
Automatic Generation of Regular Expressions from
Examples with Genetic Programming

Alberto Bartoli
DI3 - University of Trieste

Italy
bartoli.alberto@units.it

Giorgio Davanzo
DI3 - University of Trieste

Italy
giorgio.davanzo@gmail.com

Andrea De Lorenzo
DI3 - University of Trieste

Italy
andrea.delorenzo@phd.units.it

Marco Mauri
DI3 - University of Trieste

Italy
marco.mauri@phd.units.it

Eric Medvet
DI3 - University of Trieste

Italy
emedvet@units.it

Enrico Sorio
DI3 - University of Trieste

Italy
enrico.sorio@phd.units.it

ABSTRACT
We explore the practical feasibility of a system based on
genetic programming (GP) for the automatic generation of
regular expressions. The user describes the desired task by
providing a set of labeled examples, in the form of text lines.
The system uses these examples for driving the evolutionary
search towards a regular expression suitable for the specified
task. Usage of the system should require neither familiarity
with GP nor with regular expressions syntax. In our GP
implementation each individual represents a syntactically
correct regular expression. We performed an experimental
evaluation on two different extraction tasks applied to real-
world datasets and obtained promising results in terms of
precision and recall, even in comparison to an earlier state-
of-the-art proposal.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
RetrievalInformation Search and Retrieval

Keywords
genetic programming, regular expressions

1. INTRODUCTION
A regular expression is a means for specifying string pat-

terns concisely. Such a specification may be used by a spe-
cialized engine for extracting the strings matching the speci-
fication from a data stream. Regular expressions are a long-
established technique for a large variety of text processing
applications and continue to be a routinely used tool, due to
their expressiveness and flexibility. Indeed, regular expres-
sions have become an essential device in broadly different
application domains, e.g., extraction of bibliographic cita-
tions [2] and signal processing hardware design [7].

Constructing a regular expression suitable for a specific
task is a tedious and error-prone process, which requires spe-
cialized skills including familiarity with the formalism used
by practical engines. In this work we outline the design,
implementation and preliminary experimental evaluation of

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

a system based on genetic programming (GP) for the au-
tomatic generation of regular expressions. It is important
to point out that all the user has to provide is just a set of
examples. In particular, the user need not provide any ini-
tial regular expression or hints about structure or symbols
of the target expression. Usage of the system, thus, requires
neither familiarity with GP nor with regular expressions syn-
tax.

Essential components of our implementation include the
following. First, individuals are generated so as to make
sure that each individual represents a syntactically correct
expression. Second, the fitness consists of a linear combi-
nation of two objectives to be minimized: the edit distance
between each detected string and the corresponding exam-
ples, the size of the individual.

We performed a preliminary experimental evaluation of
our proposal on two different real-world extraction tasks:
phone numbers and HTML headings. We found that (i) we
obtained very promising results for precision and recall even
with just a few tens of examples; (ii) precision and recall on
the validation set turned out to be good indicators of the
performance on the (unknown) testing set.

The problem of synthesizing a regular expression from a
set of examples is long-established (e.g., [1]) and has been
studied from several points of view. Due to space con-
straints, we restrict our discussion to genetic programming
based approaches and to recent proposals focused on prac-
tical application domains of text-extraction.

The automatic induction of deterministic finite automata
from examples was proposed in [3], whereas the generation
of regular expressions was proposed in [8]. Stochastic regu-
lar expressions were considered in [6]. Our approach follows
the same lines of these works, in that regular expressions
are directly encoded as program trees. On the other hand,
the computing power available today enable us to place
much stronger emphasis on real-world basic text process-
ing problems, with regular expressions suitable to be input
to widespread engines such as Java, PHP and so on.

Regular expressions are used in biological research for gene
classification. Automatic generation by GP has been pro-
posed in this context in [4]. The proposed algorithm is
able to generate only a certain subset of regular expressions,
tailored to the specific application domain—extraction of
mRNA sequences—whereas we place instead no constraints

An approach that may be applied to a wide range of prac-

1477



tical cases, but is not based on an evolutionary approach,
is proposed in [5]. A crucial point of this algorithm is that
the training phase requires a labeled set of examples and
an initial regular expression that has to be prepared with
some domain knowledge—which of course implies the pres-
ence of a skilled user. The proposal is assessed on regular
expressions for extracting phone numbers, university course
names, software names, URLs. These datasets were publicly
available and we included the first one (phone numbers) in
our experimental evaluation.

2. OUR APPROACH
The user simply provides a set of examples, each com-

posed by a pair of strings 〈t, s〉 where t is a text line and s is
the substring of t that must be detected by the regular ex-
pression. Only one string per line may be captured. A pair
where s is empty, meaning that no string must be extracted
from t, is a negative example.

In our implementation every individual is a tree that rep-
resents a valid regular expression. We satisfy this require-
ment by defining, for each operator of regular expressions,
which sub-trees are suitable for that operator.

The function set consists of regular expressions operators:
(i) the concatenator, that is a binary node that concatenates
other nodes or leaves, (ii) the possessive quantifiers “*+”,
“++”, “?+”, and “{m,n}+”, (iii) the group operator “()” and
(iv) the character class “[]” and “[^]”. The terminal set
consists of: (i) constants, i.e., a single character, a number
or a string, (ii) ranges, i.e., “a-z” or “A-Z”, (iii) character
classes, i.e., “\w” or “\d” and (iv) the wildcard, i.e., the “.”
character.

We used as fitness function a linear combination of: the
sum of the Levenshtein distances (also called edit distances)
between each detected string and the corresponding desired
string, and the length of the regular expression. In detail,
we defined the fitness f(R) of an individual R as follows:

f(R) =

N∑
i=1

d(si, R(ti)) + αL(R) (1)

where: ti is the i-th example string in a set of N given exam-
ples, si is the substring to be found in ti, R(ti) is the string
extracted by the individual R for the example ti, d(x, y) is
the Levenshtein distance between strings x and y, α is a pa-
rameter, L(R) is the number of characters in the individual
R—i.e., the length of the regular expression represented by
that individual. We set α to 0.01 after a few exploratory
experiments. However, we found that our system appears
to be quite robust with respect to ample variations of this
parameter.

3. EXPERIMENTAL EVALUATION
We considered two different datasets: Dh, a set of 49513

lines of HTML sources taken from web pages of Wikipedia
and W3C web sites, from which to extract the HTML head-
ings (i.e., h1, . . . , h6); and Dp, a set of 41832 lines of emails
from which to extract phone numbers. The latter dataset is
used also in [5].

We split the datasets in two subsets selected randomly,
one to use as learning set and the other to use as testing set.
The learning set is composed of 400 lines and further split
in a training set (300 lines) and a validation set (100 lines).

Table 1: Experiment results

Dataset Training Validation Testing Results (%)
Pos./Neg. Pos./Neg. Pos./Neg. Prec. Recall

Dh 151/149 50/50 505/48608 96.1 100.0
Dp 27/273 10/90 4788/36644 96.2 95.9

Table 2: Found regular expressions.
Dataset Regular expression
Dh <h\d[^Z]++

Dp \(?+\d\d\d[^0]?+\d\d\d[^0]\d\d\d\d

We executed the GP search for each dataset as follows:
(i) we ran 128 different and independent GP evolutions, each
on the training set; (ii) we selected the individual with the
best fitness on the training set, obtaining a final population
of 128 individuals; (iii) among the resulting 128 individu-
als, we selected the one with the best F-measure on the
validation set and used this individual as the final regular
expression for the dataset. Finally, we evaluated precision
and recall of the regular expression on the testing set.

The results are summarized in Table 1: we obtained promis-
ing figures for precision and recall, corresponding to F-meas-
ures equals to 98.1% and 96.0%, respectively for Dh and
Dp. Concerning Dp, the approach of [5] scores a F-measure
equals to 85% using 4183 lines as learning set, whereas we
only used 400 lines.

The regular expressions generated for the two datasets
as described above and without any manual post-processing
are shown in Table 2.

4. REFERENCES
[1] A. Bràzma. Efficient identification of regular expressions

from representative examples. In Proceedings of the sixth
annual conference on Computational learning theory,
volume 1, pages 236–242. ACM, 1993.

[2] C.-C. Chen, K.-H. Yang, C.-L. Chen, and J.-M. Ho. BibPro:
A Citation Parser Based on Sequence Alignment. IEEE
Transactions on Knowledge and Data Engineering,
24(2):236–250, Feb. 2012.

[3] B. Dunay, F. Petry, and B. Buckles. Regular language
induction with genetic programming. In Evolutionary
Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE
Conference on, volume 1, pages 396–400. IEEE, 1994.

[4] W. B. Langdon, J. Rowsell, and A. P. Harrison. Creating
regular expressions as mrna motifs with gp to predict human
exon splitting. In Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, GECCO ’09,
pages 1789–1790, New York, NY, USA, 2009. ACM.

[5] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan,
and A. Arbor. Regular Expression Learning for Information
Extraction. Computational Linguistics, (October):21–30,
2008.

[6] B. Ross. Probabilistic pattern matching and the evolution of
stochastic regular expressions. Applied Intelligence, pages
285–300, 2000.

[7] I. Sourdis, J. a. Bispo, J. a. M. P. Cardoso, and
S. Vassiliadis. Regular Expression Matching in
Reconfigurable Hardware. Journal of Signal Processing
Systems, 51(1):99–121, 2007.

[8] B. Svingen. Learning Regular Languages Using Genetic
Programming. In J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo, editors, Genetic
Programming 1998 Proceedings of the Third Annual
Conference, pages 374–376. Morgan Kaufmann, 1998.

1478




