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ABSTRACT
We present a genetic algorithm that combines linkage learn-
ing, surrogate models and informed operators. Linkage learn-
ing aims at measuring and exploiting interdependence of
groups of genes. Surrogate models are fitness approxima-
tors to ease the task of calculating true fitness values. In-
formed operators generate, evaluate and rank a set of solu-
tions according to their fitness model to return their most fit
solution. Our described approach provides on-line perturba-
tion based linkage learning and informed linkage exploitation
with novel, specialized operators. Results of experimental
runs on several synthetic fitness function compositions are
provided to demonstrate significant improvement of the final
result quality compared to a conventional GA setup.

Categories and Subject Descriptors
I.2.6 [ARTIFICIAL INTELLIGENCE]: Learning— Pa-
rameter learning ; I.2.8 [ARTIFICIAL INTELLIGENCE]:
Problem Solving, Control Methods, and Search— Heuristic
methods
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1. INTRODUCTION
The type and strength of interactions of problem variables

in the context of global optimization is referred to as link-
age or epistasis, and its character and possible exploitation
has been subject to continuous studies in the area of evo-
lutionary computation (EC) [1]. Another approach to save
evaluation time and enhance the quality of final individu-
als is surrogate-assisted evolution (SAE). Here, surrogate
models (for instance neural networks [3]) work as function
approximators. Informed operators, introduced in [8], work
by applying a surrogate model during offspring creation to
rank an offspring pool. Surrogate models have been previ-
ously employed in linkage learning [5], but only in an off-
line linkage learning fashion without any operators to take
advantage of it. We present a novel combination of these
three approaches, the surrogate-assisted and informed link-
age exploiting genetic algorithm (SAILEGA), which allows
for on-line perturbation based linkage learning and informed
exploitation of it.
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2. LINKAGE LEARNING
One of the major goals of linkage learning is the detec-

tion of the underlying fitness function’s decompositability.
Formally, the fitness function F (x) in Equation 1

F (x) =

kX
i=0

fi(xsi) (1)

can be additively decomposed into k sub-functions, where
the whole chromosome x is split into subchromosomes xsi ,
and where si defines which genes belong to the correspond-
ing subchromosome (with permitted overlapping). Such a
set of genes si is called a linkage group. SAILEGA1 imple-
ments surrogate-assisted and regular versions of LINC-R [9]
and LIMD [4]. To mend linkage estimation errors, we define
existing linkage for two genes only if both surrogate-assisted
LINC-R and LIMD return a successful linkage observation.

3. SURROGATE MODELS
All encountered (unique) individuals are stored in a pop-

ulation storage, which is clustered with X-means [6] every
generation. A SVM for regression using Weka [2] with the
Pearson VII function-based universal kernel (PUK) is cre-
ated for each cluster that is represented by at least one mem-
ber of the current population. Every generation, one mem-
ber of each current cluster is subject to linkage analysis.

4. CROSSOVER OPERATORS
SAILEGA incorporates four novel crossover operators com-

bining the merits of linkage exploitation, SAE and informed
operators with the aforementioned SVMs and a crossover
selector following GADO’s [7] guideline. The informed link-
age group line (ILGL) crossover is based on the double line
crossover [7], it is especially helpful in regions of ellipsoidal
space, the algorithm is given in Figure 1. The informed
guided linkage group (IGLG) crossover is based on the guided
crossover [7]. Similarly as with the ILGL crossover, each
linkage group receives its own ratio variable r to let linked
genes exploit the search space in the same direction. The
informed linkage inter group (ILIG) crossover takes the idea
of the uniform crossover to the level of linkage groups to
keep linked genes from being disrupted while enabling mix-
ing of genetic material. The informed linkage inter-intra
group (ILIIG) crossover performs ILIG’s recombination and
then shuffles the offspring alleles of each linkage group.

1Our GA is built on top of the Watchmaker Framework
0.7.1: http://watchmaker.uncommons.org/
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1: p1, p2← parentSelection(currentPopulation)
2: offspring ← empty offspring
3: allGroups← set of linkage groups ∪ nonlinked group
4: for all group ∈ allGroups do
5: r ← getRandom(−2, 2)
6: for all gene ∈ group do
7: newGene = r ∗ p1gene + (1− r) ∗ p2gene

8: offspringgene ← newGene
9: end for

10: end for

Figure 1: The ILGL crossover algorithm.

Table 1: Fitness Functions
Function Definition

F1: Sphere4

DX
i=1

(xi + 4)2

F2: Sphere−4

DX
i=1

(xi − 4)2

F3: Rosenbrock

DX
i=2

(100(x1 − x2
i )2 + (xi − 1)2)

F4: Schwefel 1.2

DX
i=1

(

iX
j=1

xj)2

F5: Rastrigin 10D +

DX
i=1

(x2
i − 10cos(2πxi))

5. EXPERIMENTAL SETUP
Three configurations C are run 50 times on each composite

function as given in Tables 1 and 2. Cdefault uses surrogate
models, CnoSu only calls the true fitness function for any
evaluations and C1point only applies the 1-point crossover.
Their remaining setup is identical to the GA in [5].

6. EXPERIMENTAL RESULTS
Table 2 shows the mean of the final individuals and the

corresponding standard deviation as well as one-tailed t-test
results to compare Cdefault and CnoSu against C1point. On
all runs, both Cdefault and CnoSu clearly outperform C1point,
showing that their configuration leads the GA to vastly su-
perior solutions. Furthermore, with expensive fitness func-
tions, CnoSu may take much more time than Cdefault due to
CnoSu’s solely calls to the actual fitness function.

Table 2: Final Minimization Results
Config FunctionDim Mean Std. Dev. p-value

Cdefault F 7
1 + F 7

2 0.0027 7.68e-4 1.168e-10
CnoSu F 7

1 + F 7
2 0.002 0.00036 1.15e-10

C1point F 7
1 + F 7

2 1.32 1.17 -
Cdefault F 6

3 + F 8
2 4.06 3.75 2.911e-10

CnoSu F 6
3 + F 8

2 1.94 2.27 7.383e-12
C1point F 6

3 + F 8
2 20.44 14.99 -

Cdefault F 4
4 + F 4

5 + F 6
2 2.03 1.43 2.567e-10

CnoSu F 4
4 + F 4

5 + F 6
2 0.08 0.2 < 2.2e-16

C1point F 4
4 + F 4

5 + F 6
2 4.86 2.42 -

7. CONCLUSION
In this paper, we provide a combination of surrogate mod-

els, linkage learning and informed linkage exploiting opera-
tors. The presented method SAILEGA is composed of an
on-line perturbation based linkage learning module, an ap-
plication of X-means clustering to dynamically adjust its
surrogate model set of SVMs for regression, and an arsenal of
novel informed linkage exploiting recombination operators.
These operators are designed in a modular way such that it
is possible to use them in a non-surrogate setting or without
a pool of created offspring, making them potentially useful
for an implementation by other optimizers. We empirically
demonstrated that SAILEGA can successfully exploit link-
age of genes from fitness functions to significantly improve
final result quality.
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