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ABSTRACT
We use a knowledge discovery approach to get insights over
the features of the bin packing problem and its relationship
in the performance of an evolutionary-based model of hyper-
heuristics. The evolutionary model produces rules that com-
bine the application of up to six different low-level heuristics
during the solution of a given problem instance. Using the
Principal Component Analysis (PCA) method, we visual-
ize in two dimensions all instances characterized by a larger
number of features. By over imposing features and hyper-
heuristic performance over the 2D graphs, it is possible to
draw conclusions about the relation between the bin packing
problem structure and the hyper-heuristics performance.

Categories and Subject Descriptors: I.2 [Computing
Methodologies]: Artificial Intelligence — Problem Solving,
Control Methods and Search.

General Terms: Algorithms.

Keywords: Bin Packing, 2D irregular Bin Packing Pro-
blem, Optimization, Heuristics, Hyper-heuristics, Principal
Component Analysis.

1. INTRODUCTION
The bin packing problem (BPP) consists of finding an ar-

rangement of pieces inside identical objects, minimizing the
number of objects required. A better understanding of the
problem features will bring new elements to shed light on
the design of new heuristics and hyper-heuristics methods.
Some efforts to predict heuristic performance based on pro-
blem characteristics have been done [6].

PCA reduces the dimensionality of the data while retain-
ing most of the variation in the data set. PCA builds un-
correlated variables called principal components, which are
linear combinations of the original variables. The two com-
ponents with largest variance are usually chosen as new axis
for plotting all observations, making it possible to visually
assess similarities and differences between observations [5].

2. THE HYPER-HEURISTIC STRUCTURE
A method that produces general hyper-heuristics for one-

dimensional (1D) and two-dimensional (2D) BPP instances
is proposed in [2]. A hyper-heuristic is a rule that selects
a single heuristic to be applied (action) based on each pos-
sible instance state (condition). Once a hyper-heuristic is
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developed, it is able to solve any 1D or 2D instance without
further parameter tuning. The proposed method is based on
a genetic algorithm that evolves combinations of condition-
action rules (called hyper-heuristics). The structure or char-
acterization of 1D and 2D problem instances is summarized
by several features in a numerical vector.

For some of the instances, hyper-heuristics achieve bet-
ter results than the best of the single heuristics showing
that combination of single heuristics may outperform any
of the single heuristics considered separately. For most ins-
tances, hyper-heuristics get the same result than the best
single heuristic. This is beneficial as well, as the choice of
best heuristic varies from instance to instance [2].

3. EXPERIMENTAL SETUP
Our experimental testbed is comprised by a total of 1417

instances [2]. The 397 1D problem instances were drawn
from the literature, the 540 2D instances containing only
convex polygonal pieces and the 480 2D instances containing
some non-convex polygons were randomly generated. There
is a variety of instance feature values; for example, average
size of the pieces goes from 1/30 to 1/3 of the object size. Six
selection heuristic approaches were employed: First Fit De-
creasing, Filler, Best Fit Decreasing, Djang and Finch with
initial fullness of 1/4, 1/3 and 1/2. The heuristic Construc-
tive Approach with Maximum Adjacency was employed as
the placement heuristic for the 2D instances.

A critical part of the proposed analysis is the identifica-
tion of suitable features of the problem instances that reflect
the structure of the problem and the characteristics of the
instances that might explain algorithm performance. Many
features can be derived from a given instance of the BPP
(especially the 2D irregular BPP), making this problem in
particular, complex and difficult to understand thoroughly.
The methodology proposed in [1] finds a subset of features
related with single heuristics performance, given a larger set
of problem features. With this methodology, we reduced a
set of 23 computed features to only nine: 1. Number of pieces.

2. Mean the area of the pieces. 3. Variance of the area. 4. Mean

of the rectangularity of the pieces. 5. Variance of the rectangular-

ity. 6. Mean of the height of the pieces. 7. Variance of the width.

8. Percentage of pieces whose area is above 1/2 of the object area.

9. Mean of degree of concavity of the pieces (defined in [7]). For
1D instances, area is proportional to height and width vari-
ance is zero. Rectangularity is a quantity that represents
the proportion between the area of a piece and the area of a
horizontal rectangle containing it. These nine features were
chosen for the numerical representation of the evolutionary
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process and also for the PCA analysis. The basic question is
about what features values have those instances that are the
more suitable to be solved better by the hyper-heuristics.

4. RESULTS
We performed the PCA considering the 1417 instances

and the 9 previously selected variables (using the R pro-
gramming language [4]). To ensure magnitude consistency,
we standardized every variable (average of 0 and standard
deviation of 1). The first two principal components explain
65% of the total variance, jointly. Close points in Figure 1
represent similar instances according to the 9 variables. The
largest values of principal component 1 (PC1) refer to ins-
tances with high variability of pieces sizes and pieces width.
A lower value of PC2 is related to instances with large items
and large variability of items sizes.

Figure 1: The 1417 instances plotted along PC1 and
PC2. In black, 1D instances. In dark gray, instan-
ces of the 2D BPP (convex). Inside the circle, the
30 rectangular instances considered. In light gray,
instances of the 2D irregular BPP (non-convex).

Figure 2 marks with letters b and w those instances whose
best hyper-heuristic obtained a different result (better or
worse) compared against the result of the best of the six
heuristics. These cases are concentrated in a few sections.
The best and worst cases are mixed in these sections, which
means that this particular analysis is able to show which ins-
tances are likely to be solved different by the hyper-heuristic
compared with the best single heuristic, but does not dis-
tinguish between solving cases with fewer or more objects.
We want to know which characteristics have those sections
of the graph to know which features of the BPP are able
to explain hyper-heuristic performance. 1D instances with
small items with similar sizes characterize the zone in the
rectangle of Figure 2. The b’s and w ’s outside the rectangle
are for 2D instances. Most of them have PC2 near 0 (inside
the circle).

5. CONCLUSIONS
We have introduced the popular PCA technique into the

hyper-heuristic arena. We found that PCA can help us to
characterize the BPP and relate some feature combinations
with hyper-heuristic performance. The BPP has a complex
structure. There are not simple rules about the relation bet-

Figure 2: Letter b: instances solved with fewer ob-
jects by the best hyper-heuristic than any of the
6 heuristics. Letter w: cases where none hyper-
heuristic could reach the best single heuristic result.
Gray: the best hyper-heuristic got the same number
of objects than the best heuristic for each case.

ween features and algorithm performance. It may be nec-
essary to consider feature combinations in order to have in-
sight into hyper-heuristic performance. This contrasts with
other combinatorial optimization problems. For example, in
the constraint satisfaction problem, a couple of well selected
features (density and tightness) are enough to predict which
of two heuristics will be the best [3].
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hyper-heuristic for solving one and two-dimensional bin packing
problems. In 13th annual conference companion on Genetic
and evolutionary computation, GECCO ’11, pages 257–258,
New York, NY, USA, 2011. ACM.

[3] J. C. Ortiz-Bayliss, E. Ozcan, A. J. Parkes, and
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