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ABSTRACT

In population games, one of the main interests is the evolu-
tion of the dynamics, i.e., how the distribution of individuals
change along time. This is an abstract but elegant way to
model population of drivers selecting routes. In this paper, a
three-population asymmetric game is used to investigate the
co-evolution of drivers’ strategies. It is shown that the con-
vergence to one of the Nash equilibria is achieved when the
three populations co-evolve, under different rates of mutants
in these populations.
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1. INTRODUCTIONANDRELATEDWORK
A population game models simultaneous interactions of a

large number of simple agents distributed in a finite number
of populations. In population games, typically, one is not
only interested in constancy or equilibrium, but on changes.
This is particularly the case when a game does not have
an evolutionary stable strategy (ESS), or when it has more
than one. In the present paper, game theory and evolution-
ary programming are combined in order to investigate the
dynamics of demand in a traffic network in which the route
choice of three populations of agents is modeled in a game-
theoretic way. Because here three populations play a non-
symmetric game with more than two actions, the replicator
dynamics is not trivial to analyze and represent. Our aim is
not the computation of the exact equilibrium, even because
in the real-world this is probably a useless effort given that
this equilibrium will not last long due to the dynamic nature
of the environment. In particular, an environment is con-
sidered in which new drivers or agents replace existing ones
in a way to reproduce the fact that in real-world networks,
drivers unfamiliar with the network (e.g., non-commuters)
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also use it. This way, the goal is the investigation of the co-
evolution of the three populations regarding the assignment
of routes. The basic idea is that a population of strategies
(for selecting a route) is reproduced, from generation to gen-
eration, proportionally to the fitness. Fitness is a function
of the payoffs obtained by the driver agents after selecting
and performing each joint strategy.

Game theoretic approaches have been used in traffic as-
signment. However, mostly, the focus is on the static game,
as, e.g., studies involving the Braess paradox or the price
of anarchy [4]. When the temporal aspects are considered,
simplifications regarding the topology of the network are
made, either by dealing with two-route scenarios ([3, 2]), or
by considering a single origin-destination pair, or both ([1]).

2. METHODS AND RESULTS
A population game can be defined as follows:

populations P = {1, ..., p}: society of p ≥ 1 populations of
agents where |p| is the number of populations;
strategies Sp = {sp

1
, ..., spm}: set of strategies available to

agents in population p;
payoff function π(spi ,q

−p).
In this description, |p| populations interact. Agents in

population p have mp possible strategies. For a (large)
population of agents that can use a set of pure strategies
Sp = {sp

1
, ..., spm}, a population profile is a vector σ that

gives the probability σ(spi ) with with strategy s
p
i ∈ Sp is

played in the population p.
The previously mentioned idea that the composition of

the population of agents (and hence of strategies) in the
next generations changes with time (in this case generations)
suggests that one can see these agents as replicators. In the
replicator dynamics, it is assumed that members of each
population p are programmed to adopt one pure strategy
from a finite set Sp.

Let n
p
i be the number of individuals using strategy s

p
i ∈

Sp. Then, the fraction of agents using s
p
i is xp

i =
n
p

i

Np , where
Np is the size of p. The interest here is on how the fraction
of agents using each strategy changes with time, i.e., the
derivative ẋp

i . Because payoffs represent reproductive fitness
that is responsible for the number of successors using each
strategy, one can write: ẋp

i = (π(spi ,x
p)− π̄(xp))×x

p
i , with

π̄(xp) being the average payoff obtained by population p:

π̄(xp) =
m∑

i=1

x
p
i π(s

p
i ,x

p).

The previous description of population games can now
be instantiate for our particular scenario. Formally, the
set of populations is P = {1, 2, 3}; the set of strate-
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G3

G2 S2 B2
G1 1/1/4 5/6/7 5/1/7
S1 3/4/6 4/6/8 4/1/8
B1 5/5/7 5/6/8 4/0/9

T3

G2 S2 B2
G1 4/4/8 7/4/6 7/1/8
S1 4/6/8 5/4/6 5/1/8
B1 5/7/8 5/4/6 4/0/8

Table 1: Payoff matrices for the three-player traffic game; payoffs are for player 1 / player 2 / player 3
(boldface indicate the three Nash equilibria in pure strategies: σa, σb, and σc).

gies for each population p ∈ P is: S1 = {G1, S1, B1},
S2 = {G2, S2, B2}, and S3 = {G3, T3}; payoff function
is as in Table 1 (explanation for these quantities omitted).
For the three-agent game whose payoffs are given in Ta-

ble 1, there are five Nash equilibria, two of them in mixed
strategies. Because in asymmetric games, all ESS are in
pure strategies, only σa, σb, and σc are candidates for ESS.
σa means agents in p = 1, p = 2, and p = 3 select G1, S2,
and G3 respectively. In σb these agents select B1, S2, and
G3. In σc agents select B1, G2, and T3. Clearly, among σa,
σb, and σc, the first two are Pareto inefficient because σc is
an outcome that make all agents better off.
The dynamics of the process is then accomplished with

a genetic algorithm. A population p is composed by Np

agents, each programmed to play a given strategy s
p
i ∈ Sp.

In each generation, each agent plays g games whose sum of
payoffs is its fitness. After these g games are played, the pop-
ulations of agents are reproduced according to their fitness.
To reproduce the behavior of new drivers in the network, a
mutation rate pm is used: with probability pm an agent in
p is replaced by its mutated version, which means that its
strategy is changed to another one randomly selected.
The focus of the investigation is on issues such as what

happens if the populations start with each one using a given
profile σ. For instance, if this profile is σ∗, under which
conditions will it remain this way? How many mutants are
necessary to shift this pattern? Also, if the population starts
using any σ, what happens if it is close to σ∗? Will it tend to
evolve towards σ∗ or move away? If it reaches σ∗, how long
has it taken? What happens if there are multiple equilibria?
By analytically checking which are the stable rest points

of the static game, it was found that only σc is an ESS.
When it comes to the dynamics, this investigation can only
be done using numerical simulation. For instance, the issue
about whether or not an ESS will establish depends on the
mutation rate. If it is too high, then the populations never
converge to the selection of any Nash equilibria, much less
to the ESS, because perturbations happen too often. If it
is too low, an initial condition may determine which Nash
equilibria will establish, which may not be the ESS.
For the simulations of the evolutionary process, the val-

ues used for the main parameters of the model were: P =
{1, 2, 3}, N1 = N2 = N3 = 1000, g = 10, 000, ∆ = 1000
(number of generations), and pm was varied.
Heatmaps were produced (not shown) to depict the inten-

sity of the selection of each of the 18 joint actions that ap-
pear in Table 1. From these maps, it is possible to conclude
that for high rates of mutation (e.g., pm = 10−1), either σa

or σb appear more frequently. Performance is poor because
there is a high rate of new strategies. When pm = 10−2

or pm = 10−3, the convergence pattern is clearer but still
it is not possible to affirm that one profile has established.

When this rate is decreased to pm = 10−4 or pm = 10−5, it
is possible to observe that one of the two cases occur: either
profile σc establishes right in the beginning, or there is a
competition between σa and σb, with one or the other end-
ing up establishing. With decrease in pm, there is a decrease
in the time needed to either σa or σb establish, if σc has not
already set. Lower mutation rates follow the same trend.

3. CONCLUSION
In this paper, a three-population game was defined in or-

der to model co-evolution of strategies in a scenario in which
the payoffs of the populations are not symmetric, as it is
common in the real world. Although the game considers
three populations only, each having a few actions, this is
not an unrealistic simplification. In fact, in the majority
of the situations a traffic engineer has to deal with, there
is a small number of commodities (origin-destination pairs)
thus three populations is not far from reality. Regarding the
number of actions, it is equally the case that in the major-
ity of the real-world cases drivers do not have more than a
handful of options to go from A to B.

The contribution of this paper is twofold: the modeling,
whose analytical solution is not trivial given the number of
variables involved; and the investigation of the dynamics of
the co-evolution, by showing that the convergence to one of
the Nash equilibria is achieved under given mutation rates
only. The latter has the practical effect that, for networks
where the number of newcomers (non-commuters) is high,
and/or drivers tend to make experimentation (e.g., in re-
sponse to information broadcast), there may be difficult to
achieve some near-equilibrium conditions, meaning that the
network may function in sub-optimal conditions.
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