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ABSTRACT
A novel self-governing system, which is theoretically founded
on information theory, is introduced with the ability of de-
termining the optimal quantity and connectivity of the hidden-
layer of a three layer feed-forward neural network. The sys-
tem - called MINES - simultaneously links parameter learn-
ing (performed by back-propagation) to structural learning
(performed by genetic algorithm) with the aid of mutual
information between the error-space and the hidden-layer.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets

Keywords
Neural Network, Neuro-Evolution, Information Theory, Fore-
casting

1. INTRODUCTION
The “universal approximation theorem” [2] (also called

the “Kolmogrov theorem” [1]) states that, a neural network
(NN) with one hidden layer is sufficient for any mapping
problem. However, the theorem does not propose a way to
realise how a single hidden layer is optimal [2].

To obtain an optimal hidden layer, a NN is required to
be trained by a simultaneous consideration of the number of
hidden nodes and the synaptic connections (i.e. structural
learning) and the associated synaptic weights (i.e. param-
eter learning). Indeed, structural and parameter learnings
are not two independent techniques, and there is an inter-
twined relation between them.

2. MINES METHODOLOGY
Mutual Information Neuro-Evolutionary System (MINES)

simultaneously performs structural and parameter learning
to fully determine the state of the incorporated hidden nodes.
For this purpose, MINES alternately uses genetic algorithm
(GA) and back propagation (BP) alongside the other, and
indirectly links them by the fitness provided by the GA indi-
viduals. The GA in MINES is responsible for changing the
structure, while BP reduces the cost function.
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GA individuals are clustered. Individuals in each cluster
have same binary variables. Each cluster is associated to
a unique hidden node (even though the cluster itself may
contain one or several individuals). Individuals in each clus-
ter control the connectivity pattern of the associated hidden
node. Note that, the synaptic weights of hidden nodes are
not evolved by GA and they are only modified by BP.

To calculate the fitness of a GA individual, first the cluster
in which the individual belongs to is found. Second, the hid-
den node associated to the cluster is determined. Third, the
mutual information (MI) between the output of the hidden
node and the respective residual error of the NN is calcu-
lated. Given a hidden node, the residual error is the remain-
ing error of the NN after the exclusion of the hidden node
from the network. The calculated MI is the fitness of the
underlying GA individual and is also the fitness of all other
individuals which belong to the same cluster.

Note that, the MI depends on the total state of the repre-
senting hidden node; i.e its receptive connectivity patterns
controlled by GA, and the associated synaptic weights tuned
by BP. This is how GA and BP are indirectly connected
through MI, following by alternatively running BP for some
iteration steps and subsequently applying a GA generation:
(1) BP is paused, run after several iterations; (2) MIs are
measured, providing the fitness values; (3) GA determines
the appropriate local structure; (4) BP is resumed from usu-
ally a new point in the weight space, adjusted previously by
GA; (5) GA is re-applied to the current population; (6) the
whole training procedure stops when the system converges.

3. POLYNOMIAL DISCOVERY
The regression ability of MINES is tested against the task

of finding the right polynomial represented by:

y = 2 + 3x1x2 + 4x3x4x5 (1)

This fitting to a polynomial is used by Saito and Nakano [5]
who earlier [4] showed how to formulate a nonlinear polyno-
mial using a FFNN. The challenge of the underlying problem
is not solely to perform a regression task fitting some input
data to some target values with a FFNN. The challenge is
indeed to discover the exact polynomial formula regressing
the input-output data. For this reason, the FFNN must be
evolved into a partially connected network with the right
synaptic weights representing Equation 1.

Figures 1 and 2 respectively show the root mean squared
error (RMSE) on the test set and the number of evolved
hidden nodes after the convergence of MINES for selected
number of BP iterations. It is observed that the overall
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Figure 1: Test-set
RMSE across vari-
ous BP iterations for
polynomial discovery.
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Figure 2: Evolved hid-
den nodes across var-
ious BP iterations for
polynomial discovery.

generalisation performance of the system is very good for
all number of BP iterations, but the BP iteration number of
5 and 10 result in fewer number of hidden nodes.

An optimal result obtained by MINES is presented here:

y = 1.7550

+ 3.2261x1
0.9656x2

0.9656x3
0.0132x4

0.0129x5
0.0129 (2)

+ 3.9447x1
−0.0075x2

−0.0074x3
1.0057x4

1.0056x5
1.0056

It is seen that Equation 2 is very close to the objective poly-
nomial introduced in Equation 1.

4. BUSINESS FORECASTING
An approach to forecast crude oil prices (similarly used

by Yu et al. [7]) is presented as the real world application
of MINES. Monthly West Texas Intermediate (WTI) crude
oil prices are chosen as the input data for training set (Jan-
uary 1986 till December 2004) and test set (January 2005
to December 2009)1. MINES is trained over the training set
to make one-step-ahead (one month ahead) prediction over
the test set.

Prior to being fed into the system, the data is first de-
noised using exponential moving average (EMA). The de-
noised data is subsequently decomposed into 5 subcompo-
nents, based on a novel technique called Empirical Mode
Decomposition (EMD) [3]. EMD decomposes a signal into
some oscillatory functions, named intrinsic mode compo-
nents (IMC). The original data will be the sum of the IMCs.

Statistic
Distinct

Connections
Hidden
Nodes

NMSE Dstat

mean 8 13 0.24 0.66

stdev 4 5 0.01 0.01

Table 1: 10 random experimental results on test set
to forecast monthly WTI crude oil prices.

Table 1 shows the average and the standard deviation of
the number of distinct connectivity patterns and the number
of hidden nodes, obtained after the convergence of MINES
for 10 random experiments on the training set. To evaluate
the prediction performance, the normalized mean squared er-
ror (NMSE) and the directional statistic (Dstat) [6] over the
test set has been provided. Dstat measures the percentage
of the times that the forecasting direction is correct (in this

1Data is freely accessible from http://www.eia.doe.gov.

case 66%). A graphical view of the forecasting performance
has been demonstrated in Figure 3.
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Figure 3: Monthly WTI crude oil forecasting graph.

5. CONCLUSION
MINES is built around a central hypothesis that by align-

ing the MI of the output of a hidden node and the corre-
sponding residual error of the system, the proper receptive
field connectivity pattern of the hidden node, in relation to
the other incorporating elements, can be determined so that
the evolving hidden layer would form an optimal, or close to
optimal, FFNN.
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