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1. INTRODUCTION
In this paper, we show how techniques from multi-criteria

optimization (MCO) can be efficiently integrated into the
framework of the sequential parameter optimization (SPO [1])
Toolbox (SPOT). We test for competitiveness against state-
of-the-art approaches and determine how our approach can
be employed to improve the robustness of a tuning process.

In many industrial optimization problems, the duration
of a process feedback plays a major role in the optimization
process. Large evaluation times restrict optimization pro-
cesses to only a very limited number of evaluations. More-
over, almost every industrial optimization task features more
than one quality criterion. Techniques from multi-criteria
optimization were developed during the last decade to solve
such tasks. The necessity to combine MCO techniques and
optimization methods that require a very small number of
function evaluations only, should be self-evident.

Research in combining MCO and surrogate model opti-
mization is not a new topic. Various research in this topic
has been performed (cf. [8]). In particular, Voutchkov and
Keane [9] introduced a multi-criteria approach for sequen-
tially improving on surrogate models and tested it on simple
multi-criteria functions with very few function evaluations.
Their approach is similar to multi criteria SPOT (MSPOT)
suggested here and uses a subset of the test functions con-
sidered in our study, however, restricted to low dimensional
decision spaces. SPOT has previously been applied to multi
objective optimization itself, not as an MCO algorithm, but
as a tuner for such algorithms.

2. MULTI-CRITERIA OPTIMIZATION
WITH SPOT

Single objective SPOT generates an initial design of sev-
eral points and evaluates it on the objective function. Based
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on these evaluation results, SPOT builds a surrogate model
(e.g., a linear, Kriging, or tree-based model). Two approaches
can be used to exploit that model. (i) The naive approach
samples a large number of points, which are then evaluated
on the surrogate model. The best will be suggested for exact
evaluation. (ii) More sophisticated approaches seek for the
optimum of the surrogate model. This process of building
and exploiting the surrogate model is repeated sequentially
until a termination criterion is fulfilled.

The multi criteria SPOT approach makes use of the same
basic scheme, but builds one surrogate for each objective.
In the naive approach here, points sampled on the surrogate
models are sorted by their non-dominated sorting rank and
(if necessary as a tie breaker) hypervolume contribution. In
the sophisticated approach, NSGA2 [4] or SMS-EMOA [2]
are used to find Pareto optimal points on the surrogates.

3. EXPERIMENTAL SETUP
Three different surrogate models were tested with MSPOT

and SPOT, a Kriging model [6], a Random Forest (RF)
model [3], and a Multivariate Adaptive Regression Splines
(MARS) model [7].1 Using these, we try to answer two re-
search questions:

RQ 1. Is there a competitive advantage of MSPOT over
state-of-the-art MCO algorithms? (Case Study I)

To answer this question, the MSPOT approach is compared
to NSGA2 and SMS-EMOA on test functions ZDT1 to
ZDT3, DTLZ1, and DTLZ2 [10, 5]. ZDT feature 30 de-
cision variables, DTLZ1 7 and DTLZ2 12, respectively. The
test problems are restricted to very few function evaluations
to increase problem hardness, i.e., a few ten or few hundred
function evaluations are allowed only. To show development
beyond these limits we decided to run up to a maximum
budget of 1000 function evaluations.

RQ 2. Is MSPOT’s multi-criteria optimization approach
advantageous for parameter optimization? (Case Study II)

Robustness in solving minimization problems can be defined
by using the following goals: (i) to minimize the mean Y
of the objective function values, and (ii) to minimize the
standard deviation sd(Y ) of these. This paper considers the
search for robust solutions as a multi-criteria optimization
problem, handling both mentioned goals as objectives.

1The used R-packages SPOT, randomForest, mco and
earth can be retrieved from the CRAN homepage, i.e.
http://cran.r-project.org
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To test this approach, MSPOT is compared to single cri-
teria SPOT. Both are employed to tune algorithms, namely
an Evolution Strategy (ES) and a Simulated Annealing al-
gorithm (SANN), which again are used to optimize sim-
ple single criteria test functions (Branin, SixHump, Rastri-
gin, Rosenbrock, MexicanHat, and Sphere). Single criteria
SPOT only optimizes the quality of ES or SANN (mini-
mal expected test function value) based on design points ~x
(algorithm parameters). MSPOT optimizes a second objec-
tive, the standard deviation of y, to evaluate the robustness
of the parameter setting ~x. With three different surrogate
models, two algorithms and six test functions, altogether
3 × 2 × 6 = 36 configurations are considered.

4. EXPERIMENTAL RESULTS

4.1 Case Study I: Comparison
SPOT variants with MARS and RF performed signifi-

cantly better than NSGA2 or SMS-EMOA on all test func-
tions with few function evaluations. However, only invok-
ing the MARS model continued to perform well beyond 500
function evaluations. SPOT with Kriging does not perform
well at all. This is probably due to a too high input dimen-
sion for Kriging.

On the DTLZ functions, SMS-EMOA takes the lead on
larger budgets after about 300 function evaluations. The
exact crossing point varies for different settings. On the
other hand, the MSPOT MARS variant performs best on
ZDT even for larger budgets.

4.2 Case Study II: Robustness
To gain insight into problem complexity and structure, we

performed a sweep over the search space first. One thousand
design points were evaluated ten times. For each design
point, mean value and standard deviation were calculated.
As a result, in every experimental setup, sd(Y ) and Y were
correlated. We observed that a parameter setting ~x, which
results in a good mean function value, also shares a low
standard deviation. The correlation between Y and sd(Y )
increases for good parameter settings.

Afterwards, we analyzed which model performs best for
each SPOT variant: MARS, Kriging, or RF. For both vari-
ants, Kriging performed best. Therefore, it was chosen for
the final comparison of the SPOT variants. Standard SPOT
determines a design point, whereas MSPOT generates a set
of (Pareto optimal) design points. Since good design points,
i.e., design points with a low Y value, are expected to have
a low associated standard deviation (cf. results received for
Case Study I), the design point with the best Y value was
chosen from the Pareto front for the final comparison with
SPOT. The MSPOT approach performed equally good or
even slightly better than single criteria SPOT on every test
function.

5. CONCLUSION AND OUTLOOK
A multi-criteria approach to SPO was outlined in this pa-

per. It was shown that MSPOT can be applied successfully
to solve MCO problems with a strictly limited budget.

Conclusion 1. On lowest budgets, stated earlier to be
most promising for MSPOT, it is shown that MSPOT meth-
ods outperform NSGA2 or SMS-EMOA on a majority of test
functions. 2

Moreover, MSPOT was applied to single objective algo-
rithm tuning, by considering the standard deviation of re-
sults as a second objective. Both SPOT and MSPOT were
able to find good parameter settings. Results indicated that
there is a high correlation between standard deviation and
solution quality if the solution is in the vicinity of the opti-
mum of these problems. It could be observed, that MSPOT
can find better solutions than single objective SPOT on this
problem type.

Conclusion 2. Integrating the standard deviation of a
solution as a second optimization criterion into the search
process of SPO can be beneficial. 2

Conclusion 3. If the algorithm improves during the op-
timization, the final Y values have a small standard devia-
tion. If the optimization of the algorithm fails, the standard
deviation remains relatively high. 2

Although conclusion 2 requires further investigation, we are
optimistic that enhanced MSPOT variants might result in
a performance boost.

The proposed MSPOT approach should be further im-
proved: Several existing SPOT features can be integrated
into MSPOT, e.g., an adaptation rule for the number of re-
peats on noisy problems or an optimization on the surrogate
models. Moreover, the choice of the population sizes for the
internal optimization of the surrogates should be indepen-
dent of the used sequential budget. Additionally, MARS can
be used with more sophisticated parameterizations. Using
a more varied selection of test problems might also improve
the relevance of the results found. Finally, a main focus of
further research will be to test MSPOT on real industrial
problems. Such applications are the driving force behind
this research.
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