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ABSTRACT

Finding interactions among genes is one of the main prob-
lems in molecular biology. In this paper, we use a novel
approach to model the gene’s regulations, or Gene Regu-
latory Networks (GRNs). We use a Recursive Neural Net-
work (RNN) to model the networks, and then use Population
Based Incremental Learning (PBIL) enhanced with K-means
to find the optimum parameters of the Neural Network. We
present experiments with real data, we compare our algo-
rithm with others approaches by calculating different statis-
tics for the solutions.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Biology and genetics;
G.1.6 [Optimization]: Global Optimization
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1. INTRODUCTION
Inferring the interactions between genes is an important

problem in Molecular Biology, these relations contain infor-
mation about genetic diseases and processes inside organ-
isms

Among the different models for Gene Regulatory Net-
works (GRNs), we can find Bayesian Networks[4] and dy-
namic systems. The latter use a set of ODEs to model the
networks; this set, when solved, express the data from the
real experiments. The right set of ODEs’s parameters will
reconstruct the network’s time data. Inference using ODEs,
however, is slow, since for each candidate solution, it calcu-
lates the solution of N differential equations, where N is the
number of genes [3].

In this paper, we use a Recursive Neural Network (RNN)[6]
to model the interdependencies of the GRNs and optimize
the RNN using Population Based Incremental Learning (PBIL).
Since it models all the solutions as unimodal distributions,
classic PBIL, is a bad fit for problems with local minima. We
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extend the algorithm using a clustered PBIL. The choice of
the number of clusters, however, is different for each prob-
lem. In this work we analyze these properties for a real
network using a K-means clustering.

2. MODELING GRN USING RNN
Since the inputs for a classic Neural Network are taken iid

from the training set, NNs are not suited to model temporal
data; RNN, however, is a closed loop NN useful to model
dynamic systems.

Vohradský [6] modeled the gene’s regulations with this ar-
chitecture, assuming that each of the neurons in the output
unit is a gene.

The equation of an RNN resembles a standard NN, but
with additional variables for the feedback loop. The dis-
cretized version is:
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where, f() is a nonlinear function that acts as a classification
function, we use the sigmoid function f(z) = 1/(1 + e−z).
The values wij are the connecting weights of the network,
which represent the connections between gene i and j. The
variable ej represents the expression level for the gene, which
is the data we receive from the microarray experiments. And
finally, β is the bias parameter of the network.

2.1 Training of RNN models
Xu et al [7] used Particle Swarm Optimization (PSO) to

optimize the RNN weights, and it has been shown that evo-
lutionary techniques perform on par with traditional gra-
dient descent and other classic optimization algorithms in
NN.

In this paper, we use PBIL to find the weights of the
RNN. PBIL, unlike PSO, can find a global minimum in a
non-convex set and it only has to update an inferred prob-
ability distribution. We improve PBIL using a mixture of
distributions, instead of a unimodal distribution to model
the candidates. There are many choices to infer a mixture
of distributions form sampled data, we use K-means.
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Table 1: Specificity, Sensitivity and F-Score for different models of the E.coli SOS Network

#Regs #TP #FP #TN #FN Sensitivity Specificity F-Score Time[h]
Bayesian Network[4] 6 4 2 18 3 0.571 0.900 0.615 0.01

S-Tree[1] 7 6 1 19 1 0.857 0.950 0.857 35
LTV[2] 13 7 6 14 0 1.000 0.700 0.7 0.1
DE[3] 8 5 3 17 2 0.714 0.850 0.667 0.3

ClusteredIPBL 11 7 4 13 3 0.7 0.765 0.67 0.05

3. PBIL AND CLUSTERING
Population Based Incremental Learning (PBIL)[5] finds

the best candidates of a function by inferring a probability
distribution from each of the dimensions of the best candi-
date’s population. This creates N distributions, where N
is the dimension of the problem. The algorithm uses a fit-
ness function to score each of the candidates, and then sets
a threshold that selects only the best candidates to infer a
new distribution.

This approach, however, has setbacks, like assuming that
each dimension is iid sampled, which is a naive approach.
Also, since the search space is non-convex, using standard
Gaussians distributions to model the problem is unrepresen-
tative for multimodal settings. Using a mixture of Gaussians
as a surrogate for a multimodial distribution has presented
promising results for settings with local minima.

It can be proved that K-means can be used as relaxation
of a mixture of Gaussian distributions with symmetric vari-
ances. We model the candidates as a mixture of K Gaussian
distributions, to have at a set of N×K clusters modeling the
best candidates of the problem for each of theN dimensions.

4. ALGORITHM TO INFER THE GRN
PBIL, for Regulatory Network inference, uses the follow-

ing fitness function:

F (Candi) =
1

TN

T∑

t=0

GeneNo∑

i=0

(ei(t)− Candi(t))
2 (2)

where T is the time samples we used for each time series
and GeneNo is the number of genes in the net. The values
ei(t) and Candi(t) are the values for the experimental data
and the RNN evaluation of the candidate wij , respectively.

The algorithm first creates a set of random entries, using
the fitness function it selects the best scores, and calculates
a new probability distribution using the K-means approach.

5. EXPERIMENTS & RESULTS
We tested the algorithm with the SOS network for E.coli

and counted the total number of true positives and true
negatives to calculate variables like Recall, Precision and F-
Score. To test the effect of the variables in the PBIL, we
changed the population size, as well as the cluster number
in the K-means. We did 2000 iterations per run, with each
iteration lasting at most 5 minutes for the architectures with
500 candidates. To compare our results, we compiled results
from other papers working with the SOS Net. Table 1 shows
this compilation.

Our approach is in line with the best results when com-
paring the F-Score, only the S-Tree approach and the lin-
ear time-variant model has better results. Both algorithms,
however, take longer to do the inference.

Furthermore, we found the true positives for at least 80%
of the trials with a low standard deviation. Only one other
approach was capable of finding the seven correct regula-
tions[2], and its inference time was higher that ours.

6. CONCLUSIONS
We have presented the use of a Recursive Neural Network

to model the Gene Regulations in an artificial and a real
system. We used a clustered version of PBIL to find the
optimal weights in the RNN. We compared the real SOS
Network inference with similar works in the area, and found
that the algorithms behaves on par with some of the best
implementations.

However, the hard clustered approach is a naive attempt
to model the dynamics of the population. We saw how, for
different population sizes, the optimal number of clusters
was different. We will implement other approaches for dy-
namic clustering like the novel Dirichlet Processes, which
generate the necessary number of clusters for each popula-
tion.
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