.9 to 0.4, cognitive and social factor
Csoc=Ccog=1.9, ITmig=20, dynamic topology of migration,
“damping”boundary conditions, maximum velocity of parti-
cles limited to 1/3 of the search space dimensions, G=10 par-
allel simulations. This setting was used to carry out the PE
of the PGN model. Since in general the values of stochastic
constants are not known, the error εγ cannot be computed
to assess the quality of the estimated solutions. Therefore,
for the PGN model we rely on the fitness: we choose the
particles (i.e., the parameter vectors) characterized by the
best fitness value and compare a simulation of their dynam-
ics with the available DTTS. Considering the availability of
DTTS for either all molecular species occurring in the sys-
tem, or only a subset of them (the latter case being a com-
mon feature of laboratory experiments), our results clearly

show that the best solution found by our PE method allows
to generate a dynamics that accurately matches the DTTS
in all D conditions (see an example in Figure 1).

Concerning the performances, our implementation outper-
forms a corresponding CPU execution: a single PSO itera-
tion (equivalent to 2560 simulations and particle updates)
takes 6 sec on a GPU Tesla C1060, while on a CPU Intel
Core Duo 6700 (2.66 GHz) it takes 392 sec.
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Figure 1: Dynamics of PGN species (lines) using
the stochastic constants found by the best solution
of multi-swarm PSO, compared to DTTS (dots).

4. CONCLUSION
We have proposed an efficient method for PE in stochas-

tic biological systems, accelerated by means of tau-leaping
algorithm and GPGPU computing. Our method can handle
experimental discrete-time target series coming from multi-
ple experiments executed under different initial conditions,
and it does not require uniform sampling rates nor measure-
ment of every molecular species. As a result, it estimates
a common parameter vector, valid for all conditions, by ex-
ploiting a multi-swarm version of PSO. The fitness function
averages the relative point-to-point distances between the
experimental samples and a set of simulated dynamics, tak-
ing into account the effects of biological noise.

The method has been conceived around the GPGPU ar-
chitecture to exploit the intrinsic parallelism of PSO, achiev-
ing a significant boost with respect to a strictly sequential
implementation. This GPU-based method indeed represents
a novel methodology in the context of PE, and a useful tool
for the computational analysis of biological systems.
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