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ABSTRACT
The hyperclimbing hypothesis is a hypothetical explana-
tion for adaptation in genetic algorithms with uniform
crossover (UGAs). Hyperclimbing is an intuitive, general-
purpose, non-local search heuristic applicable to discrete
product spaces with rugged or stochastic cost functions.
The strength of this heuristic lies in its insusceptibility to
local optima when the cost function is deterministic, and
its tolerance for noise when the cost function is stochas-
tic. Hyperclimbing works by decimating a search space, i.e.
by iteratively fixing the values of small numbers of vari-
ables. The hyperclimbing hypothesis holds that UGAs work
by implementing efficient hyperclimbing. Proof of concept
for this hypothesis comes from the use of a novel analytic
technique involving the exploitation of algorithmic symme-
try. We have also obtained experimental results that show
that a simple tweak inspired by the hyperclimbing hypoth-
esis dramatically improves the performance of a UGA on
large, random instances of MAX-3SAT and the Sherrington
Kirkpatrick Spin Glasses problem.
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1. INTRODUCTION
Over several decades of use in diverse scientific and en-

gineering fields, evolutionary optimization has acquired a
reputation for being a kind of universal acid—a general pur-
pose approach that routinely procures useful solutions to
optimization problems with rugged, dynamic, and stochastic
cost functions over search spaces consisting of strings, vec-
tors, trees, and instances of other kinds of data structures
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[6]. Remarkably, the means by which evolutionary algo-
rithms work is still the subject of much debate. An abiding
mystery of the field is the widely observed utility of genetic
algorithms with uniform crossover [15, 13, 12, 8]. The use of
uniform crossover [1, 15] in genetic algorithms causes genetic
loci to be unlinked, i.e. recombine freely. It is generally ac-
knowledged that the adaptive capacity of genetic algorithms
with this kind of crossover cannot be explained within the
rubric of the building block hypothesis, the reigning explana-
tion for adaptation in genetic algorithms with strong linkage
between loci [7]. Yet, no alternate, scientifically rigorous ex-
planation for adaptation in genetic algorithms with uniform
crossover (UGAs) has been proposed. The hyperclimbing
hypothesis, presented in this paper, addresses this gap. This
hypothesis holds that UGAs perform adaptation by implic-
itly and efficiently implementing a global search heuristic
called hyperclimbing.

2. THE HYPERCLIMBING HEURISTIC
For a sketch of the workings of a hyperclimbing heuris-

tic, consider a search space S = {0, 1}`, and a (possi-
bly stochastic) fitness function that maps points in S to
real values. Let us define the order of a schema parti-
tion [11] to simply be the order of the schemata that com-
prise the partition. Clearly then, schema partitions of lower
order are coarser than schema partitions of higher order.
The effect of a schema partition is defined to be the vari-
ance of the expected fitness of the constituent schemata
under sampling from the uniform distribution over each
schema. So for example, the effect of the schema partition
# ∗ ∗# ∗ ∗ = {0 ∗ ∗0 ∗ ∗, 0 ∗ ∗1 ∗ ∗, 1 ∗ ∗0 ∗ ∗, 1 ∗ ∗1 ∗ ∗} is

1

4

1∑
i=0

1∑
j=0

(F (i ∗ ∗j ∗ ∗)− F (∗ ∗ ∗ ∗ ∗∗))2

where the operator F gives the expected fitness of a schema
under sampling from the uniform distribution. A hyper-
climbing heuristic starts by sampling from the uniform dis-
tribution over the entire search space. It subsequently iden-
tifies a coarse schema partition with a non-zero effect, and
limits future sampling to a schema in this partition with
above average expected fitness. In other words the hyper-
climbing heuristic fixes the defining bits [11] of this schema
in the population. This schema constitutes a new (smaller)
search space to which the hyperclimbing heuristic is recur-
sively applied. Crucially, the act of fixing defining bits in a
population has the potential to “generate” a detectable non-
zero effect in a schema partition that previously had a neg-
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ligible effect. For example, the schema partition ∗# ∗ ∗ ∗#
might have a negligible effect, while the schema partition
1# ∗ 0 ∗# has a detectable non-zero effect.

At each step in its progression, hyperclimbing is sensi-
tive, not to the fitness value of any individual point, but
to the sampling means of relatively coarse schemata. This
heuristic is, therefore, natively able to tackle optimization
problems with stochastic cost functions. Considering the
intuitive simplicity of hyperclimbing, this heuristic has al-
most certainly been toyed with by other researchers in the
general field of discrete global optimization. In all likelihood
it was set aside each time because of the seemingly high cost
of implementation for all but the smallest of search spaces
or the coarsest of schema partitions. Given a search space
comprised by ` binary variables, there are

(
`
o

)
schema par-

titions of order o. For any fixed value of o,
(
`
o

)
∈ Ω(`o)

[5]. The exciting finding presented in the full version of this
paper [4] and in a recent dissertation [3] is that UGAs can
implement hyperclimbing cheaply for large values of `, and
values of o that are small, but greater than one.

3. RAMIFICATIONS
If the hyperclimbing hypothesis is sound, then the UGA

is in good company. Hyperclimbing belongs to a class of
heuristics that perform global decimation. Global decima-
tion, it turns out, is the state of the art approach to solv-
ing large, hard instances of SAT [9]. Conventional global
decimation strategies—e.g. Survey Propagation [10], Belief
Propagation, Warning Propagation [2]—use message pass-
ing algorithms to obtain statistical information about the
space being searched. This information is then used to fix
the values of one, or a small number, of search space at-
tributes, effectively reducing the size of the search space.
The decimation strategy is then recursively applied to the
smaller search space. Survey Propagation, perhaps the best
known global decimation strategy, has been used along with
Walksat [14] to solve instances of SAT with upwards of a
million variables. The hyperclimbing hypothesis holds that
in practice, UGAs also perform adaptation by decimating
the search spaces to which they are applied. Unlike conven-
tional decimation strategies, however, a UGA obtains statis-
tical information about the search space implicitly, by means
other than message passing.

Useful as it may be as an explanation for adaptation in
UGAs, the ultimate value of the hyperclimbing hypothesis
may lie in its generalizability. In [3], the notion of a unit
of inheritance—i.e. a gene—was used to generalize this hy-
pothesis to account for adaptation in simple genetic algo-
rithms with strong linkage between chromosomal loci. It
may be possible for the hyperclimbing hypothesis to be gen-
eralized further to account for adaptation in other kinds of
evolutionary algorithms, In general, such algorithms may
perform adaptation by efficiently identifying and progres-
sively fixing above average “aspects”—units of selection in
evolutionary biology speak—of the chromosomes under evo-
lution. The precise nature of the unit of selection in each
case would need to be determined.
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