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ABSTRACT
Optimization algorithms typically operate only within a fixed-
sized design space, solving problems with a fixed number of 
parameters. However, many optimization problems allow for a 
variable number of components, where the optimal number may 
not be known a priori. These problems may be solved by using a 
genetic algorithm that utilizes a variable-length genome. A 
particular challenge when using variable-length genomes is the 
recombination of two parent solutions to produce meaningful 
children. The performances of several crossover operators are 
investigated and compared using a sensor placement testbed 
problem. It is shown that the optimal number of sensors may be 
determined by each operator, and that performance is improved 
when care is taken to preserve similarities between parent 
solutions. Performance may also be further improved by 
introducing a bias when pairing parents for recombination based 
on their relative genome lengths.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
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Algorithms
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1. INTRODUCTION
A key to the success of a genetic algorithm is its ability to form 
building blocks, short subsequences (or schemata) of the genome 
that have a positive influence on the objective value of an 
individual. For a population to converge toward optimal solutions, 
these building blocks must be able to propagate through 
successive generations. The genetic algorithm operators must be 
chosen such that they do not hinder this process. 

Genetic algorithms typically solve problems with a fixed number 
of parameters. This paper considers problems that contain a 
variable number of components, in particular a sensor placement 
problem. Sensors are to be placed such that the coverage is 
maximized while minimizing the cost. In this type of problem it is 
unlikely that the optimal number of sensors is known a priori. A 

variable length genome can be used to optimize not only the 
placement of the sensors but the number of sensors used. 

The idea of building blocks remains; the optimal placement of a 
particular sensor is dependent on the positioning of other nearby 
sensors. Preserving these relationships increases the likelihood of 
producing meaningful children during recombination. Standard 
crossover operators, such as an n-point crossover, are inefficient 
for this type of problem as they make no effort to preserve these 
relationships while exchanging information. 

A survey on wireless sensor network deployment includes several 
genetic algorithms [3]. These studies typically either fix the 
number of sensors, allow the number of sensors to change through 
mutation, and/or modify an n-point crossover to work with 
genomes of differing lengths. This paper investigates several 
recombination operators that allow the number of sensors in a 
solution to vary. 

2. PROBLEM FOMULATION 
This paper uses a sensor placement problem as a testbed for the 
proposed recombination operators. Sensors are to be placed on a 
square field such that the coverage is maximized while 
minimizing the cost. The strength, or effective sensing radius, of 
each individual sensor is also optimized. The cost of a sensor is a 
combination of a fixed base cost plus a cost that increases with 
the sensor’s effective range. An objective function is defined 
which combines the cost of the sensor network and a penalty that 
scales linearly with the portion of the field that is left uncovered. 
A point is said to be uncovered if it is not within the sensing range 
of at least one sensor. This penalty term is weighted heavily such 
that the optimal solutions will achieve complete, or near 
complete, coverage of the field. A sample solution is shown in 
Figure 1.

3. PROPOSED METHODOLOGIES 
A multi-objective genetic algorithm is employed to minimize the 
objective function defined in Section 2 while also minimizing the 
number of sensors used.
Three different recombination operators are demonstrated and 
compared. Each operator is demonstrated twice, using one of two 
parental pairing techniques. The first type randomly pairs parents 
together for recombination. The second type adaptively pairs 
parents together based on the difference in their genome lengths. 
This is done such that the majority of pairs have relative genome 
lengths that were found to be most successful in previous 
generations.Copyright is held by the author/owner(s). 
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The genome used in each methodology contains a variable 
number of genes. Each gene contains the real-valued parameters 
describing a single component, in this case a sensor. Crossover 
can only occur between genes, not within a gene. The number of 
genes is not fixed and the number of genes in each child may not 
match the number of genes in either parent.

The algorithm is run 100 times for each combination of crossover 
operator and parent pairing technique. Each trial is run for 3000 
generations using a population of 50.

3.1 Fixed-Length Representation 
A fixed-length genome may be used to represent a problem with a 
variable number of components. This is done by allowing the 
sensing range of a sensor to be negative. A sensor with a negative 
range is not considered when evaluating the design. This method 
creates an upper bound on the total number of sensors in a single 
design. An n-point crossover is used for recombination.

3.2 Spatial Crossover 
The performance of a sensor network is highly dependent on the 
location of sensors relative to each other. A spatial crossover is 
well suited for this type of problem [1]. The sensor field is split 
into two parts by a randomly oriented and positioned line. This 
line splits the sensors of each parent into two groups. Two new 
children are produced by inheriting one group from each parent.   

3.3 Similar Gene Crossover 
A crossover proposed by Hutt and Warwick [2], the Synapsing 
Variable-Length Crossover (SLVC), preserves common 
subsequences in the genomes of both parents. SLVC maintains 
the order of genes in the genomes, but in this problem the order of 
sensors defined in the genome is inconsequential. The Similar 
Gene crossover is similar to SVLC, but the parent genomes are 
rearranged based on the similarity of gene pairs between the two 
parents. The similarity between two genes is found by comparing 
the parameter values they contain. The first genes in the 
rearranged parent genomes will be the most similar pair of genes 
between the two parents. The subsequent genes will be arranged 
in decreasing gene pair similarity. An n-point crossover is then 
applied.

4. RESULTS AND DISCUSSION 
The average best objective function value at each generation for 
each algorithm is shown in Figure 2. The fixed-length 

representation method is relatively slow to converge when 
compared to the other operators. This is a result of the n-point 
crossover. During this crossover genes remain in their original 
position in the genome, the first gene in a child’s genome is also 
the first gene in one of the parent genomes. If the genes at each 
position in both parents are unrelated then the gene that the child 
inherits is effectively random and meaningless. Eventually the 
population will converge such that the gene at each position of the 
genome is similar among all individuals. The first gene in each 
individual may describe a sensor located in the upper-left corner, 
for example. This allows for meaningful crossovers. 

The spatial crossover produces meaningful results by preserving 
the positional relationships among groups of sensors. The similar 
gene crossover ensures that similarities in the two parents are 
preserved in the children. These considerations help to preserve 
building blocks during recombination, and increase the rate of 
meaningful children produced. While the spatial crossover has the 
best performance it is important to note it may not always be 
apparent, or possible, to adapt this crossover for use in other 
problems.

All methods tested are shown to be viable and produce high 
quality solutions. The performance of each recombination 
operator is increased by the adaptive parent pairing. For this 
problem, the most successful parent pairings tend to be between 
parents with the same number of genes. The spatial and similar 
gene crossovers offer the best performance by allowing building 
blocks to be more easily preserved during recombination. 

5. REFERENCES
[1] Cherba, D., Punch, W. 2006. Crossover Gene Selection by 

Spatial Location. In Proceedings of 8th Annual Conference 
on Genetic and Evolutionary Computation (Seattle, WA, 
USA, Jul. 8-12, 2006). GECCO ’06, ACM, New York, NY, 
1111-1116. DOI= http://doi.acm.org/10.1145/161468.16147.  

[2] Hutt, B., and Warwick, K. 2007. Synapsing variable-length 
crossover: Meaningful crossover for variable-length 
genomes. IEEE Transactions on Evolutionary Computation 
11, 1 (Feb. 2007), 118-131, 2007. 
DOI=http://dx.doi.org/10.1109/TEVC.2006.878096

[3] Marks, M. 2010. A Survey of Multi-Objective Deployment 
in Wireless Sensor Networks. Journal of 
Telecommunications and Information Technology (Mar. 
2010), 36-41.

0 500 1000 1500 2000 2500 3000
48

50

52

54

56

58

A
vg

. B
es

t O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

Generation

Spatial Crossover−A
Spatial Crossover−R
Similar Gene Crossover−A
Similar Gene Crossover−R
Fixed−Length Representation−A
Fixed−Length Representation−R

Figure 2. Best objective function values at each generation, 
averaged over 100 trials. Solid lines are trials using adaptive 
parent pairing (A), dashed lines use random pairing (R). 
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Figure 1. Sample solution with an objective function value of 
48.85 using 28 sensors. 
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