
Black-Box Optimization Benchmarking for Noiseless
Function Testbed Using A Direction-Based RCGA

Yao-Chen Chuang
Department of Chemical Engineering

Feng Chia University
No. 100, Wenhwa Rd., Seatwen
Taichung, Taiwan 40724, R.O.C.

ycchuang@mail.fcu.edu.tw

Chyi-Tsong Chen
Department of Chemical Engineering

Feng Chia University
No. 100, Wenhwa Rd., Seatwen
Taichung, Taiwan 40724, R.O.C.

ctchen@fcu.edu.tw

ABSTRACT

This paper benchmarks a novel and efficient real-coded ge-
netic algorithm (RCGA) enhanced from our previous work
[1] on the noisefree BBOB 2012 testbed. The enhanced al-
gorithm termed as direction-based RCGA (DBRCGA) uses
relative fitness information to direct the crossover toward a
direction that significantly improves the objective fitness. As
a base of performance evaluation and comparisons, the max-
imum number of function evaluations (#FEs) for each test
run is set to 105 times to the problem dimension. Extensive
benchmarking test results reveal that all functions can be
solved by DBRCGA in the low search dimensions. Although
the DBRCGA shows the difficulty in getting a solution with
the desired accuracy 10−8 for high conditioning and multi-
modal functions within the specified maximum #FEs, the
DBRCGA presents good performance in separable function
and functions with low or moderate conditioning.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

Keywords

Benchmarking, Black-box optimization, Evolutionary algo-
rithms, Real-coded genetic algorithm

1. INTRODUCTION
Owing to its broad applicability and powerful performance,

numerical optimization evolutionary algorithms (EAs) have
been widely applied to solve real-word optimization prob-
lems arose from the fields of science, economic and engi-
neering. Many different types of EAs have been proposed
over the past few decades. According to the mechanism
used, they can be classified into the following categories:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

genetic algorithms (GAs), evolutionary strategies (ESs), ge-
netic programming (GP), evolutionary programming (EP)
and differential evolution (DE). Among the developed EAs,
the real-coded genetic algorithms (RCGAs) appear to be
one of the most popular optimization methods due to ease
of implementation and global perspective.

RCGAs consists of three main functional operators: se-
lection, crossover and mutation. The selection operation
selects those solutions that have better fitness among the
population for mating process. The crossover operation gen-
erates new candidates by using the genetic information of se-
lected chromosomes. To prevent premature convergence to a
suboptimum, the mutation operation randomly changes the
gene of chromosomes. In the RCGA framework, these three
main operations are operated iteratively, making the pop-
ulation achieve better and better fitness and arrive at the
optimal solution. In regard to the evolutionary mechanisms
of RCGAs, the crossover operation has been considered as
the most important scheme to produce candidate solutions.
In our previous work [1], we introduced a direction-based
crossover (DBX) operator for RCGAs. In this paper we en-
hanced the DBX and developed an efficient RCGA termed
as DBRCGA for the solution of single-objective optimization
problems. The DBRCGA uses relative fitness information
derived from the objective function to guide the crossover
toward a direction that significantly improves the fitness.
The direction vector formed from each paired parents can
carry out 2n-1 possible crossover scenarios to effectively gen-
erate offsprings. Moreover, the crossover step size, which
is controlled by the ratio of fitness distance of the paired
parents and the maximum fitness difference among the cur-
rent population, can be adjusted automatically to conduct
the crossover during the evolution. Therefore, the proposed
DBRCGA has a great ability to successfully direct the gener-
ation of offspring chromosomes that have much better fitness
than their parents.

2. ALGORITHM PRESENTATION
The proposed DBRCGA integrates three specific func-

tional operators - ranking selection (RS), direction-based
crossover (DBX) and dynamic random mutation (DRM).
The configuration of the proposed DBRCGA is shown in
Figure 1. Before introducing these main operational func-
tions, the design concept and notations are presented below.
Let x∗ be the global optimum solution that minimizes the
objective function f (x) in the admissible search space Ω, i.e.,
∀x ∈ Ω : f(x∗) ≤ f(x) and f(x) : Ω ⊆ ℜn → ℜ. To solve

167

this problem using DBRCGA, we let θ = [x1, x2, . . . , xn]
be a solution termed as chromosome/individual in the sense
of RCGAs. In the chromosome, each xj is called a gene
and represented as real number, where j ∈ n̄ and n̄ =
{1, 2, . . . , n}. The admissible parameter space for θ is de-
fined as follows

Ωθ = { θ ∈ ℜn|x1,min ≤ x1 ≤ x1,max, x2,min ≤ x2 ≤ x2,max,
· · · , xn,min ≤ xn ≤ xn,max }

(1)
All the genes xj are confined in the region of Ωθ between
the lower bound θ

L ≡ [x1,min, x2,min, . . . , xn,min] and the
upper bound θ

U ≡ [x1,max, x2,max, . . . , xn,max]. Further-
more, let N be the number of the chromosomes in the pop-
ulation, and λ represents the threshold parameter for the
control of crossover probability and mutation probability in
the population. Having completed the description of those
required notations and basic concept, we are ready to in-
troduce the operational procedure and operators associated
with the DBRCGA optimization scheme. .

Figure 1: The flow chart of the proposed DBRCGA
optimization scheme.

2.1 Ranking Selection
Before the ranking section operator (RS) is applied, we first
rank the population according to their fitness. By using RS,
the amount of ⌊pN⌋ chromosomes that have relatively worse
fitness function values are discarded, while at the same time
reproducing⌊pN⌋ chromosomes with better fitness. Note
that the parameter p is a user-defined proportional parame-
ter in the interval [0, 1]. Since the RS is operated on the base
of fitness ranking, it is very simple and fast to compute, and
at the same time keeps the total number of chromosomes in
the population constant. Most importantly, the RS operator
ensures to preserve those potential solutions.

2.2 Direction-Based Crossover
Crossover operation, which blends parents’ information to
generate the offspring chromosomes, is the most important
search function in RCGAs. With a special feature of using
fitness information of paired parents, an efficient crossover
operator, named direction-based crossover (DBX) operator,
is developed in this paper. Using DBX, the chromosomes
in the population are firstly sorted according to the fitness
ranking. Let the sorted fitness ranking be denoted by Θ̃ =
{θ1, θ2, . . . , θN}, where the chromosomes satisfy the relation
of θ1 � θ2 � . . . � θN . Note that the notation A � B
means that the fitness of A is better or equal to that of
B. According to Θ̃, we divide the N chromosomes into two
groups as follows:
GroupA (the leading group):

ΘA =
{

θ1, θ2, . . . θN/2

}

≡
{

θA1 , θ
A
2 , . . . θAM

} (2.a)

GroupB:

ΘB =
{

θN/2+1, θN/2+2, . . . θN
}

≡
{

θB1 , θB2 , . . . θBM
} (2.a)

Note that groupA has better fitness than that of B. By
using the DBX operator, we first chose θ

A
i from groupA

and θ
B
i from groupB to make N/2 pairs for crossover. Let

r be a random number (0 6 r 6 1), the DBX operation
is performed to generate two offspring chromosomes by the
following rule

θ
A∗
i ← θ

A
i + sc,i

−→
Di (3.a)

θ
B∗
i ← θ

B
i + sc,i

−→
Di (3.b)

when ri is greater than the specified crossover probability
threshold λ, i.e., ri > λ. In the above, sc,i denotes the step
size control of the crossover, which is given by

sc,i =

∣

∣f
(

θAi
)

− f
(

θBi
)∣

∣

max . {f (Θ)} −min . {f (Θ)}
(4)

and
−→
Di, the crossover direction, is determined by

Di,j =

{

0 : rj < 0.5
θAi,j − θBi,j : rj ≥ 0.5

, j = 1, 2, . . . , n. (5)

From Eq. (4), it can be observed that the value of sc is in
the range of 0 6 sc 6 1 and is determined by the ratio made
by the fitness distance between the chosen paired-parents
and the maximum fitness difference among the current pop-
ulation. Eq. (5) shows that each paired genes has the same

168

probability to generate crossover direction for the DBX op-
eration. Because at least one paired genes will be operated

to produce a crossover direction, the direction vector
−→
Di

can’t be null, and that makes 2n-1 possible search directions
for the generation of offspring chromosomes. To increase the
evolution efficiency and provide the diversity, a dynamic mu-
tation operator (DRM) (to be introduced later) is used to
replace the DBX operation when the chromosomes of paired
parents have ”the same properties”. By same properties of
two chromosomes, we mean that they have identical genes
and/or fitness, i.e. θ

A
i =θ

B
i and/or f(θA

i)=f(θB
i). The re-

placement of DBX with DRM when two parents have same
properties constitutes a parallel loop for the proposed DBR-
CGA. In practice, the DBX operator might guide the genes
of offspring chromosome to lie outside the variable bounds
since the search is made along the suggested direction con-
tributed by the paired parents. This situation implies that
a better solution might exist outside the admissible search
space Ωθ. However, due to the physical limitations of design
variables, those genes outside Ωθ are adjusted to fix at their
individual bounds to ensure the satisfaction of the required
lower and upper bounds.

2.3 Dynamic Random Mutation
To provide the population diversity, we suggest using the
following dynamic random mutation (DRM) operator:

θ
A∗
i ← θ

A
i + smΦ0

(

θ
U − θ

L
)

(6.a)

θ
B∗
i ← θ

B
i + smΦ0

(

θ
U − θ

L
)

(6.b)

In the above, Φ0 is a random perturbation vector in the n-
dimensional cube [−φ0,+φ0]

n where φ0 is an user-defined
number in the interval (0, 1]. In Eq. (6), the mutation step
size sm is dynamically tuned by

sm = (1− k/kmax)
b (7)

where the parameter b (> 0) is used to control the decay rate
of sm and, kmax denotes a maximum generation number of
evolution. Note that the decay rate b governs the shape of
the allowable mutation region and the allowable mutation
range dynamically decreases as the number of generation k
increases. The idea behind the use of a dynamic mutation
size is similar to that of simulated annealing. With the pro-
posed DRM operator, a large step size for mutation is used
at the beginning of evolution to provide a great chance of
variations in population, and as a consequence the searching
can avoid being trapped by a local optimum. As population
gradually converge to an optimum solution, a small feasible
mutation region produced by the DRM operator can then
enhance the precision of the obtained solution. Note that
the DRM is operated if ri ≤ λ or the paired parents have
same properties. Similarly to the DRM operation, those
mutated genes outside Ωθ will also be individually fixed at
their bounds.

2.4 Replacement Operator
Since the population size is kept constant, the survivor se-
lection of both parent and offspring population is an im-
portant way to preserve the currently found best solution
for use in subsequent generations. Two replacement strate-
gies, named generational and steady-state replacement, are
commonly used in associated with RCGAs. Generational

replacement systematically replaces the parent population
with the offspring population, whereas steady-state replace-
ment only replaces one parent chromosome with the best off-
spring chromosome. In the proposed DBRCGA, we utilize
the generational replacement with elitism strategy by which
at each generation the offspring chromosome is individually
compared with its parent chromosome (θA∗

i compare with
θ
A
i and θ

B∗
i compare with θ

B
i) to retain better ones for next

generation.

2.5 Alleviate Stagnation
It is well known that premature convergence and stagnation
can happen when the convergence speed is too fast and/or
the solution has been trapped by a local optimum. To al-
leviate premature stagnation and make the DBRCGA algo-
rithm more efficient to find the global optimum solution, we
examine the population diversity by calculating the stan-
dard deviation of chromosomes’ fitness. Once stagnation
has occured, i.e., Std. Dev.(f (Θ)) ≤ ε, where ε is a very
small positive value, we refresh all chromosomes except the
current best one are refreshed by using a simple random
procedure.

2.6 Parameters Tuning Guideline
The proposed DBRCGA consists of four parameters, λ, p, φ0

and b. The parameter λ controls the crossover and mutation
probability of the population. As mentioned previously, the
DBX operation is the most important function to generate
candidate solutions. To ensure that paired parents should
are to be performed by the DBX operation, we recommand
to use the value of λ=0.1. Besides, the proportional pa-
rameter p used in RS operation strongly affects the search
directions of DBX operation. Thus, a small value of p, say 0
6 p 6 0.1, is suggested to maintain the population diversity.
The parameter φ0, which is used to control the dynamic
variation of the DRM operator, is generally suggested as
φ0=0.5 to ensure the condition that at least half of search
space of each gene can be covered by DRM operation at the
beginning of evolution, making the chromosome have great
chances to jump out from the suboptimum region. In ad-
dition, the value of b is experimentally recommended to be
in the range of 2 6 b 6 4 to preserve the solution efficiency.
A very small positive value for the convergence level param-
eter ε should be used to alleviate stagnation. Generally, a
value between 10−12 and 10−10 is used for the case that the
desired precision of solution is set below 10−8.

3. EXPERIMENTAL PROCEDURE
According to [3], the experimental procedure has been car-

ried out on the benchmark functions given in [2, 4]. An
independent restart strategy was implemented in the pro-
posed DBRCGA. For each restart, the initial population Θ
is uniformly and randomly sampled within the search space
[−5, 5]n. Whenever the restart condition is met, the algo-
rithm will be reinitialized without using any information
about the last test run. This process is iterated until the
stopping criteria are met, i.e., maximum number of func-
tion evalutions (105 ∗ n) has been reached, or the function
value is less than the target precision (10−8). The restart
condition used in the DBRCGA is that the best solution ob-
tained so far does not vary more than 10−12 during the last
(50 + 25 ∗ n) generations, indicating that there is no signifi-

169

cant improvement in the population and the algorithm may
have been stuck on suboptimal region.

4. PARAMETER SETTINGS
According to the tuning guideline mentioned above, the

DBRCGA parameters are given as follows: λ = 0.1, pN = 1,
φ0 = 0.5, b = 4 and ε = 10−12. To take problem di-
mensions into account in DBRCGA, a dimension-dependent
population size N = min(10 ∗ n, 100) is used. Because that
the above mentioned parameter settings are identical for all
benchmarking functions, i.e., no specific parameter tuning
has been conducted for each function, the crafting effort [3]
is CrE=0 in using DBRCGA.

5. RESULTS
Results of DBRCGA from experiments are presented in

Figures 2, 3 and 4 and in Tables 1 and 2. Extensive bench-
mark results reveal that all functions can be solved by DBR-
CGA in the low search dimensions. Although some functions
in high search dimensions is unable to find a solution satisfy-
ing the target precision 10−8, the DBRCGA provides good
performance in separable function and functions with low or
moderate conditioning.

6. CPU TIMING EXPERIMENT
For the CPU timing experiment, the same DBRCGA al-

gorithm was run on f8 until at least 30 seconds had passed.
These experiments have been conducted with an Intel(R)
Core(TM) i7 CPU 920 processor, running at 2.61 GHz, un-
der Microsoft Windows 7 Enterprise x64 SP1 with 12GB
RAM and Matlab 7.12 (R2011a). The time per function
evaluation was 1.5; 1.3; 1.2; 1.0; 1.1; 1.2 times 10−5 seconds
for DBRCGA in dimensions 2; 3; 5; 10; 20; 40 respectively.

7. REFERENCES
[1] Y.-C. Chuang and C.-T. Chen. A study on real-coded

genetic algorithm for process optimization using
ranking selection, direction-based crossover and
dynamic mutation. In 2011 IEEE Congress on
Evolutionary Computation (CEC), pages 2488–2495,
New Orleans, LA, USA, 2011.

[2] S. Finck, N. Hansen, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions. Technical
Report 2009/20, Research Center PPE, 2009. Updated
February 2010.

[3] N. Hansen, A. Auger, S. Finck, and R. Ros.
Real-parameter black-box optimization benchmarking
2012: Experimental setup. Technical report, INRIA,
2012.

[4] N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2009. Updated February 2010.

5-D 20-D

a
ll
fu
n
ct
io
n
s

se
p
a
ra
b
le

fc
ts

m
o
d
er
a
te

fc
ts

il
l-
co
n
d
it
io
n
ed

fc
ts

m
u
lt
i-
m
o
d
a
l
fc
ts

w
ea
k
st
ru
ct
u
re

fc
ts

Figure 4: ERT loss ratio vs. a given budget FEvals.
Each cross (+) represents a single function. The tar-
get value ft used for a given FEvals is the smallest
(best) recorded function value such that ERT(ft) ≤
FEvals for the presented algorithm. Shown is FEvals
divided by the respective best ERT(ft) from BBOB-
2009 for functions f1–f24 in 5-D and 20-D. Line: ge-
ometric mean. Box-Whisker error bar: 25-75%-ile
with median (box), 10-90%-ile (caps), and minimum
and maximum ERT loss ratio (points). The vertical
line gives the maximal number of function evalua-
tions in a single trial in this function subset.

170

Figure 2: Expected number of f-evaluations (ERT, with lines, see legend) to reach fopt +∆f , median number
of f-evaluations to reach the most difficult target that was reached at least once (+) and maximum number of
f-evaluations in any trial (×), all divided by dimension and plotted as log10 values versus dimension. Shown

are ∆f = 10{1,0,−1,−2,−3,−5,−8}. Numbers above ERT-symbols indicate the number of successful trials. The light
thick line with diamonds indicates the respective best result from BBOB-2009 for ∆f = 10−8. Horizontal lines
mean linear scaling, slanted grid lines depict quadratic scaling.

171

D = 5 D = 20

se
p
a
ra
b
le

fc
ts

m
is
c.

m
o
d
er
a
te

fc
ts

il
l-
co
n
d
it
io
n
ed

fc
ts

m
u
lt
i-
m
o
d
a
l
fc
ts

w
ea
k
st
ru
ct
u
re

fc
ts

a
ll
fu
n
ct
io
n
s

Figure 3: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials with an outcome
not larger than the respective value on the x-axis. Left subplots: ECDF of number of function evaluations
(FEvals) divided by search space dimension D, to fall below fopt + ∆f with ∆f = 10k, where k is the first
value in the legend. Right subplots: ECDF of the best achieved ∆f divided by 10−8 for running times of
D, 10D, 100D, . . . function evaluations (from right to left cycling black-cyan-magenta). The thick red line
represents the most difficult target value fopt + 10−8. Legends indicate the number of functions that were
solved in at least one trial. Light brown lines in the background show ECDFs for ∆f = 10−8 of all algorithms
benchmarked during BBOB-2009.

172

5-D 20-D
∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 15/15
5.1(7) 49(33) 96(26) 197(20) 301(33) 416(43) 15/15

f2 83 87 88 90 92 94 15/15
27(4) 33(4) 41(5) 54(6) 67(6) 81(6) 15/15

f3 716 1622 1637 1646 1650 1654 15/15
2.4(1.0) 8.0(4) 11(6) 11(6) 12(6) 12(6) 15/15

f4 809 1633 1688 1817 1886 1903 15/15
2.6(1) 11(7) 17(10) 16(10) 16(9) 16(9) 15/15

f5 10 10 10 10 10 10 15/15
31(33) 50(38) 54(40) 54(40) 54(40) 54(40) 15/15

f6 114 214 281 580 1038 1332 15/15
7.4(3) 10(3) 12(4) 10(2) 8.0(2) 8.2(1) 15/15

f7 24 324 1171 1572 1572 1597 15/15
16(14) 4.1(2) 4.9(6) 7.9(7) 7.9(7) 8.0(8) 15/15

f8 73 273 336 391 410 422 15/15
18(5) 16(7) 24(16) 43(16) 56(22) 75(30) 15/15

f9 35 127 214 300 335 369 15/15
34(10) 37(26) 42(30) 72(51) 109(77) 129(74) 15/15

f10 349 500 574 626 829 880 15/15
59(45) 194(275) 407(299) 1184(1040)1630(1600)4070(4546) 2/15

f11 143 202 763 1177 1467 1673 15/15
18(9) 106(111) 77(75) 100(79) 140(85) 177(152) 11/15

f12 108 268 371 461 1303 1494 15/15
615(1690) 1328(1901) 9445(10793) ∞ ∞ ∞5.0e5 0/15

f13 132 195 250 1310 1752 2255 15/15
22(8) 138(161) 603(907) 1034(1035)2061(2253) ∞5.0e5 0/15

f14 10 41 58 139 251 476 15/15
1.5(1) 15(7) 25(3) 26(9) 110(97) 1315(1232) 1/15

f15 511 9310 19369 20073 20769 21359 14/15
3.7(2) 26(24) 84(86) 81(90) 79(87) 77(84) 4/15

f16 120 612 2662 10449 11644 12095 15/15
2.2(1) 27(41) 38(51) 50(55) 86(95) 101(117) 5/15

f17 5.2 215 899 3669 6351 7934 15/15
3.7(5) 5.4(0.8) 7.7(1) 16(14) 38(37) 88(92) 4/15

f18 103 378 3968 9280 10905 12469 15/15
5.0(3) 12(2) 5.4(9) 100(123) ∞ ∞5.0e5 0/15

f19 1 1 242 1.2e5 1.2e5 1.2e5 15/15
28(26) 3184(1818) 859(1117) ∞ ∞ ∞5.0e5 0/15

f20 16 851 38111 54470 54861 55313 14/15
18(15) 4.4(6) 2.4(2) 1.7(1) 1.7(1) 1.7(1) 14/15

f21 41 1157 1674 1705 1729 1757 14/15
3.2(3) 2.2(5) 2.1(4) 2.7(3) 3.3(3) 3.8(3) 15/15

f22 71 386 938 1008 1040 1068 14/15
2.6(3) 6.7(5) 11(11) 12(10) 15(11) 16(11) 15/15

f23 3.0 518 14249 31654 33030 34256 15/15
0.91(0.8) 19(19) 43(42) 222(265) 212(242) 205(219) 1/15

f24 1622 2.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15
11(12) 5.6(6) ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15
142(31) 304(46) 485(63) 799(93) 1119(109) 1449(135) 15/15

f2 385 386 387 390 391 393 15/15
75(6) 93(7) 113(8) 147(10) 183(9) 220(9) 15/15

f3 5066 7626 7635 7643 7646 7651 15/15
144(64) 450(405) 1181(1319) 1180(1308)1181(1177)1182(1194) 3/15

f4 4722 7628 7666 7700 7758 1.4e5 9/15
236(100) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 41 15/15
151(38) 213(84) 228(106) 233(112) 234(112) 234(112) 15/15

f6 1296 2343 3413 5220 6728 8409 15/15
26(11) 55(8) 46(9) 43(8) 43(10) 43(11) 15/15

f7 1351 4274 9503 16524 16524 16969 15/15
80(75) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f8 2039 3871 4040 4219 4371 4484 15/15
50(40) 150(264) 159(253) 184(243) 213(233) 257(250) 12/15

f9 1716 3102 3277 3455 3594 3727 15/15
353(124)1855(1640) ∞ ∞ ∞ ∞2.0e6 0/15

f10 7413 8661 10735 14920 17073 17476 15/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f11 1002 2228 6278 9762 12285 14831 15/15
431(168) 396(54) 189(21) 165(8) 154(5) ∞2.0e6 0/15

f12 1042 1938 2740 4140 12407 13827 15/15
185(16) 1209(1550)10244(12227) ∞ ∞ ∞2.0e6 0/15

f13 652 2021 2751 18749 24455 30201 15/15
183(295) 398(497) 2064(2546) ∞ ∞ ∞2.0e6 0/15

f14 75 239 304 932 1648 15661 15/15
32(9) 45(10) 67(12) 92(18) 1640(1281) ∞2.0e6 0/15

f15 30378 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 27265 77015 1.9e5 2.0e5 2.2e5 15/15
118(162) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f17 63 1030 4005 30677 56288 80472 15/15
18(9) 2347(3013) ∞ ∞ ∞ ∞2.0e6 0/15

f18 621 3972 19561 67569 1.3e5 1.5e5 15/15
13(6) 7528(7806) ∞ ∞ ∞ ∞2.0e6 0/15

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
975(165)6.9e5(8e5) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 46150 3.1e6 5.5e6 5.6e6 5.6e6 14/15
34(6) 148(148) ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 6541 14103 14643 15567 17589 15/15
103(6) 162(255) 97(142) 95(137) 90(128) 81(114) 10/15

f22 467 5580 23491 24948 26847 1.3e5 12/15
100(259) 259(275) 392(395) 372(385) 350(372) 70(74) 3/15

f23 3.2 1614 67457 4.9e5 8.1e5 8.4e5 15/15
1.7(2) 415(427) ∞ ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured
during BBOB-2009 (given in the respective first row) for different ∆f values for functions f1–f24. The median
number of conducted function evaluations is additionally given in italics, if ERT(10−7) = ∞. #succ is the
number of trials that reached the final target fopt + 10−8.

173

Table 2: ERT loss ratio compared to the respective
best result from BBOB-2009 for budgets given in
the first column (see also Figure 4). The last row
RLUS/D gives the number of function evaluations
in unsuccessful runs divided by dimension. Shown
are the smallest, 10%-ile, 25%-ile, 50%-ile, 75%-ile
and 90%-ile value (smaller values are better). The
ERT Loss ratio equals to one for the respective best
algorithm from BBOB-2009. Typical median values
are between ten and hundred.

f 1–f 24 in 5-D, maxFE/D=100018
#FEs/D best 10% 25% med 75% 90%

2 0.77 1.7 2.1 2.4 3.7 8.5
10 2.6 3.3 3.8 5.1 6.8 16
100 4.2 5.0 8.7 14 21 95
1e3 2.9 4.6 7.8 16 37 98
1e4 2.7 3.8 11 42 1.4e2 4.7e2
1e5 1.8 3.6 15 63 3.6e2 1.6e3

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

f 1–f 24 in 20-D, maxFE/D=100008
#FEs/D best 10% 25% med 75% 90%

2 1.0 2.3 12 31 40 40
10 7.0 7.4 19 1.5e2 2.0e2 2.0e2
100 6.4 9.4 29 45 64 2.8e2
1e3 22 23 39 55 79 3.1e2
1e4 30 81 1.3e2 2.2e2 3.8e2 8.8e2
1e5 42 1.5e2 2.5e2 4.6e2 1.0e3 1.7e3
1e6 42 80 3.5e2 1.7e3 5.9e3 1.2e4

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

174

