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ABSTRACT
We have recently proposed a highly effective method for speed-
ing up metaheuristics in solving combinatorial optimization prob-
lems called pattern reduction (PR). It is, however, limited to prob-
lems with solutions that are either binary or integer encoded. In
this paper, we proposed a new pattern reduction algorithm named
continuous space pattern reduction (CSPR) to overcome this limi-
tation. Simulations show that the proposed algorithm can signifi-
cantly reduce the computation time of k-means with genetic algo-
rithm (KGA) for solving the data clustering problem using contin-
uous encoding.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search; G.1.6 [Mathematics of Computing]: Optimization
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1. INTRODUCTION
Several methods for speeding up clustering algorithms by elimi-

nating unnecessary computations have been proposed [3, 4, 6]. The
underlying idea of dimensional reduction [3] is to remove features
that have small or no influence on the final result from the original
data set to obtain a reduced data set in such a way that the size of
the reduced data set will be much smaller. Unlike the dimensional
reduction method, the basic idea of centroid reduction [4] is to find
out clusters the centroids of which remain the same as those in the
previous iteration, so that the distance calculations between all the
patterns and these static centroids can be avoided to speed up the
clustering process. Fundamentally different from the dimensional
reduction method and the centroid reduction method, the pattern
reduction (PR) method [6] works by eliminating at each iteration
patterns (or subsolutions) that are unlikely to change their mem-
bership thereafter to speed up the clustering process.
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2. THE PROPOSED ALGORITHM
Like the PR, the proposed algorithm consists of two operators:

the detection operator and the compression operator. Unlike the
PR, the detection operator of CSPR is divided into two steps. How
it works for a clustering algorithm with floating-point representa-
tion is as shown in Fig. 1.

1. // Step 1. Check to see if all the subsolutions at each locus have the same
// or similar value.

2. for j = 1 to n // for each subsolution
3. let τj = 1
4. for i = 2 tom // for each solution
5. if |sij − s1j | ≤ Ta then let τj = τj + 1
6. endfor
7. endfor
8. // Step 2. Check to see if applying each of the subsolutions found at each

// locus in Step 1 to all the subsolutions at the same locus in turn gives the
// same or similar fitness.

9. letR = ∅.
10. for j = 1 to n
11. if τj = m then
12. let f = true
13. for i = 1 tom
14. for k = 1 tom
15. if k 6= i then
16. let s′k = sk

17. let s′kj = sij

18. endif
19. if |F (sk)− F (s′k)| > Tb then let f = false
20. endfor
21. endfor
22. if f = true then letR = R ∪ {s1j , s2j , . . . , smj}
23. endif
24. endfor
25. outputR

Figure 1: Outline of the detection operator.

At step 1, as shown on lines 2 to 7 in Fig. 1, the detection op-
erator of CSPR is aimed at finding out subsolutions at the same
locus that have the same or similar value. These subsolutions are
called the candidate subsolutions because they may have reached
the final state (i.e., they may end up being part of the final solution)
faster than the other subsolutions or before the maximum number
of iterations is reached. At the end of step 1, the count τj will tell
whether all the subsolutions at locus j, denoted sij , are approxi-
mately equal to s1j or not. Note that in Fig. 1, m and n denote,
respectively, the population size and the number of subsolutions.
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Table 1: Relative performance of the clustering algorithms
evaluated in this paper (with respect to k-means).

Method GKA PREGKA KGA CSPR
Average Time 1,292.45% -54.19% 853.58% -62.81%
Average SSE -1.15% 2.63% -1.67% -1.13%
N.B.: For both Time and SSE, a more negative value implies a greater
enhancement.

Because it may take a long time for all the subsolutions at locus j
to converge to the same value, a predefined threshold Ta is required
to speed up checking whether all the subsolutions sij are approxi-
mately the same or not. If |sij − s1j | ≤ Ta, ∀i 6= 1, the proposed
algorithm will consider all the subsolutions at locus j as the same,
thus being the candidate subsolutions for compression

At step 2, as shown on lines 9 to 25, the detection operator of
CSPR will check whether applying each of the candidate subsolu-
tions sij to the other subsolutions at the same locus, i.e., skj for
k 6= i, will affect the fitness values or not. If the results of applying
each of the candidate subsolutions sij to the other subsolutions at
the same locus show that the fitness values will not be affected, then
these candidate solutions will have a high probability of ending up
being part of the final solution. Same as in step 1, the performance
issue requires us to predefine another threshold Tb for checking the
results of applying each of the candidate subsolutions sij to the
other subsolutions at the same locus. If the difference between the
new solution s′j and the original solution sj is less than Tb, i.e.,
|F (sj) − F (s′j)| ≤ Tb, then the proposed algorithm will consider
it as having reached the final state and thus can be compressed and
removed. That is, candidate subsolutions passing this check mech-
anism will be compressed and removed by the proposed algorithm.

In summary, a two-step detection operator is employed to check
the subsolutions to see whether they have reached the final state
or not, as shown in Fig. 2. The first step is aimed at finding out
subsolutions at each locus that have the same or similar value, or
to filter out subsolutions that have “different” values, so that they
can be considered as the candidate subsolutions for compression.
The second step is aimed at ensuring that the candidate subsolu-
tions found in the first step have reached their final state so that
any further computations are essentially a waste and thus can be
compressed and eliminated.

3. RESULTS AND CONCLUSION
Ten different kinds of data sets from UCI (Iris, Wine, SPECT,

SPECTF, Ecoli, Haberman, Liver-disorders, Balance-scale, Yeast,
and Abalone) are used to evaluate the performance of the clustering
algorithms compared in this paper. Each algorithm is carried out for
30 runs, and for each run, the number of iterations is set equal to
1,000. The thresholds Ta and Tb are defaulted to 10−8. By using
k-means as the baseline for comparison, the simulation results de-
scribed in Table 1 show that CSPR outperforms not only the pattern
reduction [2] algorithm we proposed previously which uses discrete
encoding but also GA-based clustering algorithms such as [5] and
[1] in terms of the computation time. The simulation results also
show that in terms of the quality, CSPR not only beats k-means and
PREGKA; it narrows down the gap between GA-based clustering
algorithms and the PR enhanced versions too. Moreover, with mi-
nor modification, the proposed algorithm can be applied to many
other efficient heuristic algorithms. Also, it is interesting to note
that all the algorithms with PR are faster than the k-means algo-
rithm because the operators of k-means are performed 1,000 times
each run for all the subsolutions whereas the operators of all the al-
gorithms with PR are performed for only some of the subsolutions
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Figure 2: Example showing how the detection operator of the
proposed algorithm works.

because most of the subsolutions have reached the final state and
thus are compressed and removed before the maximum number of
iterations is performed.
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