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ABSTRACT
In this paper, the performance of two classical algorithms
(simulated annealing and a discrete artificial bee colony) are
compared on the redistricting problem, using a real example
in Mexico and highlighting the superiority of the latter.

Categories and Subject Descriptors
G.1.6 [Numerical analysis]: Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Heuristic methods
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1. INTRODUCTION
The design of electoral zones arises when small geographi-

cal units (GU’s) must be grouped into a predetermined num-
ber of districts [1], in such a way that one or several objec-
tive function(s) is (are) optimized while some restrictions,
imposed by law, must be satisfied to guarantee democracy.
This problem was proved to be NP-Hard [2]. Population
equality, compactness and contiguity are typically regarded
as essential in any democratic electoral process.

This study particularly focuses on a multiple objective
electoral districting problem in Mexico and introduces a dis-
crete artificial bee colony (DABC) algorithm to solve it. An
adaptation of the initial algorithm, inspired by path relink-
ing techniques, is proposed here for handling the discrete
variables. The multi-objective feature of the problem is ad-
dressed through the common strategy based on a weighted
linear aggregation function, such as that adopted by the
Mexican Federal Electoral Institute (IFE). The resulting al-
gorithm performance levels are compared with those of a
tool used by the IFE, i.e. a classical Simulated Annealing
(SA) algorithm.

2. DABC FOR REDISTRICTING PROBLEMS
Problem statement. As mentioned previously, popula-
tion equality and compactness are important principles that
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should be promoted in the electoral district design. The
corresponding objective functions are:
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Where P is a districting plan. PN , PT and Ps are population-
related parameters (see [1] for a complete description). d
is the maximum percentage of population deviation and
S = {1, . . . , n} is the set of electoral districts that must be
generated in the entity. PCs and ACs are the perimeter and
the area of the considered district s, respectively. Finally,
the fitness function to be minimized is defined according
to an aggregation strategy: λ1C1(P ) + λ2C2(P ), where
λ1, λ2 ∈ [0, 1] are weighting factors. In addition, the min-
imization is subjected to constraints that guarantee: (R1)
each district is fully connected, (R2) the number of districts
is equal to n and (R3) each GU is assigned to exactly one
district.

The proposed discrete algorithm. Several proposals for
extending the classical ABC working mode [3] to discrete
search spaces exist in the specialized literature (see for in-
stance [4]). In this work, an original modification based on
the path relinking strategy is proposed to handle discrete
decision variables.

The initial population of M food sources is generated ran-
domly in such a way that each solution satisfies R1-R3.
New solutions are created by employed bees using a path-
relinking based approach: two solutions P1 and P2 are com-
bined by randomly selecting a GU x. Thus, there is a zone Zi

in P1 and a zone Zj in P2 such that x ∈ Zi and x ∈ Zj . Let
us consider the following sets: K1 = {k : xki = 0, xkj = 1}
and K2 = {k : xki = 1, xkj = 0}. Then, a percentage
r (r ∼ U (0, 1)) of GU’s in K1 are inserted into Zi. The
same percentage of GU’s in K2 are extracted from Zi and
inserted into any randomly chosen zone contiguous to Zi.
These moves can produce infeasible solutions, involving a
repair process to enforce properties R1-R3.

Then, each onlooker bee selects a food source depending
on its normalized fitness and a new food source is produced
through the GU’s insertion-extraction process explained above.
The created food source replaces the former one through a
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Figure 1: Pareto fronts for the two tested algorithms

greedy process. Finally, a similar process is implemented by
the scouts to generate a new solution by combining a food
source to be abandoned (after a defined number of cycles
without improvement of this solution) and a solution chosen
according to its normalized fitness. The new food source is
accepted regardless its quality. The pseudocode of DABC is
given in algorithm 1.

Algorithm 1: DABC Algorithm

1 Begin.
2 while Requirements are not met do
3 Initialization.
4 Produce new solutions through employed bees.
5 Evaluate new solutions and select the best ones.
6 Produce new solutions through onlooker bees.
7 Evaluate new solutions and select the best ones.
8 Abandonned solutions are replaced by scout bees.
9 Memorize the best food source found so far.

10 end

3. COMPUTATIONAL EXPERIMENTS
Methodology. The SA and DABC algorithms were tested
on the Mexican state of Mexico (13,096,686 inhabitants, 836
GU’s and 40 districts to be created). In agreement with the
Federal requirements, the value d = 15% (see equation 1)
was used. The treatment of a single numerical instance may
seem insufficient to provide robust conclusions but getting
and processing government data represent harsh tasks, pre-
venting us from solving more instances.

The set of weighting factors is defined as follows: λ1=
{0.9, 0.8, 0.7,. . . , 0.1, 0.01}, while λ2 = 1 − λ1. 10 in-
dependent executions of each algorithm were performed for
each pair (λ1, λ2). The resulting solutions were subsequently
filtered through a Pareto sorting procedure to identify the
final non-dominated set. The algorithms working parame-
ters were tuned in such a way that “convergence” (i.e., no-
improvement) is achieved.

Results and discussion. The approximated Pareto fronts
obtained with SA and DABC are illustrated in figure 1. Four
performance metrics, typically used in multi-objective opti-
mization (see [5] for more details), confirm the superiority

of DABC. The global front, obtained by combining both
techniques’solutions has 14 solutions, 12 from DABC and
2 from SA. The hypervolume metric is computed using as
a reference the point with coordinates equal to the maxi-
mum values for each objective in any of the two obtained
non-dominated sets. The results are 68.243 and 57.805 for
DABC and SA, respectively. Regarding the set coverage
metric, C(DABC,SA) = 83.33% (83.33% of the efficient
solutions produced by SA are dominated by at least one
efficient DABC solution) while C(SA,DABC) = 0%. The
Efficient Set Spacing metric is equal to 0.6518 and 0.1387 for
SA and DABC, respectively, proving that the dispersion of
the Pareto front achieved by DABC is thus much better than
that of SA. Note, however, that DABC’s non-dominated so-
lutions are grouped together around the“knee”of the Pareto
front but no solutions are found in the extreme regions, while
the contrary is true for SA. Regarding the CPU time due to
100 executions, it was equal to 250 minutes for SA and 125
minutes for DABC.

Thus, in terms of convergence to an ideal front and dis-
tribution of the solutions over the Pareto front, DABC un-
doubtedly outperforms SA.

4. CONCLUSIONS
An original adaptation of the Artificial Bee Colony algo-

rithm is proposed in the framework of combinatorial multi-
objective optimization: the redistricting problem. This algo-
rithm, as well as a classical Simulated Annealing procedure,
were tested on a typical instance drawn from the Mexican
electoral institute database. Their respective performance
was evaluated in terms of convergence and dispersion of
the resulting approximation of the Pareto front: the novel
DABC algorithm produces better quality efficient solutions
than SA, within lower running times. Two perspectives for
future work might be treating other instances, in order to
obtain robust conclusions on DABC performance levels, and
exploring the reasons why DABC cannot identify efficient
solutions in the extreme regions.
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