
New Malware Detection System Using Metric-Based
Method and Hybrid Genetic Algorithm

Jinhyun Kim
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
jh@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
moon@snu.ac.kr

ABSTRACT
Malicious software, or malware for short, is one of the most
serious threats to computer systems. Malware disguise tech-
niques are becoming more sophisticated, and signature-based
malware detection systems can not cope with disguised mal-
ware timely. In this paper, we propose a new approach to
detect disguised malware, focusing on the malware scripts.
The proposed system consists of a metric-based detection
algorithm and a hybrid genetic algorithm. The genetic al-
gorithm tries further detection by extracting the main core
of a program. Experimental tests on the proposed system
show a remarkable performance improvement over existing
anti-virus programs.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Invasive soft-
ware; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms, Experimentation, Security

Keywords
Malware detection, metric-based method, hybrid genetic al-
gorithm, malware disguise techniques

1. INTRODUCTION
Malware, or malicious software, is a computer program

that performs any kind of malicious action to computer sys-
tems. The malicious actions include collecting users’ private
information and sending it to someone else, redistributing
the malware, popping up advertisements, deleting arbitrary
files, crashing the computer, and more [1].

Script is one of the common vehicles for malware. Mal-
ware scripts are dangerous since the source codes are opened
to everyone. Users can easily modify it to create a variant, or
even a new kind. Malware disguise techniques are becoming
more complicated and signature-based malware detection is
insufficient to detect disguised malware scripts[1, 2]. There-
fore, we need to develop a new malware detection algorithm
which is robust to disguising.

Figure 1: Overview of the proposed system

In this paper, we propose a malware detection algorithm
which combines a metric-based method and a genetic algo-
rithm (GA). Metric-based methods use a numerical vector
to represent the characteristics of a program, and are known
to work well in code plagiarism detection [3]. We adapt this
method to detect malware scripts using token frequencies.
We also used a hybrid genetic algorithm to find the mali-
cious part of the program. We implemented the above sys-
tem; the experimental result shows that each idea makes an
improvement and the algorithm overall works well.

2. THE PROPOSED SYSTEM
The proposed system consists of four modules, each hav-

ing slightly different input and output. First, Decision Algo-
rithm determines whether the given program is malicious or
not. And Malicious Core Finder uses a GA and extracts the
malicious part of the program which is the most similar to
given malware. Afterward, Metric Calculator converts pro-
grams to numerical vectors containing various metrics. And
finally, Distance Calculator measures the distance between
the vectors. The overview of the system and the relationship
between the modules are illustrated in Figure 1.

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

1527

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1 2 3 4 5 6 7

m
in

im
u

m
 d

if
fe

re
n

c
e

 v
a
lu

e

the number of code insertions

Neves without GA

Neves with GA

Figure 2: The difference value of generated malware
scripts computed by systems without and with GA

3. GENETIC FRAMEWORK
We use a typical hybrid steady-state genetic algorithm.
Representation: We use binary representation. Each

gene represents each statement of a file. If the ith gene is set
to 0, then the ith statement is regarded as a junk code and
is removed before evaluation.

Population: The size of the population is 20. One of the
chromosomes is filled with 111 · · · 111 during the initializa-
tion process, which represents the entire program without
any code removed. The other chromosomes are randomly
initialized.

Selection: We use binary tournament selection. The
probability that the better individual wins the tournament
is set to be 80%.

Crossover and Mutation: We use uniform crossover.
For mutation, each gene might be toggled with probability
1%.

Local Optimization Algorithm: We hybridize a local
optimization algorithm with the GA. We toggle each of the
gene to make a local move, and the one with maximum gain
is selected. This process is repeated until there is no positive
gain.

Replacement: We replace the worst solution of the pop-
ulation with the offspring, even when the offspring is worse
than the prior solution.

Stopping Criterion: The GA stops when 90% of the
solutions are the same. The GA also stops when it reaches
the 10000th generation.

4. EXPERIMENTAL RESULTS
We collected real malware scripts in VBScript language

from VX Heavens website1. Fifty files have been prepared
for the purpose of testing the proposed system, including ten
benign codes, twenty known malware variants, and twenty
generated variants. For fairness, this process has been con-
ducted by another party who does not participate in the
detection project.

Seven variants of the malware Neves were generated by
increasingly inserting junk code. These malware variants
were tested by the proposed system as well as the one with-
out GA. We computed the difference value, which is defined
to be a normalized distance between the variant and the

1http://vx.netlux.org/

Proposed
system

Anti-
viruses

Benign codes 100% 98.36%
Known variants 80% 62.79%

Generated malware scripts 100% 34.54%

Overall 92% 58.58%

Table 1: Detection rate of our system and known
anti-virus programs

original. We set 0.15 to the threshold for determining a file
as a variant of the other, after some significant numbers of
experiments.

Figure 2 shows the test results on the seven variants. In
case of the system without GA, the difference value propor-
tionally increased with the degree of code insertion. On the
other hand, the one with GA showed little difference with
respect to the degree of code insertion.The GA turned out
to well cope with the junk codes.

We also compared the proposed system with known pieces
of anti-virus programs. We used 43 pieces of known anti-
virus programs via VirusTotal2.

Table 1 shows the overall results. The proposed system de-
tected benign files with 100 percent accuracy, which means
zero percent false alarm. For existing variants, the proposed
system showed 80 percent of detection, while existing anti-
virus programs showed 62.8 percent of detection. When it
comes to newly generated malware, the existing anti-viruses
detected only 34.5 percent of them; on the other hand, the
proposed system successfully detected for all of them.

5. CONCLUSION
In this paper, we proposed a new malware detection sys-

tem using a hybrid GA and a metric-based method. The
GA part was used to remove the junk codes from a program
efficiently. Experimental results showed that the proposed
ideas helped deal with malware disguising. The proposed
system detected most of the files in the dataset, while exist-
ing anti-viruses missed a significant portion of them.

6. ACKNOWLEDGMENTS
This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea govern-
ment (MEST) (No. 2011-0018006), Brain Korea 21 Project
in 2012, and Engineering Research Center of Excellence Pro-
gram of Korea Ministry of Education, Science and Tech-
nology (MEST) / National Research Foundation of Korea
(NRF) (Grant 2012-0000463). The ICT at Seoul National
University provided research facilities for this study.

7. REFERENCES
[1] J. Aycock. Computer Viruses and Malware. Springer,

2006.

[2] N. Idika and A. P. Mathur. A survey of malware
detection techniques. Technical Report 286, Purdue
University, 2007.

[3] T. Lancaster and F. Culwin. A Comparison of Source
Code Plagiarism Detection Engines. Computer Science
Education, 14:101–112, June 2004.

2http://www.virustotal.com/

1528

