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ABSTRACT

This paper introduces SofEA, a pool-based architecture built
over CouchDB for distributing evolutionary algorithms (EAs)
across computer network in an asynchronous and decentral-
ized way. Clients perform different functions (evaluation,
reproduction, selection) which leads to a complex behavior
that will be examined in this paper, looking for the values
that yield the best performance.
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1. SOFEA: A POOL BASED EVOLUTION-

ARY ALGORITHM

In this paper we examine design choices in SofEA, a pool-
based evolutionary algorithm designed for volunteer com-
puting. Implementation, and its resulting model, are geared
towards creating a system in which spontaneous collabora-
tion is possible, with clients contributing just a few cycles to
an experiment. CouchDB is a document database system for
creating web-based applications that eschew the need of ad-
ditional middleware. Besides, pool-based systems in which
the population resides in a pool, and clients pick elements
from that pool, process them, and leave them back in the
pool are the most adequate model for this kind of systems,
and can be implemented using CouchDB. However, design
choices are not trivial, and its study is what we approach in
this paper.
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CouchDB (http://couchdb.apache.org) is an key-value
store that uses JSON (JavaScript Object Notation, a text
serialization of arbitrary data structures). Every object in
the database is provided with several additional attributes,
the most important of which will be for us the revision, a
versioning attribute that changes every time an object is
modified. Mapping an EA to this system has to take into
account its peculiar features and go with its grain to achieve
maximum performance. That is why we map chromosomes
to objects, using the string as key and fitness, the string
again and a random constant as document. Revisions are
a straightforward way to represent the state of the chromo-
some, going from 1 (created) to 2 (evaluated) to 3 (dead);
this will be used to select those in a particular state.

We will select chromosomes to process requesting chro-
mosomes ordered by the random constant. Elimination of
the worst chromosomes will be done by the reaper client:
it will keep the best p chromosomes, updating the rest to
revision 3. The evaluator and reproducer will be the other
two clients; they will have to operate on a pre-generated ini-
tial population. All clients will check a document keyed by
solution to know when the experiment is finished.

There are several issues with this model which boil down
to oversupply (generating too many chromosomes), starva-
tion (too few) and conflicts (several clients generating the
same individuals). In this poster we will check how design
choices affect them. Parameters, code and data are available
from https://launchpad.net/sofea.

2. EXAMINING THE BEHAVIOR OF SoOFEA

Experimental parameters are as shown in table 1 unless
told otherwise. Population size was chosen after comparing

Table 1: Common experiment parameters.

Parameter Value
Repetitions 10
Chromosome size 128
Initial population 128

it with 256; even if this could seem an independent factor, it
does have a small but noticeable influence, and it is proba-
bly due to the fact that it is generating less useless chromo-
somes; however, this highlights the fact that we should look
at dynamic variables, not only the final result.

We also used different block sizes for evaluators and re-
producers, using powers of two and starting by 64 down to
16; not all combinations were tested, evaluator block size



64 was tested with reproducer 64, 32 and 16 and the same
for reproducer 64; as the block size went down, the num-
ber of clients went up; for instance, there were 4 evaluators
for E16R64. This was the only configuration that showed
a marked difference in running time and number of evalu-
ations with respect to the rest; it is compared with other
results in table 77.

Table 2: Varying block size experiment results. Val-
ues in boldface are both the best and significantly
different.

Configuration | Running time | Evaluations
E64R64 62.10 11320
E16R64 50.20 8910
E64R16 62.50 11320

Finally we will examine the influence on block size on the
actual number of individuals processed, which needs not be
the same as requested. We found that the number of indi-
viduals retrieved was a increasingly lower proportion with
block size, with only 60% of the block size retrieved when
this was equal to 96. That is why we adjusted the range tak-
ing into account the relationship among the block size and
population size, generating a random number uniformly in
the range [0, 1 — b/p]. We tested this new strategy with the
bigger block size, and the results can be observed in figure
7?7, which shows the running time of two different configu-
rations with full and reduced random range; improvement
is around 30% and is due to an improvement in the num-
ber of evaluations. But, besides, the number of reproducer
conflicts is also decreased 228.9 to 139.8, almost by 40%.

Running time, database partitioning

gtime (s)
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Configuration

Figure 1: Boxplot of running time using the whole
range for random number generation (labeled Pre)
and with adjusted range. Evaluator block size = 96;
reproducer block size = 24 (left), 48 (right)

In fact, since increasing the evaluation block size seems
to have beneficial effects on the algorithm we tested greedy
evaluator that would retrieve all available non-evaluated in-
dividuals and return them evaluated. Results are shown
in table ??. Both experiments take the same time (differ-
ence not significant), but the number of evaluations is much
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Table 3: Fixed block size vs. greedy evaluator

Configuration | Running time | Evaluations
E96R64 495 £ 3 8891 + 318
Greedy + R64 47+ 4 10132 + 786

better for the non-greedy strategy. This means that the
greedy strategy is sequentially faster; but from the model
point of view it results in a worse algorithm. Besides, a
greedy strategy is not compatible with using several evalua-
tors (any additional evaluator would have, most of the time,
nothing to evaluate) and is less fault tolerant in that sense.
The conclusion is here that a fixed evaluator block size is
better, although size matters and if the number of evalua-
tors is known in advance as big a size as possible (keeping
it under the base population size is advisable.

3. CONCLUSIONS AND DISCUSSION

In this paper we have examined design choices in SofEA, a

pool-based distributed evolutionary implemented using CouchDB

which was introduced in a previous paper [?]. The impact
of parameters such as the initial population, the number of
clients and the number of chromosomes processed in each
request, and how these chromosomes are selected from the
population are studied, measuring their effect on running
time and number of evaluations, and, after explaining the
results obtained looking at implementation measures such
as the number of conflicts or the number of chromosomes
effectively processed, current choices for the algorithm are
shown and validated. The underlying result is also that
SofEA shows certain robustness across parameter values,
works asynchronously and can continue working even if one
of several clients stop doing it, since their operation is inde-
pendent of each other.

Another result of this experiment is to check that adding
evaluators brings better speed-ups than adding reproducers;
one with a proper block size is enough, and new reproducers
do not have an effect either on running or evaluation time.
This might point to a design flaw that will have be examined
in the future. Adding evaluators whose aggregated popula-
tion is smaller than the base population size usually speeds
up the experiment, provided block size it kept between cer-
tain limits (not too small, not too big). Other than that, we
have proved that SofEA can offer the basis for an scalable
(using CouchDB replication), asynchronous, distributed and
fault-tolerant evolutionary algorithm system.
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