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ABSTRACT
As Internet data centers (IDCs) have been increasing in scale
and complexity, they are currently a significant source of en-
ergy consumption and CO2 emission. This paper proposes
and evaluates a new framework to operate a federation of
IDCs in a “green” way. The proposed framework, called
Green Monster, dynamically moves services (i.e., workload)
across IDCs for increasing renewable energy consumption
while maintaining their performance. It makes decisions of
service migration and placement with an evolutionary multi-
objective optimization algorithm (EMOA) that evolves a set
of solution candidates through global and local search pro-
cesses. The proposed EMOA seeks the Pareto-optimal solu-
tions by balancing the trade-offs among conflicting optimiza-
tion objectives such as renewable energy consumption, cool-
ing energy consumption and response time performance.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications

General Terms
Algorithms, Management

Keywords
Evolutionary multiobjective optimization, Cloud comput-
ing, Internet data centers, sustainability, renewable energy

1. INTRODUCTION
Internet data centers (IDCs) have become an integral com-

ponent to operate Internet services and scientific computa-
tion. Since they have been increasing in scale and complex-
ity, they consume a growing and visible portion of energy
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supply [11, 24]. Energy-intensive IDCs are a major source
of CO2 emission. As the majority of computational pro-
cessing and data storage have been moving to IDCs, with
the client devices running simpler interfaces, IDCs continue
to be a significant source of energy consumption and CO2

emission in the near future. This trend has prompted in-
creased scrutiny from regulators and non-governmental or-
ganizations (NGOs) [7, 9, 24].

In order to replace conventional fuels and reduce CO2

emission, many countries actively pursue more renewable
sources of energy through their own capital infrastructure
projects or through grid feed-in tariff incentive schemes. As
a result, the capacity of renewable energy has increased ex-
ponentially in the past decade [18].

Given the aforementioned issues and trends, this paper
proposes a framework to operate a federation (i.e., cloud) of
geographically-dispersed IDCs in a “green” way. The pro-
posed framework, called Green Monster, dynamically moves
services (i.e., workload) to IDCs with more desirable en-
ergy profiles while maintaining performance (e.g., response
time). It makes decisions of service migration and placement
with an evolutionary multiobjective optimization algorithm
(EMOA) that evolves a set of solution candidates through
both global and local search processes. Each solution candi-
date (or individual) represents a particular placement config-
uration of individual services. The proposed EMOA consid-
ers conflicting optimization objectives (e.g., renewable en-
ergy consumption and performance1) and seeks the Pareto-
optimal solutions by balancing the trade-offs among those
objectives subject to a given capacity constraint in each IDC.

Since there exits no single optimal solution under con-
flicting objectives but rather a set of alternative solutions
of equivalent quality, the proposed EMOA is designed to
search Pareto-optimal solutions that are equally distributed
in the objective space. Therefore, it can produce both ex-
treme service placement configurations (e.g., the one yield-
ing high renewable energy consumption with high response
time) and balanced service placement configurations (e.g.,
the one yielding intermediate renewable energy consumption
with intermediate response time) at the same time. Given a
set of heuristically-approximated Pareto-optimal solutions,
an IDC operator can examine the trade-offs among them

1Increasing renewable energy consumption can degrade per-
formance. On the contrary, improving performance can de-
crease renewable energy consumption.
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and make a well-informed decision to choose one of them, as
the best service placement, according to his/her preferences
and priorities. For example, an IDC operator can examine
how he/she can trade (or sacrifice) response time for renew-
able energy consumption and determine a particular service
placement configuration that yields a desirable/comfortable
balance of response time and renewable energy consumption.

Simulation results show that Green Monster allows IDCs
to place services for reducing their carbon footprint while
maintaining their performance. The proposed EMOA out-
performs conventional capacity-based service placement al-
gorithms with respect to renewable energy consumption,
cooling energy consumption and response time performance.

2. BACKGROUND AND RELATED WORK
IDCs reportedly consumed 203.4 to 271.8 TWh worldwide

in 2010, which accounted for 1.1% to 1.5% of the total elec-
tricity usage [11]. The estimates are 2.9 to 3.8 times greater
than the IDC energy consumption in 2000 (70.8 TWh),
which accounted for 0.54% of the total electricity usage.
In the U.S., it is estimated that IDCs consumed 67.1 to
85.6 TWh in 2010, which accounted for 1.7% to 2.2% of
the total electricity usage [11]. The estimates are 2.4 to
3.0 times greater than the IDC energy consumption in 2000
(28.2 TWh), which accounted for 0.82% of the total elec-
tricity usage. The U.S. Environmental Protection Agency
reports that IDCs in the U.S. consumed approximately 4.5
billion dollars of electricity (61 TWh) in 2006 and the energy
consumption exceeded the electricity collectively consumed
by all color television sets in the U.S. [24].

In 2007, Gartner estimated that the information and com-
munications technology (ICT) industry produced 2% of global
CO2 emission, which is on par with the aviation industry2.
IDCs were responsible for 23% of the ICT’s emission

The Renewable Energy Policy Network for the 21st Cen-
tury (REN21) reported that renewable energy provided 312 GW
worldwide in 2010, which accounted for 3% of global elec-
tricity generation [18]3. Wind power is growing at the rate
of 30% annually. It provided two thirds of the total renew-
able power capacity in 2010 (198 GW). Solar photovoltaic
capacity increased more than three times from 2007 to 2010.

There exists a considerable volume of research efforts that
address energy efficiency issues in IDCs. Many of them focus
on consolidating workload (i.e., services) on a limited num-
ber of servers in order to allow idle servers to be switched
off/sleep and save power consumption [2, 3, 6, 13, 19, 23].
Instead of service consolidation, Green Monster focuses on
sustainability-driven dynamic service placement.

CPU voltage/frequency scaling is another power saving
strategy [10]. It intends to dynamically reduce the power
consumption of each server’s CPU via adaptive voltage/frequency
adjustment. In contrast, Green Monster does not consider
dynamic CPU voltage/frequency scaling but approaches en-
ergy efficiency through dynamic service placement.

Another line of relevant research is to reduce the load on
cooling systems by scheduling workload within and among
IDCs [1, 14, 16, 21, 25]. These work are similar to Green
Monster in that it also considers cooling energy saving as
one of its optimization objectives. However, unlike those
relevant work, Green Monster considers multiple conflict-

2http://www.gartner.com/it/page.jsp?id=530912
319% if hydroelectricity is included

>25000GWh

5000 - 10000GWh

2000 - 5000GWh

<2000GWh

<10GWh
10 - 50 GWh

500 - 1000 GWh
2000 - 4000 GWh

Figure 1: An Example Federation of IDCs

ing objectives including cooling energy saving and seeks the
optimal trade-off solutions among them.

Qureshi et al. move network traffic among IDCs based on
the current electricity costs [17]. They do not consider sus-
tainability but energy costs only. Thus, their algorithm can
sacrifice the sustainability of IDCs in favor of cost savings.

Garg et al. and Saurabh et al. take similar approaches to
Green Monster’s in that they consider sustainability (CO2

emission) to operate applications in IDCs [8, 20]. Unlike
them, Green Monster addresses sustainability not only by
maximizing renewable energy consumption but also by min-
imizing cooling energy consumption according to changing
indoor and outdoor temperature.

Zeratul and Maolin study a genetic algorithm to seek the
optimal service placement with respect to the service exe-
cution time that includes the processing time in compute
servers and the data access time between compute and stor-
age servers [26]. In contrast, Green Monster considers sus-
tainability (renewable energy consumption and cooling en-
ergy saving) as well as service execution time, which is rep-
resented by the user-to-service distance objective.

Tantar et al. leverage an EMOA to balance different types
of loads (e.g., memory load and processing load) among
servers in an IDC [23]. Rather than intra-IDC optimiza-
tion for load balancing, Green Monster focuses on inter-IDC
optimization for sustainable operation of federated IDCs.

3. GREEN MONSTER
This section describes the proposed framework: Green

Monster. It assumes federated IDCs: {D1, D2, ..., Dj , ..., DM}
where M denotes the total number of IDCs. IDCs host
services, {S1, S2, ..., Si, ..., SK}, each of which implements a
particular service type (e.g., data, voice or video service).
Figure 1 shows an example federation of IDCs that are ge-
ographically distributed to EU countries (M = 9).

Figure 2 shows an architectural overview of the interac-
tions between Green Monster and IDCs. Green Monster pe-
riodically collects each IDC’s operational information such
as service request rate and performs optimization for dy-
namic service migration and placement. It is designed plug-
gable for various types of optimization engines including
EMOAs. Once an optimization engine determines a service
placement configuration, Green Monster disseminates it to
individual IDCs in order to trigger service migration.
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Figure 2: Interactions between Green Monster and
IDCs

3.1 Optimization Objectives
Green Monster considers three optimization objectives:

renewable energy consumption (RE), cooling energy con-
sumption (CE) and user-to-service distance (USD). RE is
to be maximized, CE is to be minimized, and USD is to be
minimized. Minimizing CE implies minimizing power usage
effectiveness (PUE) [12]. USD implies the response time of
services to users.

The first objective, renewable energy consumption (RE),
is computed as follows:

fRE =

M∑
j=1

K∑
i=1

(Iij × li ×Rj) (1)

Iij = 1 if the i-th service (Si) is placed in the j-th IDC (Dj);
otherwise, Iij = 0. li is the daily workload given to Si:

li = ai × ui (2)

ai denotes the number of service requests per day given
to Si, and ui denotes the per-request CPU utilization of Si.
Rj denotes the renewable energy ratio in Dj . It is the

ratio of renewable energy production to the total energy
production in the country where Dj is located.

The second objective, cooling energy consumption (CE),
is computed as follows:

fCE =

M∑
j=1

Ej (3)

Ej denotes the cooling energy consumption of Dj :

Ej =
Hj

Qj
(4)

Hj indicates the energy consumed by computing equip-
ment, which is then converted to heat:

Hj =

K∑
i=1

(Iij × li × n(Pmax − Pidle)) + nPidle (5)

Pmax denotes the maximum power that a single server
consumes at the peak load, and Pidle denotes the power
that a single server consumes when it is idle. n denotes the
number of servers in an IDC.
Qj denotes the coefficient of performance (COP) in Dj . A

higher COP means that thermodynamic process is more effi-
cient in the cooling system (e.g., air conditioner) in Dj . Un-
der the principles of thermodynamics, COP highly depends
on the indoor and outdoor temperature (Ti and To) [15]:

COP =
1

To
Ti
− 1

(6)

Given a fixed indoor temperature, the lower the outdoor
temperature is, the more efficient a cooling system is. When
the outdoor temperature is higher than the indoor tempera-
ture, Green Monster uses the DOE/ORNL Heat Pump De-
sign Model4 to compute COP values.

In addition to conventional air conditioning, Green Mon-
ster assumes a free-cooling system when the outdoor temper-
ature is below the indoor temperature5. Free cooling allows
IDCs to directly utilize the outdoor air to partially, or even
fully, condition the indoor temperature. Free-cooling COP
(COPf ) is obtained by adjusting conventional (i.e. non-free-
cooling) COP:

COPf = α× COP (7)

The third objective, user-to-service distance (USD), is
computed as follows.

fUSD =

K∑
i=1

(bi × di) (8)

bi indicates Si’s bandwidth consumption per day between
IDCs:

bi = wi × ai (9)

wi denotes the per-request volume of data transmission
for Si. dj is the shortest logical distance (i.e., hop count)
between the initial IDC of Si (i.e., the IDC that Si was
initially placed on) and the current IDC of Si (i.e., the IDC
that Si currently resides on).

3.2 Capacity Constraint
Green Monster considers the following capacity constraint

for each IDC (Dj). K∑
i=1

(Iij × li) < Cj (10)

Cj denotes the capacity of Dj (i.e., the maximum daily
workload that Dj can accept for K services).

The capacity violation of an individual (i.e., solution can-
didate in the proposed EMOA) is computed as follows:

v =

M∑
j=1

(Ij × ((

K∑
i=1

Iij × li)− Cj)) (11)

Ij = 1 if Dj violates its capacity constraint (Cj); other-
wise, Ij = 0.

3.3 Individual Representation
In Green Monster, each individual represents a placement

configuration of all K services in M IDCs. Figure 3 shows
an example individual, which places S1 in D3 and S2 in D4

(K = 5 and M = 4).

3.4 The Proposed EMOA
Algorithm 1 describes the EMOA in Green Monster. Its

algorithmic structure is designed based on NSGA-II, a well-
known existing EMOA [4].

4http://www.ornl.gov/~wlj/hpdm/MarkVII.shtml
5Cooling (heat pumping) is still required in IDCs even when
the outdoor temperature is below the indoor temperature
because heat load is generated by the indoor computing
equipment rather than the outdoor environment.
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Figure 3: An Example Individual

Algorithm 1 Optimization Process in the Proposed EMOA

1: g = 0
2: Pg = initialPopulationGeneration(N , D, C, S, L)
3: while g < gmax do
4: Og = ∅;
5: while |Og | < N do
6: p1 = tournament(Pg)
7: p2 = tournament(Pg)
8: if random() ≤ Pc then
9: {o1, o2} = crossover(p1 , p2 )

10: else
11: {o1, o2} = {p1, p2}.
12: end if
13: o1 = mutation(o1, Pm)
14: o2 = mutation(o2, Pm)
15: o1 = localSearch(o1, Pl, D)
16: o2 = localSearch(o2, Pl, D)
17: Og = Og ∪ {o1, o2}
18: end while
19: Rg = Pg ∪ Og

20: F = sortByDominationRanking(Rg)
21: Pg+1 = ∅
22: i = 1
23: while |Pg+1|+ |Fi| ≤ N do
24: Pg+1 = Pg+1 ∪ Fi

25: i = i+ 1
26: end while
27: sortByCrowdingDistance(Fi)
28: Pg+1 = Pg+1 ∪ Fi[1 : (N − |Pg+1|)]
29: g = g + 1

30: end while

At the 0-th generation, N individuals are generated as
the initial population P0 (Line 2). Algorithm 2 shows the
process of generating the initial population. The proposed
EMOA performs capacity-aware random service placement.
It assigns each service Si to a randomly-chosen IDC Dj as
far as the service’s workload li does not violate the IDC’s
capacity constraint Cj (Lines 9 to 11 in Algorithm 2). In
case of a capacity violation, the service is assigned to the
IDC that has the largest remaining capacity (Line 14 and 15
in Algorithm 2).

At each generation (g), two parent individuals (p1 and
p2) are selected from the current population Pg with binary
tournaments (Lines 6 and 7 in Algorithm 1). A binary tour-
nament randomly takes two individuals from Pg, compares
them based on the notion of constrained dominance, and
chooses a superior one as a parent.

The notion of constrained dominance is defined as follows.
An individual i is said to constrained-dominate an individ-
ual j (denoted by i �C j), if any of the following three
conditions is hold:

• i is feasible (v(i) = 0; Equation 11), and j is not
(v(j) > 0; Equation 11)6.

• i and j are both feasible, and i dominates j.

6A feasible individual is an individual that violates none of
given constraints (Equation 10). An infeasible individual is
an individual that violates at least one of given constraints.

• Both i and j are infeasible, but the total constraint
violation of i is less than j’s (v(i) < v(j); Equation 11).

Given the notion of dominance [22], an individual i is said
to dominate another individual j (denoted by i � j) if the
both of the following conditions are hold.

• i’s objective values are superior than, or equal to, j’s
in all objectives.

• i’s objective values are superior than j’s in at least one
objectives.

With the crossover rate Pc, two parents reproduce two off-
spring with a single-point crossover operator (Lines 8 and 9).
Then, mutation occurs on the two offspring (Lines 13 to 14).
It assigns a new randomly-chosen IDC to each service in the
offspring with the mutation rate Pm.

Algorithm 2 initialPopulationGeneration()

Require: N : The number of individuals in the population
Require: D = {D1, D2, ..., DM}: IDCs
Require: C = {C1, C2, ..., CM}: Each IDC’s capacity constraint
Require: S = {S1, S2, ..., SK}: Services
Require: L = {l1, l2, ..., lK}: Each service’s workload
1: P = ∅
2: for each Cj in C do
3: cj = Cj

4: end for
5: k = 0
6: while k < N do
7: Create an individual pk
8: for each Si in S do
9: Choose an IDC Dj at random.

10: if cj − li ≥ 0 then
11: Assign Si to Dj

12: cj = cj − li
13: else
14: Dm = argmaxDn∈Dcn
15: Assign Si to Dm

16: cn = cn − li
17: end if
18: end for
19: P = P ∪ {pk}
20: k = k + 1
21: end while
22: return P

In Lines 15 and 16, local search is executed on the mu-
tated offspring in order to improve their quality. Algorithm 3
shows this improvement process. It attempts to move each
service to a new IDC with the local search probability Pl.
It favors the improvement in renewable energy consump-
tion (RE) than the other objectives. A service migration is
performed if a service can yield better fRE while it does not
degrade the other objective values and constraint violation.

The binary tournament, crossover, mutation and local
search operators are executed repeatedly on Pg to repro-
duce N offspring. The offspring (Og) are combined with the
parent population Pg to form Rg (Line 19). This way, the
proposed EMOA performs (N +N) elitism.

The environmental selection process follows the reproduc-
tion process. N individuals are selected from 2N individuals
in Rg as the next generation’s population (Pg+1). First, the
individuals in Rg are ranked based on their constrained-
dominance relationships. Non-dominated individuals are on
the first rank. The i-th rank consists of the individuals dom-
inated only by the individuals on the (i−1)-th rank. Ranked
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individuals are stored in F (Line 20). Fi contains the i-th
rank individuals.

Then, the individuals in F move to Pg+1 on a rank by
rank basis, starting with F1 (Lines 23 to 26). If the num-
ber of individuals in Pg+1 ∪ Fi is less than N , Fi moves to
Pg+1. Otherwise, a subset of Fi moves to Pg+1. The sub-
set is selected based on the crowding distance metric, which
measures the distribution (or diversity) of individuals in the
objective space [5] (Lines 27 and 28). The metric computes
the distance between two closest neighbors of an individ-
ual in each objective and sums up the distances associated
with all objectives. A higher crowding distance means that
an individual in question is more distant from its neigh-
boring individuals in the objective space. In Line 27, the
individuals in Fi are sorted from the one with the highest
crowding distance to the one with the lowest crowding dis-
tance. The individuals with higher crowding distance mea-
sures have higher chances to be selected to Pg+1 (Line 28).

Algorithm 3 localSearch()

Require: o: An individual to be applied for a local search
Require: Pl: Local search probability
Require: D = {D1, D2, ..., DM}: IDCs
1: for each service Si in o do
2: fRE = fRE(o)
3: fCE = fCE(o)
4: fUSD = fUSD(o)
5: v = v(o)
6: if random() ≤ Pl then
7: for each Dj in D do
8: Assign Si to Dj .
9: f ′RE = fRE(o)

10: f ′CE = fCE(o)
11: f ′USD = fUSD(o)
12: v′ = v(o)
13: if f ′RE > fRE and f ′CE ≤ fCE and f ′USD ≤ fUSD

and v′ ≤ v then
14: fRE = f ′RE
15: fRE = f ′CE
16: fUSD = f ′USD
17: else
18: Cancel the assignment of Si to Dj .
19: end if
20: end for
21: end if
22: end for
23: return o

4. SIMULATION EVALUATION
This section describes a series of simulation results to eval-

uate Green Monster.

4.1 IDC Configurations
This evaluation study simulates IDCs located in nine ma-

jor European countries: Denmark, Germany, Greece, Ire-
land, Italy, Netherlands, Spain, UK and Portugal (Figure 1).
These countries are chosen in an attempt to give a significant
variation in both climates and sources of renewable energy
used. For the temperature variations in each IDC’s host
country, this evaluation study uses the data from the Euro-
pean Climate Assessment & Dataset project, which records
real temperature data in Europe7.

Figure 4 shows the total renewable energy production in
each IDC host country from January 2007 to December 2009.

7http://eca.knmi.nl

6000

4000

R
e

n
e

w
a

b
le

 E
n

e
rg

y
 P

ro
d

u
ct

io
n

 (
G

W
h

) UK

Greece

Netherlands

Portugal

Denmark 

Germany

Ireland

Italy

Time (months)
1          2         3          4          5          6         7          8          9        10        11      12    

2000

0

R
e

n
e

w
a

b
le

 E
n

e
rg

y
 P

ro
d

u
ct

io
n

 (

Italy

Spain

Figure 4: Renewable Energy Production
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Figure 5: Renewable Energy Ratio

Figure 5 depicts the average renewable energy ratio in each
IDC host country (Rj in Equation 1) during the same period.
Figures 4 and 5 are produced with the data available from
the International Energy Agency (IEA)8.

Simulated IDCs are connected in a network topology in
line with the European Optical Network (Figure 1). Three
types of services are deployed on IDCs: data, voice and
video services (Table 1). Each IDC operates a varying num-
ber of servers (8–200) and services (16–400), proportionate
to the population of its host country. All IDCs operate a
standardized model of servers: Pmax = 400 W and Pidle =
150 W (Table 1).

Figure 6 shows the daily service request rates placed on
different IDCs. The average total rate is two million requests
per day. The dynamic changes in the request rates are con-
figured by adapting the traffic trace in Akamai’s IDCs [17]9.
The rates are configured across IDCs in proportion to the
populations of their host countries. In each IDC, requests
are evenly distributed to all deployed services.

4.2 EMOA Configurations
The proposed EMOA is configured with a set of param-

eters shown in Table 2. It runs bi-weekly for 12 simulated
months. After a bi-weekly run, one of non-dominated indi-

8http://www.iea.org/stats/surveys/elec_archives.
asp
9In order to represent long-term fluctuations in request
rates, this evaluation study adds a number of randomly dis-
tributed surges and falls on Akamai’s short-term trace data.
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Table 1: IDC Configurations
Parameter Value

# of IDCs (M in Section 3.1) 9
Total # of servers in IDCs 878
# of service types 3
Total # of services (K in Section 3.1) 1756
Pmax (Equation 5) 400 W
Pidle (Equation 5) 150 W
Per-request CPU utilization

for data services (ui in Equation 2 and 9) [0.001, 0.01]
Per-request CPU utilization

for voice services (ui in Equation 2 and 9) [0.011, 0.024]
Per-request CPU utilization

for video services (ui in Equation 2 and 9) [0.025, 0.039]
Per-request data transmission volume

for data services (wi in Equation 9) [0.01, 0.05]
Per-request data transmission volume

for voice services (wi in Equation 9) [0.06, 0.15]
Per-request data transmission volume

for video services (wi in Equation 9) [0.16, 0.25]
Free-cooling efficiency (α in Equation 7) 1.4

viduals is chosen as a simulated decision of an IDC operator
in order to perform dynamic service migration and place-
ment. The individual choice is based on the hypervolume
metric [27]. (The individual with the highest hypervolume
is chosen.) The metric measures the volume of a hyper-
cube that an individual dominates in the objective space.
It tends to favor balanced individuals that equally balance
the trade-offs among all objectives rather than extreme in-
dividuals that yield superior performance only in a limited
number of objectives.

In order to evaluate Green Monster, it is compared with
the following two benchmark algorithms:

• Static placement: Randomly-selected two services are
placed on each server at the beginning of a simulation.
They do not dynamically migrate during a simulation.

• Random placement: Services dynamically migrate by
executing Algorithm 2 bi-weekly.

4.3 Simulation Results
Figure 7 shows how individuals increase the union of the

hypervolumes that they dominate in the objective space as
the number of generations grows. The hypervolume measure

Table 2: EMOA Configurations
Parameter Value

# of generations (gmax in Algorithm 1) 100
Population size (N in Algorithm 1) 100
Crossover rate (Pc in Algorithm 1) 0.9
Mutation rate (Pm in Algorithm 1) 0.1
Local search rate (Pl in Algorithm 3) 0.1
Interval between the proposed EMOA’s runs 2 weeks

rapidly increases in the first 30 generations and converges
around the 70th generation. At the last generation, all indi-
viduals are non-dominated in the population. This indicates
that the proposed EMOA allows individuals to efficiently
evolve and collectively improve their quality (i.e., objective
values) within 100 generations (gmax in Algorithm 1).
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Figures 8(a), 8(b) and 8(c) show the two dimensional ob-
jective spaces that plot non-dominated individuals obtained
at the last generation (RE-CE, CE-USD and RE-USD, re-
spectively). Note that the RE axis (X axis) indicates 1/fRE

in Figures 8(a) and 8(c). Figure 8 demonstrates that RE, CE
and USD conflict with each other and the proposed EMOA
successfully reveals the trade-offs among them. For example,
in the RE-CE objective space (Figure 8(a)), the proposed
EMOA finds the individuals around the left top corner (i.e.,
the ones yielding high fRE values and high fCE values), the
individuals around the right bottom corner (i.e., the ones
yielding low fRE values and low fCE values) and the in-
dividuals between the two corners (i.e., the ones yielding
intermediate fRE and fCE values). As discussed in Sec-
tion 1, the proposed EMOA allows IDC operators to make
well-informed decisions for service migration and placement
by providing them a diverse set of approximated Pareto-
optimal solutions.

Figures 9(a), 9(b) and 9(b) show how Green Monster
and two benchmark algorithms yield the RE, CE and USD
values, respectively, throughout a simulated year. As de-
picted in Figure 9(a), Green Monster consumes a signifi-
cantly higher amount of renewable energy than two bench-
mark algorithms. Table 3 shows the daily average of each
objective value. On average, Green Monster yields 35.1%
higher renewable energy consumption per day than the static
placement algorithm. This difference accounts for 114 MWh
per day. Similarly, Green Monsters yields 33.9% higher re-
newable energy consumption per day than the random place-
ment algorithm. This difference accounts for 111 MWh per
day. Figure 9(a) illustrates that Green Monster successfully
migrates services to the IDCs with higher renewable energy
ratios while considering the other two objectives.
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Figure 8: Non-dominated Individuals in Two Dimensional Objective Spaces

Figure 9(b) shows that Green Monster saves more cooling
energy than two benchmark algorithms in summer. This
indicates that it successfully migrates services to the IDCs
with lower outdoor temperatures and hence higher COP val-
ues. (Note that cooling energy consumption is proportion-
ate to the COP and workload in an IDC. See Section 3.1.)
On the contrary, Green Monster and two benchmark al-
gorithms yield similar cooling energy consumption during
winter because outdoor temperatures and COP values are
similar across IDCs. As shown in Table 3, Green Monster
saves 3.2 % more cooling energy than the random placement
algorithm on a daily average basis.

Figure 9(c) depicts that Green Monster consistently out-
performs the random placement algorithm in the user-to-
service distance objective. On a daily average basis, Green
Monster yields a 23.4% shorter USD than the random place-
ment algorithm (Table 3). This implies that the response
time of services is significantly lower in Green Monster. Note
that USD is always zero in the static placement algorithm
because it does not dynamically migrate services.

In summary, Figure 9 demonstrates that Green Monster
successfully balances the trade-offs among objectives and
yields superior performance than two benchmark algorithms.

Table 3: Daily-averaged Objective Values
RE CE USD

Static 324.5 949.58 0
Random 327.3 947.34 487378

Green Monster 438.5 919.02 373172

5. CONCLUSIONS
The proposed framework, Green Monster, is designed to

dynamically move services across IDCs for reducing their
carbon footprint while maintaining their performance. Sim-
ulation results verify this and demonstrates that Green Mon-
ster outperforms conventional capacity-based service place-
ment algorithms with respect to conflicting objectives.
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