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ABSTRACT
Computer experiments are part of the daily business for
many researchers within the area of computational intelli-
gence. However, there is no standard for either human or
computer readable documentation of computer experiments.
Such a standard could considerably improve the collabora-
tion between experimental researchers, given it is intuitive
to use. In response to this deficiency the Intelligent Param-
eter Utilization Tool (InPUT ) is introduced. InPUT offers a
general and programming language independent format for
the definition of parameters and their ranges. It provides
services to simplify the implementation of algorithms and
can be used as a substitute for input mechanisms of existing
frameworks. InPUT reduces code-complexity and increases
the reusability of algorithm designs as well as the repro-
ducibility of experiments. InPUT is available as open-source
for Java and this will soon also be extended to C++, two of
the predominant languages of choice for the development of
evolutionary algorithms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—software libraries, modules and interfaces

Keywords
Intelligent Parameter Utilization Tool, InPUT , InPUT4j, Com-
puter Experiments, Automated Algorithm Design

1. INTRODUCTION
The design and analysis of algorithms is at the heart of

evolutionary computation (EC) and the whole of computa-
tional intelligence (CI). In contrast to classical research on
deterministic algorithms computability theory and complex-
ity theory can only be used to some extent in CI because al-
gorithms involve uncertainty or fuzziness as a feature. Thus,
a great deal of CI research heavily depends on experimenta-
tion and statistical analysis.
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CI research is highly concerned with algorithms for system
modeling and the solving of optimization problems. There
are many open-source frameworks for different programming
languages that offer the user a large set of fully implemented
algorithms to tackle any given problems. The user has a
significant number of choices and the selection of a suitable
algorithm for the specific problem is a non-trivial task in
itself. Thus, one of the main objective associated with CI is
to obtain a better understanding of the circumstances under
which an algorithm is superior to others given a problem and
a quality measure. However, the discovery of an appropriate
algorithm is not sufficient. Changes in the parameter ranges
of a heuristic algorithm can have a significant impact on the
experimental outcome [13]. This is true for static parametric
choices and as much so, or even more so, for those adapted
during execution. As a consequence, a badly parameter-
ized appropriate algorithm could perform significantly worse
than a well parameterized inappropriate algorithm. A whole
line of research is dedicated to the investigation of parame-
ter and parameter value impact on experimental results [6,
17]. Scientific problems that fall into this remit include the
improvement of experimental results given a time budget
or conducting comparisons between alternative algorithms.
Open-source software exists that supports the experimenter
in finding improved parameter settings or algorithm designs
[4, 3]. These tools are here referred to as tuners.

1.1 Problem Statement
A hurdle for a more rigorous use of experimental design in

CI is the absence of a standard format for the description of
computer experiments shared among tuners, CI frameworks,
and researchers. Figure 1 illustrates the missing link for a
smooth and loosely coupled connection between the compo-
nents. The vertical axis covers the code-independent compo-
nents algorithm and problem. The emphasis of the horizon-
tal axis is on the experimental and code-specific components
with the tuner and the implementation of the algorithm as
a program.

A common input/output format not only offers techni-
cal advantages. The absence of a standard format leads
to a higher risk for misunderstandings in publications that
can slow down the research work. Every experiment is con-
ducted under certain conditions and is based on assump-
tions, some of which made explicit by the experimenter, and
some not. In general, it is not possible to compare results
from researcher A with those received from researcher B,
as they are based on different assumptions (algorithm de-
sign, computer, implementation, etc.). Thus, experimental
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Figure 1: The missing piece of the puzzle for an increased
usability, quality assurance, reproducibility, and reusability
in computer experimental research.

research in CI requires the reimplementation of algorithms
not available in source-code or the turning to a framework
that contains an implementation. In any case, all assump-
tions such as parametric choices have to be identified in the
original paper which can be a time consuming task, highly
dependent on the paper structure, still leaving open the pos-
sibility that some assumptions are not explicitly addressed
(the paper is not self-containing). This creates a dependency
between the researcher and the author of the publication,
which considerably reduces the chances of reproducing the
experiments and their results. A standard notion for the de-
scription of algorithms and experimental setup would force
the author to a concise description of the assumptions and
the scope of the investigation.

Notions can be defined with the intention that they will be
read by either humans or machines. A human readable stan-
dard would lead to a more accessible and therefore simplified
reviewing of submissions, and an increased reproducibility of
experimental results presented in publications if concise de-
scriptors were associated with them. A computer readable
standard would lead to an increased reusability of computer
experiments and a further increased reproducibility of exper-
imental results as designs can be imported into programs.
It would assist researchers to concentrate on their research
questions and could oblige authors to follow a documenta-
tion standard for papers to qualify for publication. The de-
velopment of adapters for different programming languages
can further utilize the use of experimental setups and algo-
rithm designs for other causes, such as the automated export
to LATEX tables as authoring support or additional services
that hide code-complexity, or automate routine jobs. A com-
mon format would be desirable for a number of reasons.

Design Goals
A solution for the center piece in Figure 1 has to be simple,
general, and open. Algorithm descriptors have to be intuitive
and easy to adjust. Intuitiveness also has to apply for the
adapters that support the integration of the standard into
programming languages. It would have to work with any
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1 input descriptors
√

-
√ √ √ √ √

2 usable outside EC - - -
√

/- - -
√

3 user defined params
√

-
√ √

/-
√ √ √

4 hierarchical
√

/- - - - - - -
5 XML

√
- -

√
-

√
-

6 sep. of concern - - - - - -
√

7 compatibility - - - - - - -
8 validation

√
- - - - - -

9 implicit param model - - -
√

-
√ √

10 meta parameter
√ √ √

-
√

- -
11 multi-language -

√
-

√
- -

√

Table 1: A feature matrix that summarizes the compatibility
and openness of relevant frameworks with respect to the
configuration of computer experiments.

programming language, and any existing framework, inter-
changeably. It should not be restricted to evolutionary algo-
rithms use, but for any open environment enabling computer
experiments. Descriptors and adapters should maximize co-
hesion and minimize coupling between software components,
separating concerns. A solution should further contain de-
scriptors that are readable and debatable by researchers. Its
use has to be free and the access open.

1.2 Contribution
The contribution of this paper is twofold. First, a con-

ceptual solution to the posed problem of a missing stan-
dard for the documentation of computer experiments is pre-
sented. Second, the Intelligent Parameter Utilization Tool,
in brief InPUT , is introduced. InPUT offers a general solu-
tion for the definition and processing of input data for com-
puter experiments. It simplifies experimental aspects of CI
research such as the definition, externalization and expan-
sion of fixed parametric choices in source-code. Unlike work
in [11, 22], InPUT does not suggest a meta-language format
that requires a complex translation into programming lan-
guages. It complements existing frameworks by simplifying
the parametrization of algorithms and can further be used as
a tool for the experimental exploration of algorithm design
spaces, creating a tangible value for researchers. InPUT is
not to be considered as yet another EC framework. It does
not impose the inheritance of classes or interfaces on the de-
veloper or even the use of a specific programming language.

2. RELATED WORK

2.1 Evolutionary Software Frameworks
There are frameworks for the development of evolution-

ary algorithms, predominantly written in Java and C++. A
selection of relevant, open, well documented frameworks un-
der active development with the objective of being generic
is analyzed here [20, 23, 18, 10, 12, 15, 19, 8]. Table 1
summarizes their features with respect to customizability,
interoperability and openness criteria regarding user input.
The frameworks are not judged with respect to any other
properties. The judgment is the result of a literature study
together with an investigation of the software. The contes-
tants differ in their project focus in terms of target audience,
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ranging from novices to EC experts, and coverage (genetic
programming, multi-objective problems, etc.). Eleven crite-
ria are compared:

1. Can parameters be defined using descriptors?

2. Is the format sufficiently general to be used outside EC?

3. Are user defined parameters supported?

4. Are hierarchical user defined parameters supported?

5. Does the format conform to modeling standards using XML
(eXchangeable Modeling Language)?

6. Does the structure enforce a separation of concerns? For
instance, a separation of problem and algorithm parame-
ters.

7. Is the format compatible with any other framework?

8. Can parameter descriptors be checked for validity?

9. Does the framework impose a proprietary parameter model
on the user?

10. Does the framework offer a meta parameter, a service com-
ponent that encapsulates the programmatic parameter lookup
and update?

11. Is the framework available for multiple languages?

Within the scope of this paper there is insufficient space for
a detailed elaboration of the results. The table shows that
the majority of frameworks provide input descriptors. It is
only Open Beagle that supports a complex means of defin-
ing hierarchical parameters. Most frameworks define their
own proprietary flat descriptor types and do not take ac-
count of XML technologies. It is again the case that it is
only Open Beagle that offers an explicit schema descriptor
allowing for a direct user input validation. PISA is the only
framework that proposes a separation of concern for input
data, namely the separation of problem and algorithm. It
appears that only three frameworks offer a loose coupling
between parameter descriptors and the framework compo-
nents. OPT4J performs this by means of injection, while
PISA imposes a seperation of concerns. None of the exis-
tent descriptor models can be directly compatible with any
other1. As a consequence, an exchange and reuse of descrip-
tor files for other frameworks is not possible.

2.2 New Experimentalism and Tuners
In [6], the author presents a methodology for experimen-

tal design, termed New Experimentalism. The methodol-
ogy suggests an approach to experimental design by a sound
conduct of computer experiments by using hypothesis test-
ing and a statistical analysis of the results for EC research.
Other pivotal methodological contributions to heuristic re-
search include [5, 14, 7]. The integration of philosophy of sci-
ence, classical experimental design and design of computer
experiments has resulted in best practices and guidelines
for experimental research in EC [7, 21]. Practical issues
addressing the reuse of experimental configurations in con-
texts other than tuning, such as authoring support, or as
a means for standardization in connection with EC frame-
works, have not been discussed in that realm. Describing
parameter ranges explicitly by design space descriptors al-
lows for user input validation, and prepares the algorithm
for a direct use in an experimental design. XML offers a
standardized semi-structured grammar to define documents
that can be validated. Neither of the two widely used tuners
[4, 3] adapt XML for input definition. Both offer proprietary
formats raising the bar for beginners.

1The fact that Paradiseo builds on EO does not qualify here.

3. METHOD

3.1 Modeling Computer Experiments
The class diagram in Figure 2 models the context of a

computer experiment. A computer experiment is here com-
posed of four inputs:

Instance: A problem instance to be solved. Examples here are
real valued functions or instances of discrete optimization
problems, such as the travelling salesman.

Program: An implementation of an algorithm of choice. For
instance, a genetic algorithm (GA) written in Java.

Design: A complete and valid set of parameter-value pairs com-
patible with the implementation. A common parameter for
GA is its population size.

Preferences: A complete and valid set of parameter-value pairs
compatible with the implementation, connecting problem
and algorithm. The representation of the genome, the fit-
ness function, or the recombination operator for GA are
examples.

Problem

Computer
Experiment

Instance

Design
Space Design

Results

ProgramAlgorithm

Property
Space

1 11

1

1

11

1 1..*

1..*

1..*

1 1..*

1

1

1

Preferences1 1..*

1..*

1

1..*

Figure 2: A class diagram making explicit the data that a
computer experiment comprises.

A computer experiment is further considered to possess
one output, an arbitrarily formed result set. Output struc-
tures are not considered for a more in-depth analysis in this
paper.

It is a common procedure to extract features from prob-
lem instances for statistical analysis and supervised learning
purposes. One of the main differences between algorithm
parameters and problem features is that the second do not
define degrees of freedom for a user, they are merely a means
to describe instances. Generally, a user chooses the problem
instance to be solved. Algorithm parameters on the contrary
expose options to the user. Figure 3a presents a general in-
put/output format proposal for computer experiments. It
comprises the following descriptors:

Algorithm Design Space: The (heterogenous) set of al-
gorithm parameters together with their range defini-
tions.

Algorithm Design: An exemplar of a design space for a
given algorithm.

Problem Feature Space: The (heterogenous) set of prob-
lem features with optional range definitions.
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(b) The recurring steps of a tuner under the use of in-
put/output descriptors.

Figure 3: A conceptual proposal of a data input/output standard for the conduct of computer experiments.

Problem Instance: An exemplar of the feature descriptor,
extracted from a problem instance.

Property Space: The (heterogenous) set of parameters that
connect problem and algorithm including their range
definitions.

Preferences: An exemplar of the property space descriptor
for a given algorithm-problem combination.

Result Space: Describes the structure of result sets.

Result: An exemplar of a result that follows a result space
structure.

Code Mapping: Maps general concepts from the design
space and property space descriptors to code specific
components of the program.

In a one user scenario well separated descriptors are not nec-
essary. Proprietary, non-separated, or implicit settings in
source-code imply a short cycle from an algorithm sketch to
obtaining the first results. A mapping from code-independent
to code-dependent concepts is not necessary, because no-one
else reuses the experimental context. The separation of con-
cerns introduces overhead. However, the proposed struc-
ture allows third parties to not only read and understand
the configurations (making them accessible), but also to im-
port them into their software (making them reusable). As
a consequence the validation of a result from a third party
becomes considerably easier.

Figure 3b illustrates the way a tuner and a program can
interact in a sequential repetitive manner by exchanging de-
scriptors. In 1, the tuner announces instance, preferences,
and algorithm design to be tested and sends a signal once
they are readily available. The setup is imported by the
program in step 2, and the experiment is executed in step
3. The result is returned by the program in step 4 and the
program signals its successful completion. Now, the tuner
can, with or without the consideration of the feedback from
the experimental result (step 5), decide about the next ex-
periment to be executed or stop the investigation.

Type Range
boolean {0, 1}
integer Z ∩ [−231, 231 − 1]
short Z ∩ [−215, 215 − 1]
long Z ∩ [−263, 263 − 1]
float R ∩ [0, 1] (32-bit fp)

double R ∩ [0, 1] (64-bit fp)

decimal R

Table 2: The numerical parameter types supported by
InPUT (fp stands for floating points).

3.2 InPUT
In an extension of the proposal above, and unlike existing

approaches to modeling in EC [16], InPUT provides three
grammar types, sufficiently general to describe all of the
nine mentioned descriptors. They are presented in Extended
Backus Naur Form (EBNF). In addition, InPUT offers an in-
terface and reference implementation for their programmatic
access. Examples for each grammar are given in the next
section. It follows an overview regarding how parameters
are modeled using InPUT .

3.2.1 Parameters
InPUT distinguishes between two parameter types: numer-

ical and structural. Table 2 lists the supported numerical
types with their default ranges. These ranges can be further
restricted by the explicit setting of inclusive or exclusive ex-
treme values. An example of a numerical parameter is the
population size of a traditional evolutionary algorithm rep-
resented by a positive integer value range.

The fact that parameters can contain sub-parameters, even
algorithms, increases the complexity of the modeling prob-
lem. The hyper-heuristic community deals with the cre-
ation and analysis of algorithms that combine heuristics in
arbitrary ways [9]. With due regard to general demands,
structural parameters are introduced. Structural parame-
ters, as opposed to numerical ones, define a range of distinct
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complex choices that themselves can introduce parameters
which have to be explicitly set by a user. An example is the
selection strategy parameter for evolutionary algorithms. A
possible choice here is tournament selection, introducing the
two numerical sub-parameters tournament size and amount
of survivors.

With structural parameters, the descriptor turns out to be
a hierarchy of parameters or a parameter tree with the algo-
rithm identifier as the root. The unambiguous identification
of parameters is realized by a hierarchical notation with sin-
gle dot delimiters. Examples for the parameters mentioned
above are ”EA.PopSize” for population size, ”EA.Selection”
for selection, and ”EA.Selection.Tournament.Size” as well
as ”EA.Selection.Tournament.Survivors” for the tournament
size and amount of survivors respectively.

Further, matrix or array types for both numerical and
structural parameters are supported. Those can be of fixed
or undefined size. An example of a valid type definition
would be decimal[2], which determines the parameter val-
ues to be a vector of fixed length containing two decimal
entries. boolean[][5][] would then be a n× 5×m matrix
of type boolean, with n,m ∈ N unspecified.

3.2.2 Grammars
InPUT defines three grammars. The design space gram-

mar is a meta-structure that can be used to model the four
descriptors to the left of Figure 3a. A design space is a code-
independent aggregation of potentially heterogenous param-
eter (or property) ranges.

Grammar 1. The design space grammar:

〈DesignSpace〉 → {〈Param〉}+
〈Param〉 → (sParamId 〈SParam〉) | nParamId
〈SParam〉 → {〈DesignSpace〉} {〈SChoice〉}+
〈SChoice〉 → sChoiceId | (sChoiceId 〈DesignSpace〉)

nParamId and sParamId stand for numerical and structural
parameter identifier respectively. sChoiceId stands for struc-
tural choice identifier. Terminals start with small, non-
terminals with capital letters.

The design grammar represents instances that can be val-
idated given design spaces. Each instance is contracted by a
grammar of type one. The instance, algorithm design, and
preference descriptors from Figure 3a can be expressed by a
type two grammar.

Grammar 2. The design grammar:

〈Design〉 → {〈Value〉}+
〈Value〉 → 〈SValue〉 | (nParamId nValue)
〈SValue〉 → (sParamId sChoiceId [〈Design〉])

Here, nValue stands for numerical value. XML makes
descriptors machine-readable, but the code-independent de-
scriptors require a means to become machine-interpretable
by programs. The code mapping grammar is a dictionary
which builds the connection between the design spaces and a
program. It servers as a dictionary for the translation from
concept to component. The code mapping descriptor from
Figure 3a can be expressed by the code mapping grammar.

Grammar 3. The code mapping grammar:

〈Mappings〉 → {paramId componentId}

Code mappings are only required for structural parameters.
XML has a native support for primitive data types. Com-
ponents in object oriented languages tend to be classes.

3.2.3 Integration
The definition of descriptors is not self-sufficient, there

must be a means of importing them for different program-
ming languages. It is possible that framework developers
could work on interfacing the descriptors. However, a more
general solution is desired that offers services to framework
providers so that it is easy to incorporate the input mech-
anism. Adapters on a language basis would offer a more
general solution. These adapters could offer a standard ap-
plication programming interface (API) to the user, covering,
amongst other things, descriptor import, export, validation,
and assembly to describe computer experiments. A reference
implementation is presented below after the presentation of
the example descriptors.

4. EXAMPLE
The example descriptor in Figure 4 defines an algorithm

design space for a real-coded Particle Swarm Optimization
(PSO) algorithm using InPUT syntax. The algorithm is largely
inspired by the tutorial in [1] and the standard components
for real-coded PSO in ParadisEO. Figure 5 shows a validrealPSOinstance.xml

<Design id="1" ref="realPSO" ...>
  <NValue id="Seed" value="524521106532245"/>
  <NValue id="PopSize" value="39"/>

<NValue id="VelMin" value="-0.2307"/>
<NValue id="VelMax" value="1.1992"/>
<NValue id="InitPosMin" value="-2.6058"/>
<NValue id="InitPosMax" value="3.8540"/>
<NValue id="InitVelMin" value="-2.4382"/>
<NValue id="InitVelMax" value="0.7912"/>

  <SValue id="VelocityType" value="Constricted">
  <SValue id="Topology" value="Linear">
  <NValue id="Neighborhood" value="5"/>
  </SValue>
  <NValue id="Inertia" value="1.4249"/>
  <NValue id="LFactor1" value="0.8832"/>
  <NValue id="LFactor2" value="4.0326"/>
  </SValue>
  <SValue id="StopCriterion" value="Time">
  <NValue id="Ms" value="2435"/>
  </SValue>
</Design>

Page 1

Figure 5: A valid random design for the real-coded PSO
from Figure 4 generated using InPUT4j with a decimal value
precision of 4 positions for illustration purposes.

instance of the design space in Figure 4, generated using the
design randomizer of the reference implementation that can
be used to generate arbitrarily large sets of random designs.
Table 3 shows how the reference implementation exports this
design space to a LATEX table. An intact code mapping file
with structural parameter-to-class and choice-to-class map-
pings as in

<Mapping id="StopCriterion" type="package.StopCriterion"/>

is all InPUT requires to create fully instantiated instances
at runtime. These code mappings could appear different
for different languages, but within one language a standard
format should be established.
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realPSO.xml

<DesignSpace id="realPSO" ...>
<NParam id="Seed" type="decimal" />
<NParam id="PopSize" type="integer" inclMin="2" inclMax="50"/>
<NParam id="InitPosMin" type="decimal" inclMin="-4" inclMax="-1"/>
<NParam id="InitPosMax" type="decimal" inclMin="1" inclMax="4"/>
<NParam id="InitVelMin" type="decimal" inclMin="-3" inclMax="-0.5"/>
<NParam id="InitVelMax" type="decimal" inclMin="0.5" inclMax="3"/>
<NParam id="VelMin" type="decimal" inclMin="-4" inclMax="-0.5"/>
<NParam id="VelMax" type="decimal" inclMin="0.5" inclMax="4"/>
<SParam id="VelocityType">

<SParam id="Topology">
<NParam id="Neighborhood" type="integer" inclMin="2" inclMax="10"/>
<SChoice id="Ring"/>
<SChoice id="Linear"/>

</SParam>
<NParam id="Inertia" type="decimal" inclMin="0" inclMax="5"/>
<NParam id="LFactor1" type="decimal" inclMin="0.1" inclMax="3"/>
<NParam id="LFactor2" type="decimal" inclMin="0.1" inclMax="5"/>
<SChoice id="Standard"/>
<SChoice id="Constricted"/>
<SChoice id="FixedInertia"/>
<SChoice id="VariableInertia"/>
<SChoice id="Extended">

<NParam id="LFactor3" type="decimal" inclMin="0" inclMax="5"/>
</SChoice>

</SParam>
<SParam id="StopCriterion">

<SChoice id="Time">
<NParam id="Ms" type="integer" inclMin="1000" exclMax="10000"/>

</SChoice>
<SChoice id="Generations">

<NParam id="Amount" type="integer" inclMin="2" inclMax="100"/>
</SChoice>
<SChoice id="SteadyFit">

<NParam id="MinGen" type="integer" inclMin="10" inclMax="50"/>
<NParam id="Interval" type="integer" inclMin="1" inclMax="20"/>

</SChoice>
</SParam>

</DesignSpace>

Page 1

Figure 4: The algorithm design space descriptor for a real-coded PSO. The numerical extreme values only serve the purpose
of demonstration and no claim is made here that they are correct or meaningful.

Parameter Type Range

InitPosMax decimal [1, 4]

InitPosMin decimal [-4, -1]

InitVelMax decimal [0.5, 3]

InitVelMin decimal [-3, -0.5]

PopSize integer [2, 50]

Seed decimal ]-∞,∞[

StopCriterion structured {Time,
Generations,
SteadyFit}

Generations.Amount integer [2, 100]
SteadyFit.Interval integer [1, 20]
SteadyFit.MinGen integer [10, 50]
Time.Ms integer [1000, 10.000[

VelMax decimal [0.5, 4]

VelMin decimal [-4, -0.5]

VelocityType structured {Standard,
Constricted,
FixedInertia,

VariableInertia,
Extended}

Inertia decimal [0, 5]
LFactor1 decimal [0.1, 3]
LFactor2 decimal [0.1, 5]
Topology structured {Ring, Linear}

Neighborhood integer [2, 10]
Extended.LFactor3 decimal [0, 5]

Table 3: The parameter ranges of the PSO algorithm from
Figure 4 exported to a LATEX table using InPUT4j.

5. IMPLEMENTATION
The reference implementation, InPUT4j, is written in Java.

It can be downloaded together with the descriptors from [2].
A C++ variant is under development. InPUT4j makes use
of an XML parser to process the descriptors and their ele-
ment trees. It uses plain Java reflection for the automatic
object instantiation of user defined (proprietary) classes at
runtime, unknown to InPUT4j at compile time. The interface
allows their direct integration by softening Java’s strong typ-
ing using generics. InPUT follows a minimal, object oriented,
design. It offers an API and a command line interface.

5.1 Features
InPUT4j imports and validates design space, design, and

code mapping descriptors, making their content accessible
in Java. It offers direct access to parameters via a meta
parameter, allowing for value queries and dynamic updates.
The InPUT meta parameter encapsulates all parameter val-
ues and their ranges in a single variable to reduce code com-
plexity and can comprehensively be used in formulas follow-
ing the Java standard syntax. Only small code and descrip-
tor adjustments are required to externalize fixed values in
the source code as parameters, providing high experimen-
tal flexibility with little programming efforts. Snapshots of
the present design can be issued at any time and exported
as XML files. Algorithm design and design space descrip-
tors can be exported to LATEX tables for authoring support.
InPUT supports exception handling and the logging of rele-
vant events (value updates, errors, etc.). The creation and
manipulation of algorithm spaces and designs can be con-
ducted in support of any graphical XML editor of choice.
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In addition, InPUT supports the automated creation of
random parameter values or entire algorithm designs via
its randomization services given a design space descriptor.
It supports the random creation of arbitrarily sized arrays
given a parameter type and array size information.

5.2 Code Mapping Contract
The injection of sub-parameter values into instances of

their structural parent parameters is based on a simple con-
tract between InPUT and the user thus ensuring a minimal
coupling. On top of the setting of class identifiers, two as-
sumptions can be made explicit in the code mapping de-
scriptor. By default, it is assumed that classes follow the
recommended Java interface nomenclature for setters and
getters. For each sub-parameter, the parent class is expected
to provide the public methods ”set + paramId” and ”get
+ paramId” (e.g., ”setSurvivors” for tournament selection).
The types are automatically derived from the design space
descriptor at runtime. Getter and setter names can be cus-
tomized in the code mapping descriptor. InPUT4j supports
autoboxing between primitive types and their class equiva-
lents. The default setup for class instantiation is that struc-
tured parameters use constructors with no formal parame-
ters. This can also be customized. Thus, InPUT requires no
change in existing code, given that it is modular in that two
structural parameters of the same type share the same inter-
face or superclass and use the same formal constructor pa-
rameters. For instance, the two selection procedures, Tour-
nament and Rank, are considered to inherit a common inter-
face of some user defined supertype, say Selection. If Tour-
nament requires properties other than its sub-parameters to
be set, those properties should generally also be set in the
constructor for Rank. Thus, the mapping file would require
the user to add the constructor signature in the Selection
entry of the descriptor. How this is performed in practice is
explained and exemplified on the InPUT project page [2].

6. DISCUSSION
The availability of frameworks in EC is of importance.

Programming can result in unresolved bugs and a shared
implementation reduces the likelihood that they remain as
a basis for fraudulent results. For the programming lan-
guage and code-independent documentation of experiments
and parameter tuning, however, a more general solution is
required. The fact that many EC frameworks coexist might
suggest that none of them have yet achieved perfection. One
potential reason is the complexity of the problem based on
the perceived requirements of the end users. A user requests
simplicity, generality, and an end-to-end solution. Simplic-
ity and generality must achieve a compromise throughout
multiple dimensions (parameter treatment, usability, API
support, output format, etc.). To deliver this in its entirety
is architecturally non-trivial and requires on top of that a lot
of software development. The investigated frameworks are
modular, but their modular approach is not carried forward
into their launch strategy. The consequence are close solu-
tions largely incompatible with one another. For instance,
JCLEC and OPT4J both arrive with graphical user inter-
faces, launched within the scope of the project and not an-
nounced as a single component or service for reuse in other
frameworks. Individual launches of components would re-
quire a thorough analysis of the interfaces and formats, serv-
ing as a driver for cooperation. Developers are able instead

to narrow their scope to components, probably leading to
better and more focused components. However, at some
point the parts are required to be jointed and this should
not be conducted by the user, but as a common effort by the
community in bundles. It is possible to make some compar-
isons with the different distributions of integrated develop-
ment environments such as Eclipse or the operating systems
based on a Linux kernel, containing those components con-
sidered appropriate for a user profile. In that light, InPUT is
a proposal for input treatment and one possible cornerstone
for experimental documentation.

Returning to feature Table 1, InPUT presents a solution
that satisfies, to a large extent, the majority of the posted
criteria. It offers input descriptors that can be used for the
description of algorithms and problems in EC, or any other
area of research concerned with computer experiments. It
allows for user defined parameters of any kind, offering three
grammar types with a minimal syntax, which are made ma-
chine and human readable using XML. The validation of
input therefore comes for free. The model for separation
of concerns from Section 3.1 is taken up by InPUT in or-
der to support the user in the definition of all input related
data with respect to computer experiments. InPUT offers an
implicit parameter model that does not impose any inher-
itance of concepts on the user. It offers a meta parameter
with an API that allows programmers to interact with pa-
rameter descriptors programmatically. InPUT offers a con-
ceptual framework that in principle can be adapted to any
existing framework, given it is modular. It can therefore
not be claimed that it is compatible to the current frame-
works, but it requires a minimum of effort to make them all
compliant to one another. In its current state, its full use is
reduced to Java. However, the command line tool allows the
creation and validation of descriptor files on any platform,
because Java is platform independent. XML is also plat-
form independent, so in principle everyone with access to an
XML parser can comfortably access the InPUT descriptors
programmatically. With respect to the design goals in Sec-
tion 1.1 it is not possible to provide a complete evaluation.
The design is created with the intention of being as sim-
ple, general and open as possible, which is non-trivial in
the face of a very general challenge. InPUT4j is developed
with its focus on a lightweight API for an intuitive use. Once
adapted, InPUT would work with any programming language
and existing framework and would not be restricted to EC. A
maximized cohesion and minimized coupling between com-
ponents would be achieved.

InPUT can be used to compare novel algorithms for bench-
mark or real world problems on entirely random design spaces,
as it creates them by a single method call. Hundreds or thou-
sands of random designs can be created in a few seconds on
a common laptop for Monte Carlo simulations. Monte Carlo
simulations can be used to collect data as a basis for variance
analysis, where statistical indexes can assist in distinguish-
ing those parameters which have a significant impact on the
result from those which have a low impact, for instance by
using Analysis of Variance (ANOVA).

Tuners can use the InPUT descriptors for their own con-
figuration, making it easier to compare them on common
grounds and problem sets in fulfillment of their task. This,
in return, would enable the entering threshold for the use
of parameter tuners to be lowered because of the familiar
syntax. For research in dynamic control of parameter val-
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ues InPUT offers a way to issue and record changes. The
recorded data can then be used for a theoretical analysis or
reinforcement learning.

7. CONCLUSIONS
A conceptual framework together with its implementa-

tion, termed InPUT , were introduced, addressing the lack of
a standard for the documentation of computer experiments.
InPUT simplifies the definition of computer experiments by
proposing code-independent descriptors. InPUT fulfills the
majority of compatibility criteria posted in Section 1.1 and
Table 1 to a large extent, as discussed in Section 6. It pro-
vides services for simplified import and export to and from
existing EC frameworks. It assists the experimenter to de-
fine a machine and human readable context for computer
experiments. Data can be exported for publication sup-
port and experimental documentation. Most importantly,
researchers as well as reviewers and readers must be re-
leased from time consuming implementation or information
retrieval tasks that can be automated, which thus allows
them to focus on the thorough execution of experiments and
the analysis of the results. In that respect, InPUT could be
an initial step to make frameworks and researchers speak
and understand the same language.

Future Work
InPUT does not cover output formats for computer exper-
iments. An investigation of existing formats and require-
ment assessment for experimental results are possibilities for
future work. InPUT is open-source under the MIT license.
Enthusiasts are welcome to contribute to its development,
either by taking part in the features discussion, or by devel-
oping adapters for other popular programming languages for
EC, such as Python or C#. Frequently, parameter ranges are
restricted by value constraints including those in-between
parameters (inter-parameter constraints). InPUT can be ex-
tended to express those constraints both for value validation
and random design creation. Naming conventions for de-
scriptors is a topic that has to be discussed and, in addition,
the export to databases or spread-sheets for record keeping
and statistical analysis purposes. Making descriptors avail-
able along with publications on home pages or preferably the
inclusion in research databases is encouraged. InPUT and its
grammars should not be taken as final, but, as a draft pro-
posal.
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