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ABSTRACT

High-dimensional data often threatens the performance of classi-

fication algorithms. We propose a two-step approach for dealing

with high-dimensional data. In the first step, features are arranged

into bins, where each bin corresponds to a much smaller sub-space

of features. In the second step, classifiers are independently applied

to the set of features within each sub-space, and their results are

then aggregated. We consider slicing a space Rd into smaller sub-

spaces as a multi-objective search problem, which can be solved

by evolutionary algorithms. We performed a systematic evaluation

using three classification algorithms on high-dimensional data.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information Search

and Retrieval
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Reduction

1. INTRODUCTION
The typical input of a classification algorithm is a set of in-

stances, each one being composed of d features in addition to a

target variable. Therefore, instances are essentially interpreted as

points in a Rd feature space, and we say that the data is high-

dimensional when d is beyond the hundreds. In such cases, the

size of Rd leads to complications that rapidly increase learning

times and decrease learning accuracy. Approaches to this prob-

lem include: (i) finding a representative subset of all features, or

(ii) mapping of the original high-dimensional data onto a lower-

dimensional space. Ideally, these approaches must preserve as much

information from the original data as possible. In practice, how-

ever, information is lost as dimensionality is reduced.

In this paper we propose a novel two-step approach. In the first

step (Slice step), the Rd space is sliced into multiple sub-spaces

{Rα
1 , R

β
2
, . . . , Rζ

n}, where each sub-space Rm
i is much smaller

than the original space Rd. Then, in the second step (Aggregate

step), classifiers are independently applied to each sub-space Rm
i ,

and the corresponding results are finally aggregated. We hypothe-

size that effective aggregation needs each sub-space Rm
i to be ac-

curate with regard to Rd. Thus, we consider slicing Rd as a search

problem, which is solved using evolutionary algorithms.
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2. SLICE AND AGGREGATE

2.1 Slicing Approaches
Slicing a feature space Rd can be viewed as a search problem, in

which possible solutions are given as a combination of sub-spaces

{Rm
1 , Rm

2 , . . . , Rm
n }, such that features composing each sub-space

Rm
i are selected in a way that optimizes a established criterion. We

consider the application of evolutionary algorithms for searching

optimal solutions. Next we precisely define an individual.

Definition 1: An individual is a possible combination of sub-spaces

(i.e., a candidate solution), and is encoded as a sequence of d in-

tegers [v1, v2, . . . , vd], where each vi ranges from 1 to n and indi-

cates the sub-space for which the ith feature is associated with.

A fitness function is associated with each individual in order to

make them directly comparable, so that the population can evolve

towards optimal solutions. The ideal criterion, for the sake of di-

mensionality reduction, is to find sub-spaces composed of features

that jointly have the largest dependency on the target variable c [1].

Maximizing the dependency on c can be approximated by maxi-

mizing relevance while minimizing redundancy [3].

Definition 2: The relevance of a sub-space Rm
i , denoted as F (Rm

i ),
is given by the mean value of all mutual information values between

features xa ∈ Rm
i and the variable c, as shown in Equation 1. The

redundancy of a sub-space Rm
i , denoted as S(Rm

i ), is given by

the mean value of all mutual information values between pairs of

features {xa, xb} ∈ Rm
i , as shown in Equation 2.

F (Rm
i ) =

1

m
×

∑

xa∈Rm

i

I(xa, c) (1)

S(Rm
i ) =

1

m2
×

∑

{xa,xb}∈Rm

i

I(xa, xb) (2)

Definition 3: An optimal solution is a combination of sub-spaces

{Rm
1 , Rm

2 , . . . , Rm
n }, satisfying Equation 3.

maximize φ(Rm
i ) ∀Rm

i : φ =
F (Rm

i )

S(Rm
i )

(3)

Searching for optimal solutions, therefore, is a multi-objective

search problem, in which the value of φ must be maximized for

each of the n sub-spaces that compose an optimal solution.

Averaging Objectives (AO). A simple approach for solving

a multi-objective search problem is to combine all n objectives by

maximizing the average of all φ values.

Pareto-Optimal Slicing (POS). A more general approach is

to exploit Pareto-dominance tests, in order to find solutions that
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are not dominated by others. These non-dominated solutions lie in

the so-called Pareto frontier, and thus, the evolutionary algorithm

evolves the population towards producing individuals that are lo-

cated closer to the Pareto frontier [5].

2.2 Aggregation Approaches
Once the optimal combination of sub-spaces {Rm

1 , Rm
2 , . . . , Rm

n }
is found, a classifier is applied to each sub-space independently. In

this case, the classifier takes as input the training-set D and the test-

set T , but instead of considering all d features, only features in Rm
i

are considered. Then, the classifier outputs a probability p̂i(c|t)
∀t ∈ T , which shows the likelihood of t being associated with

the target variable c. The same procedure is performed for all n

sub-spaces, resulting in n different probabilities associated with the

same instance t: [p̂1(c|t), p̂2(c|t), . . . , p̂n(c|t)], and a final prob-

ability p̂(c|t) is obtained by aggregating these probabilities. Next

we consider two aggregation approaches.

Averaging Probabilities (AP). This approach simply returns,

for each instance t ∈ T , the average of the n probabilities.

Pareto-Efficient Aggregation (PEA). This approach inter-

prets each probability p̂i(c|t) as a coordinate in a n-dimensional

scatter-gram, and each instance t ∈ T is associated to a point in

this scatter gram. Higher probabilities p̂(c|t) are assigned to in-

stances that are associated with non-dominated points. Such in-

stances lie on the Pareto frontier of the scatter gram. Stripping off

instances from successive Pareto frontiers yields a partial ordering

of instances, defined as a Pareto-optimal rank, that is, instances in

t are ranked as {t1, t2, . . . , tn}, such that there is no instance ti
that dominates instance tj , given that i > j. Finally, a probability

p̂(c|t) is assigned to each instance t ∈ T , according to Equation 4,

where r(t) gives the position of instance t in the rank, which is

given according to the corresponding dominance count of t.

p̂(c|t) =
|T | − r(t)

|T |
(4)

3. EXPERIMENTAL EVALUATION
We employ measures such as precision/recall curves, which are

summarized by means of their area (i.e., AUC). We use several

baselines, including PCA [2], mRMR [3], and LDA [4]. Three dif-

ferent classifiers were used in order to evaluated our approaches:

associative classifiers (AC), SVMs, and Naive Bayes (NB). We

conducted five-fold cross validation, and significance tests were

performed (p < 0.05) using the paired t-test. If a result is statisti-

cally different from the result obtained by best baseline, we show it

in bold. In addition, the best overall results are marked with a †.

Our application scenario concerns the retrieval of images, based

on their content. Each image is represented as a vector of descrip-

tors, and our task is to rank higher images that are most similar to

a given query-image. Table 1 shows results obtained by each eval-

uated classifier. Four scenarios are considered: (i) the original data

is given to the classifier (i.e., no dimensionality reduction is per-

formed), or dimensionality is first reduced using either (ii) mRMR,

(iii) PCA, or (iv) LDA. Table 1 shows the results for each scenario.

Table 2 shows AUC values obtained for different Slice-Aggregate

configurations. When sub-spaces are created using AO or POS ap-

proaches, the results achieved by AP and PEA approaches are much

better than the results obtained by considering sub-spaces in isola-

tion. Further, as shown in Table 2, effectiveness increases with the

number of sub-spaces involved in the process, and we can see that

multi-objective search POS approach is superior than the AO ap-

Table 1: Average AUC values for the baselines.

Original mRMR PCA LDA

AC 0.413 0.402 0.389 0.391

SVM 0.404 0.398 0.382 0.386

NB 0.416 0.400 0.393 0.397

Table 2: Average AUC values for different classifiers. Baseline

for each classifier is shown between parentheses.

Avg. Objectives (AO) Pareto Opt. Slicing (POS)

n isolated AP PEA isolated AP PEA

2 0.399 0.408 0.411 0.404 0.414 0.418†
3 0.398 0.412 0.418 0.401 0.417 0.422†

AC 4 0.396 0.418 0.421 0.399 0.421 0.427†
(0.402) 6 0.394 0.422 0.424 0.398 0.424 0.430†

2 0.395 0.400 0.403 0.399 0.405 0.410

3 0.399 0.406 0.408 0.397 0.407 0.415

SVM 4 0.395 0.412 0.416 0.397 0.416 0.420†
(0.398) 6 0.392 0.412 0.414 0.396 0.416 0.424†

2 0.402 0.407 0.411 0.405 0.414 0.420†
3 0.401 0.414 0.417 0.402 0.419 0.425†

NB 4 0.399 0.420 0.423 0.400 0.423 0.428†
(0.400) 6 0.396 0.422 0.426 0.398 0.428 0.432†

proach. The same trend is observed when analyzing aggregation

approaches. Specifically, PEA is superior when compared with AP.

4. CONCLUSIONS
We modeled the dimensionality reduction task as a search prob-

lem which can be efficiently solved using evolutionary algorithms.

Once the optimal solution is found, each sub-space is given as input

to a classifier, and the corresponding outputs are finally aggregated

into a final output. We propose slicing and aggregation approaches,

and in order to evaluate our approaches, we use high-dimensional

data obtained from content-based image retrieval databases.
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