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ABSTRACT 
This paper proposes a multiobjective heuristic search approach to 
support a project portfolio selection technique on scenarios with a 
large number of candidate projects. The original formulation for the 
technique requires analyzing all combinations of candidate projects, 
which is unfeasible when more than a few alternatives are available. 
We have used a multiobjective genetic algorithm to partially 
explore the search space of project combinations and select the most 
effective ones. We present an experimental study based on four 
project selection problems that compares the results found by the 
genetic algorithm to those yielded by a non-systematic search 
procedure. Results show evidence that the project selection 
technique can be used in large-scale scenarios and that GA presents 
better results than simpler search strategy. 

Categories and Subject Descriptors 
D.2.9 Management 

General Terms 
Algorithms; Project Management; Risk; Experimentation. 
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1. INTRODUCTION 
ACM  978-1-4503-1178-6/12/07.Selecting the projects which will be 
executed by a company is a major component of portfolio 
management [1]. Project selection aims to define an (close to) 
optimal subset of projects to comprise the company’s portfolio, 
taking into account their characteristics and relationships. Many 
project selection techniques can be found in the literature [1] [2], 
but few of them address an aspect that becomes important if these 
projects are to be executed and managed together: the dependencies 
among candidate projects. 

Recently, Costa et al. [3] presented a project selection technique 
based on Modern Portfolio Theory [4]. The technique evaluates all 
portfolios which can be formed by combining a set of candidate 
projects, introduces a systematic procedure to calculate the 
dependencies among them, estimates the risks of all portfolios 
prone to be selected, and generates a return x risk indicator for each 
portfolio. However, the cost of executing the technique is a power 

function of both the number of candidate projects and the number of 
risks that may affect these projects. The high cost is due to 
analyzing all combinations of projects and prevents using the 
technique in large scenarios, with more than a few candidates.  

In this paper we present a multiobjective heuristic optimization 
approach to support the application of the technique proposed by 
Costa et al. [3] in large-scale scenarios on regard of the number of 
candidate projects available to comprise the portfolio. We use a bi-
objective GA to find effective portfolios in terms of their return x 
risk profiles without examining all possible combinations of the 
available projects. The optimization approach was empirically 
evaluated and results show that the heuristic search can find 
efficient portfolios in feasible time and yields better results than a 
simpler search procedure.  

2. PROJECT PORTFOLIO SELECTION AS 
A MULTIOBJECTIVE PROBLEM 
Project portfolio selection is a bi-objective problem where two 
incomparable measures (risk and return) define the most effective 
portfolios. Risk must be minimized, while expected return must be 
maximized. Therefore, we are interested in the portfolio which 
yields maximum return for a given level of risk or, on the opposite 
perspective, which incurs minimum risk to yield a certain return. 
The most effective portfolios form a curve disposed in the risk x 
return plane. A decision about which among these portfolios will be 
undertaken by the company depends on the decision-makers 
willingness to accept more risk in exchange for more return.  

A bi-objective search to select the most effective portfolios must 
look for the Pareto-optimal set of subsets of candidate projects 
maximizing return and minimizing risk. We have addressed this 
optimization problem using the NSGA-II algorithm [5] and devised 
a systematic approach to select its parameters. The algorithm was 
configured to use single point crossover with 90% crossover 
probability and uniform mutation with 1% probability. Binary 
tournament is used as selection strategy. Population size was set as 
twice the number of projects. The maximum number of fitness 
function evaluations was set as 100 times the square of the number 
of projects. Each candidate solution represents a potential portfolio 
and was encoded as a sequence of bits, one for each available 
candidate project. The bit for a given project indicates whether the 
project is part of the portfolio represented in the solution. 

3. EVALUATING THE APPROACH  
We have analyzed the behavior of the NSGA-II algorithm using 
four real-world instances. These instances were provided by a 
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Brazilian company acting in the distribution of electric energy and 
depict an excerpt of the candidate projects that were available to 
form the company’s project portfolio for 2011. They contained, 
respectively, 25, 50, 75, and 100 projects. Each instance had 10 
risks described by their probability of occurrence and financial 
impact upon each project comprising the instance. Finally, each 
instance specified a limit upon the amount of capital available to be 
invested on its projects. 

To evaluate whether a complex search procedure, such as the 
NSGA-II algorithm, would be required to find good solutions for 
the project selection problem in scenarios of varying sizes, we have 
designed and executed an experimental study to compare the 
heuristic search with a simpler, non-systematic search procedure. 
Two configurations were tested for each instance. The first one 
(GA) used the NSGA-II algorithm with the parameter settings and 
fitness evaluation budget described in Section 2. The second 
configuration (RS) used a multiobjective random search with the 
same fitness evaluation budget given to the NSGA-II algorithm. 

Each configuration was executed 30 times for all instances. For 
each pair of configuration and instance, each running cycle yielded 
a Pareto front comprised of a finite set of solutions (PFi). After 
running all cycles for a given instance and configuration, a best 
front for that pair was built by joining the fronts yielded by each 
cycle and removing dominated solutions (PFGA and PFRS). Finally, 
PFGA and PFRS were merged to create the best front for the instance 
at hand (PFbest), again removing dominated solutions. Each vertex of 
the Pareto fronts represents a portfolio and is described by its 
expected return and its risk.  

To evaluate the efficiency of a configuration, we have collected the 
execution time for each cycle, configuration, and instance. In this 
context, execution time means the wall-clock time required to run 
the cycle. To evaluate the effectiveness of a configuration, we 
collected the error ratio indicator for each cycle, configuration, and 
instance. Configurations were compared in a per instance basis, e.g., 
results yielded by GA for the instance with 25 projects were 
compared to those presented by RS for the same instance. Lower 
execution times for a given configuration indicate that it is more 
efficient than the other. Smaller error ratios for a given 
configuration denote that it yields more effective results than the 
second one. These values were subjected to a non-parametric 
Wilcoxon-Mann-Whitney test to ascertain if there was statistically 
significant difference between the configurations.  

The following tables present means and standard deviations of the 
measures above for each instance/configuration over 30 cycles. 
They also present the p-value for the non-parametric test. Table 1 
shows execution times (measured in seconds) collected after 
performing the experiment. Execution time for configuration GA is 
on average two times greater than under configuration RS, but this 
percentile is substantially reduced for the largest instance. 
Nevertheless, NSGA-II consumes much more processing time than 
the random search to find its solutions. The p-value for the 
statistical test converges to zero for all instances, denoting that 
differences in execution time are significantly different with, at 
least, 99% confidence. 

Table 2 shows error ratios collected after running the experiment. 
As in the former Table, it presents means and standard deviations 
for each instance’s error ratio under configurations GA and RS over 

the 30 cycles and the p-value for the statistical test. Error ratio under 
configuration RS is, on average, 98% greater than under GA. For all 
but the smallest instance, no cycle running random search 
contributed to PFbest. Since smaller values are preferred, the genetic 
algorithm seems to find more effective solutions (in terms of error 
ratio) than random search. As in the former Table, p-values 
converge to zero for all instances, denoting that differences in error 
ratio are statistically significant with at least 99% confidence. 

Table 1 – Execution time analysis  

 GA RS P-Value 

25P 1.7 ± 0.05 1.3 ± 0.19 < 0.001 

50P 13.4 ± 0.03 5.2 ± 0.73 < 0.001 

75P 46.1 ± 0.03 7.2 ± 0.23 < 0.001 

100P 134.7 ±0.27 80.0 ± 12.7 < 0.001 

Table 2 – Error ratio analysis  

 GA RS P-Value 

25P 0.45 ± 0.07 0.90 ± 0.03 < 0.001 

50P 0.53 ± 0.06 1.0 ± 0.0 < 0.001 

75P 0.41 ± 0.04 1.0 ± 0.0 < 0.001 

100P 0.63 ± 0.05 1.0 ± 0.0 < 0.001 

4. CONCLUSIONS 
Data presented in Tables 1 and 2 shows sound evidence in favor of 
the heuristic search, except for small instances with relatively large 
budgets to fund the project portfolio. NSGA-II outperformed 
random search in finding solutions closer to the best Pareto front. 
On the other hand, random search seems a feasible alternative for 
small instances or those with large budgets. Limitations of the 
present work include adapting the heuristic search to deal with a 
large number of risks and repeating the experiment with more 
instances and different algorithms. 
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