
Synchronous Cellular Automata Scheduler with
Construction Heuristic to Static Task Scheduling in

Multiprocessors

Murillo G. Carneiro
Universidade Federal de Uberlândia
Avenida João Naves de Ávila, 2121
Uberlândia - MG, Brazil 38400-902
carneiro.murillo@gmail.com

Gina M. B. Oliveira
Universidade Federal de Uberlândia
Avenida João Naves de Ávila, 2121
Uberlândia - MG, Brazil 38400-902

gina@facom.ufu.br

ABSTRACT
Static Task Scheduling Problem (STSP) in multiprocessors
is a NP-Complete problem. HLFET is one of the sim-
plest well-known heuristics designed to deal with it. Meta-
heuristics like genetic algorithms and simulated annealing
had also been applied to this problem. Cellular Automata
(CA) have been recently used to solve STSP. The main fea-
ture of CA-based scheduling is the extraction of knowledge
while scheduling an application and its subsequent reuse in
other instances. An evolutionary algorithm is applied to
search for efficient CA rules in learning phase. Previous
works showed this approach is promising. However some
desirable features have not been successfully exploited yet,
such as: (i) the massive parallelism inherent to CA, (ii)
the usage of an arbitrary number of processors and (iii) the
reuse of evolved rules with competitive results. This paper
presents a new model called SCAS-H (Synchronous Cellular
Automata Scheduler initialized by Heuristics). Its major in-
novation is the usage of a heuristic based on HLFET to start
up the CA rule evolution. Program graphs found in litera-
ture and others randomly generated were used in the experi-
ments. Results show that SCAS-H overcame related models
both in scheduling results as computational performance and
it presented competitive results with meta-heuristics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods, Scheduling ; I.2.6
[Artificial Intelligence]: Learning—knowledge acquisition

General Terms
Algorithms, Experimentation

Keywords
SCAS-H, cellular automata, task scheduling, synchronous
updating, construction heuristics

1. INTRODUCTION
In the context of multiprocessors, scheduling aims to al-

locate a set of computational tasks that compose a parallel

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

application into architecture nodes. In case of the Static
Task Scheduling (STSP) investigated here, all information
about the tasks is known a priori and an optimal solution for
an instance of STSP is such that the precedence constraints
among tasks are satisfied and the makespan is minimized.

Cellular Automata (CA) are discrete dynamical systems
composed by lattice and transition rule. They have the po-
tential to emerge a complex global behavior from simple
interactions between local units. Previous works [1, 2, 4, 5]
pointed to the promising use of Cellular Automata (CA)
rules to solve STSP. In such works, a genetic algorithm
(GA) is employed in a learning phase to found adequate
rules to schedule a parallel program. A promising skill of
such previous approaches is their ability to extract knowl-
edge of the scheduling process of a parallel application and
reuse it in others instances. In fact, in traditional heuristics
and meta-heuristics approaches to STSP, a computational
effort is used to solve an instance of the problem and when
a new instance is presented to the algorithm, the process
need to start again from scratch. The major motivation to
study cellular automata scheduling approaches is the possi-
bility to discover transition rules starting from given parallel
applications which are able to scheduling them and besides
they have a generalization ability to be used to schedule new
instances of STSP.

In addition, the possibility of implementation on parallel
hardware together with the simplicity of its basic compo-
nents are among the most notable features of CA [3]. These
characteristics turn them adequate to be implemented in
massive parallel architectures like FPGA speeding up the
throughput. However, almost all previous models presented
in literature are not able to explore the inherent parallelism
into CA because they use an asynchronous sequential up-
dating of cell states (only one cell can update its state at a
time) [2]. Recently, a scheduler model called Synchronous
Cellular Automata Scheduler (SCAS) [1] has presented good
scheduling results while employing a synchronous updating
of cells. However it was identified limitations in such model
and previous studies specially when a number of processors
above two is used in the system architecture. In our inves-
tigations we discover that one reason of such weakness is
due to the guideline that CA transition rules evolved in the
learning phase must be able to perform the schedule start-
ing from any initial configuration (IC) of the lattice. This
lack of sensibility required in the previous models turns the
evolutionary search complex and time-consuming.

The main objective of this work is to introduce and eval-

1433



uate a new model called Synchronous Cellular Automata-
Based initialized by Heuristic (SCAS-H). The major innova-
tion of the new model is the usage of a construction heuris-
tics to start up the evolution of lattice cells. As a conse-
quence the evolved rules need to be able to perform the
schedule starting only from an specific initial configuration
of the lattice, given by a deterministic construction heuris-
tics. Here, a modified version of HLFET (a well-know heuris-
tic for STSP) named DHLFET (that is HLFET without its
random choices) was used as the construction heuristics to
establish the initial allocation of tasks. As its predecessor
SCAS [1], the resultant method uses a linear and simple
neighborhood and it is suitable to be implemented in paral-
lel hardware since it employs a synchronous cells updating.

2. METHODOLOGY
The major modification in SCAS-H refers to the way the

CA lattice is initialized to perform the schedule, which re-
flects in a change in what kind of transition rule ability GA
is searching for. In previous works [1, 2, 4, 5], the scheduler
model focuses on the capacity of a transition rule to evolve
any random initial lattice to a configuration that represents
the optimal allocation allocation of tasks. Therefore, dur-
ing the learning phase, each rule is evaluated according to
its performance in scheduling a set of initial lattices (SLatt).
Besides, in the normal phase, the quality of any evolved rule
is measured using it to schedule a new set of random lat-
tices. However, the search for this independence to initial
lattice makes the rules search complex and computationally
intensive, embarrassing GA convergence. Furthermore, we
believe that the more important generalization is not related
to the initial lattice used to start the scheduling process, in-
stead it is related to the capacity of a rule to schedule others
instances in reuse mode.

The main steps in evaluation used in SCAS-H are: (i) ap-
plying a deterministic construction heuristic chosen a priori
to obtain an initial allocation which defines the IC of the
lattice; (ii) temporal evolution of the lattice using each rule
transition r in P for T time steps; (iii) the final lattices in
time T define the final allocations of tasks which are or-
dered in each processor using a scheduling policy obtaining
makespan associated to each rule r; (iv) rule fitness is equal
to makespan obtained using it. The best rule in P presents
the smallest makespan. Algorithm 1 defines the major steps
of SCAS-H in learning mode being that: P is the size of
population, Pcross is the number of generated individuals in
crossover, Pmut is mutation rate, selection is given by sim-
ple tournament Tour and ICH is the IC of lattice obtained
by DHLFET. In reuse mode, the CA is equipped with a set
of rules in repository and SCAS-H receives a new program
graph to schedule. DHLFET is used in reuse mode in step (i)
and steps (ii) to (iv) are executed for each rule in repository,
returning the scheduling with the smallest makespan.

3. EXPERIMENTS AND DISCUSSION
Previous works have pointed to the difficult to employ

more than two processors in CA-based scheduling. Here the
scalability of the new model in respect to the number of pro-
cessors was investigated. Program graphs found in literature
and others randomly generated were used to test the perfor-
mance of SCAS-H in architecture systems with 2, 3 and 4
processors. Experiments were performed for two modes of

Algorithm 1 SCAS-H Learning Mode

1: Randomly sorting a population of P rules
2: Generate initial configuration of lattice with DHLFET

(ICH) //step(i)
3: Compute the fitness of the P rules //step(ii) to (iv)
4: while (!condition finish) do
5: Selecting pairs of rules in P using simple tournament

(Tour = 2) to generate Pcross rules
6: Applying the single-point crossover in pairs selected
7: Submit Pcross rules to mutation Pmut

8: Compute the fitness of the Pcross rules //step(ii) to (iv)
9: Sorting P + Pcross based on fitness and choose the P

best rules for next generation
10: end while
11: P is stored in rules database

the new model. Results showed that SCAS-H overcame re-
lated models both in learning and reuse phases and specially
when the number of processor is increasing. The computa-
tion cost was also reduced when compared to these models
because SCAS-H not use a set of IC but only one initial
configuration given by DHLFET. Besides, SCAS-H results
were compared with those obtained using DHLFET (which
can be thought as the kick-off for SCAS-H) and some meta-
heuristics: two different genetic algorithms approaches and
a simulated annealing-based algorithm. Considering learn-
ing phase, SCAS-H returned results as good as genetic ap-
proaches which performed better than DHLFET and sim-
ulated annealing. Considering reuse of rules, SCAS-H was
competitive with the best results found by meta-heuristics,
while returning a low computational cost (SCAS-H is about
150 times faster than genetic algorithms runs). Future works
include the investigation of new structures for a more effec-
tive reuse in CA-based scheduling.

4. ACKNOWLEDGMENTS
M.G.C. thanks to CNPq for financial support and G.M.B.O.

is grateful to CNPq and FAPEMIG.

5. REFERENCES
[1] M. G. Carneiro and G. M. B. Oliveira. Cellular

automata-based model with synchronous updating for
task static scheduling. In Proceedings of 17th
International Workshop on Cellular Automata and
Discrete Complex System, pages 263–272, 2011.

[2] F. Seredynski and A. Y. Zomaya. Sequential and
parallel cellular automata-based scheduling algorithms.
IEEE Transactions on Parallel and Distributed
Systems, 13(10):1009–1022, 2002.

[3] M. Sipper. Evolution of Parallel Cellular Machines,
The Cellular Programming Approach. Springer, 1997.

[4] A. Swiecicka, F. Seredynski, and A. Y. Zomaya.
Multiprocessor scheduling and rescheduling with use of
cellular automata and artificial immune system
support. IEEE Transactions on Parallel and Distributed
Systems, 17(3):253–262, 2006.

[5] P. M. Vidica and G. M. B. Oliveira. Cellular
automata-based scheduling: A new approach to
improve generalization ability of evolved rules.
Brazilian Symposium on Artificial Neural Networks
(SBRN’06), pages 18–23, 2006.

1434




