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ABSTRACT

MEMPSODE is a recently published optimization software
that implements memetic Particle Swarm Optimization and
Differential Evolution approaches. It combines previously
proposed variants of the two algorithms, with the Merlin
optimization environment, which includes a variety of es-
tablished local search methods for continuous optimization.
The present study aims at comparing the performance of
the memetic variants produced by the two metaheuristics
within the framework of MEMPSODE. The algorithms are
assessed on the noiseless testbed of the Black—Box Optimiza-
tion Benchmarking 2012 workshop, providing useful insight
regarding their relative efficiency and effectiveness.
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1. INTRODUCTION

Particle Swarm Optimization (PSO) and Differential Evo-
lution (DE) have been established as promising optimization
tools for solving continuous global optimization problems [2,
8, 13]. They are essentially based on models that draw inspi-
ration from physical systems, exhibiting remarkable capabil-
ity of locating global solutions in various optimization tasks.
However, in many cases, the exploration capability of these
algorithms is not accompanied by proportional exploitation
properties, i.e., their solution fine-tuning capability is infe-
rior than their global search quality.

This weakness motivated the development of a closely re-
lated category of algorithms, namely Memetic Algorithms
(MAs). MAs constitute a class of hybrid metaheuristics that
combine population-based optimization algorithms with es-
tablished local search procedures [9]. Recently, the MEMP-
SODE (MEMetic Particle Swarm Optimization and Differ-
ential Evolution) software was published [17]. MEMPSODE
implements memetic schemes of a generalized PSO variant,
namely Unified PSO (UPSO) [12], as well as DE. It com-
bines the memetic schemes proposed in [14] originally for
PSO, with the algorithmic local search artillery of the es-
tablished Merlin optimization environment [10].

The present paper aims at comparing the performance
of memetic variants implemented within the framework of
MEMPSODE, on the noiseless testbed of the Black—Box Op-
timization Benchmarking 2012 (BBOB’12) workshop. The
primary target is to determine the impact of the choice be-
tween UPSO and DE, within the memetic framework pre-
sented in [14]. No extensive benchmarking of all the avail-
able MEMPSODE variants was possible. Instead, we used a
default set of parameters for both UPSO and DE, as well as
the same local search procedure, in order to gain insight re-
garding the most promising uncalibrated approaches offered
by MEMPSODE.

The rest of the paper is organized as follows: Section 2
offers brief descriptions of all the employed algorithms, while



Section 3 explains the experimental setting. The obtained
experimental results are reported in Section 5, and the paper
concludes in Section 6.

2. EMPLOYED ALGORITHMS
As previously mentioned, the MEMPSODE software fol-

lows closely the PSO-based memetic schemes proposed in [14],

and extends them also to the DE framework. In the follow-
ing paragraphs, we provide brief descriptions of the algo-
rithms integrated in MEMPSODE, along with a pseudocode
that summarizes the corresponding memetic framework.

2.1 Unified Particle Swarm Optimization

The original PSO algorithm was first introduced by Eber-
hart and Kennedy [1]. UPSO was introduced later as a
generalization of PSO that harnesses its local and global
variant [12]. If the n—dimensional continuous optimization
problem:

o8, F (@) @)
is under investigation, with the search space X being de-
fined as X = [l1,71] X [l2,7r2] X -+ X [ln,7s], then PSO

employs a set, called a swarm, of N search agents, called
the particles, S = {x1,z2,...,zn}, to probe X. The i—th
particle is defined as z; = (x;1, Zs2, . - . ,ZEin)T eX,iel=
{1,2,..., N}, and moves in X by assuming an adaptable ve-
locity (position shift), vi = (vs1,viz, . - .,vm)T7 1 € I, while
retaining in memory the best position it has ever visited,
pi = (pit, Pizs- .., pin) € X, i€ I

Also, each particle assumes a neighborhood of particles
that share information with it. The neighborhood, N, is
usually defined as a set of indices of the communicating par-
ticles, while the shared information is the best position they
have ever detected. Henceforth, g; € A; will denote the in-
dex of the particle with the best detected position in the
neighborhood of ;.

If N; = I, then the whole swarm is considered as the
neighborhood of each particle, defining the global (also de-
noted as gbest) PSO variant, while N; C I defines local (also
denoted as lbest) variants. Obviously, in the gbest model it
holds that g; = g,Vi € I, where g is the index of the particle
with the overall best position ever detected.

The classical PSO model can be generalized in the UPSO
scheme [12]. If we assume that GEtH) and LEtH) denote
the velocity update of x; in the gbest and Ibest PSO model,
respectively, and ¢ denotes the iteration counter, it holds
that [12]:

GS-H):X [US) + R (pg-) - xi?) + 2R (Pétj) - UCE?)] ,

where ¢ € I; j = 1,2,...,n; g is the index of the overall
best particle; and R1, Rz, are random variables uniformly
distributed in [0, 1]. Then, the particles are updated as fol-
lows [11]:

t41 t+1 t+1
ot = wGETY 4+ (1) LY, (2)
IE§+1) _ x52)+v§;+1)' (3)

The parameter u € [0, 1] is called the unification factor and
balances the influence (trade—off) of the gbest and lbest ve-
locity update. Obviously, the lbest PSO model is retrieved
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for v = 0, while for u = 1 the gbest PSO model is ob-
tained. All intermediate values produce combinations with
diverse convergence properties. The presented UPSO vari-
ant is implemented in the MEMPSODE software [17] that

was employed in our study.

2.2 Differential Evolution

DE was introduced by Storn and Price [15] as a population—
based stochastic optimization algorithm for numerical opti-
mization problems. DE is formulated similarly to PSO. A
population, P = {z1,z2,...,zn}, of N individuals is uti-
lized to probe the search space, X C R™. The population
is randomly initialized, usually following a uniform distribu-
tion within the search space.

Each individual is an n—dimensional vector, x; = (i1,
mig,...,xm)—r €X,ielI={12,...,N}, serving as a can-
didate solution of the problem at hand. The population is
iteratively evolved by applying two operators, mutation and
recombination, on each individual to produce new candidate
solutions. Then, a selection takes place, using both new and
old individuals, to construct the new population consisting
of the N best individuals. The procedure continues in the
same manner until a termination criterion is satisfied.

The mutation operator produces a new vector, v;, for each
individual, z;, ¢ € I, by combining some of the rest of the
individuals. There are various DE mutation operators. The
most common one is defined as follows:

o =l 4 P (2l — o)), ()

where ¢ denotes the iteration counter; F' € (0,1] is a fixed
user—defined parameter; g denotes the index of the best in-
dividual in the population, i.e., the one with the lowest func-
tion value; and r1,7r2 € I, are mutually different randomly
selected indices that differ also from the index 1.

After the mutation, a recombination operator is applied
producing a trial vector:
iel,

U; = (uil7ui27 .. -7Um)7

for each individual. This vector is defined as follows:
LD v, if R; < OR or j =RI(i), 5
if Rj > CR and j # RI(7),

17 t
o0,
where j = 1,2,...,n; R; is a random variable uniformly
distributed in the range [0,1]; CR € [0,1] is a user—defined
crossover constant; and RI(7) € {1,2,...,n}, is a randomly
selected index.
Finally, the trial vector is compared against the corre-
sponding individual and the best one is selected to be inher-
ited to the next generation, i.e.:

o[ ) < (),
K

otherwise.

(6)

o,

The presented DE operator, along with the rest of the basic
DE operators, are implemented in the MEMPSODE soft-
ware [17].

2.3 Local Search

A local solution to an optimization problem can be ob-
tained by applying local search (LS) methods. The hybrid
schemes implemented in MEMPSODE employ deterministic



LS procedures. These procedures require a starting point,
z®, and generate a sequence of points, (¥, t = 1,2, ...,
which approximates a minimizer within a prescribed accu-
racy.

The generation of a new point, x , in the sequence is
based on information collected for the current iterate, zW.
Typically, this information includes the function value at
:E(t>, as well as the first— and probably second—order deriva-
tives of f(z) at . In all cases, the aim is to find a new
iterate with lower function value than the current one.

The Merlin optimization environment [10] is an efficient
and robust general purpose optimization package. It is de-
signed to solve multi-dimensional optimization problems.
Merlin offers a variety of well established gradient—based
and gradient—free optimization algorithms. Gradient-based
algorithms include three methods from the conjugate gradi-
ent family, the method of Levenberg—-Marquardt, the DFP
and several variations of the BFGS algorithms (BFGS) [4].
The gradient—free algorithms include a pattern search and
the nonlinear Simplex method.

(t+1)

2.4 Memetic Framework

The design of Memetic PSO (MPSO) in [14] was based on
three fundamental schemes, called the memetic strategies:

Scheme 1: LS isapplied only on the overall best position,
pg, of the swarm.

Scheme 2: LS is applied on each locally best position,
pi, © = 1,2,..., N, with a prescribed fixed
probability, p € (0,1].

Scheme 3: LS is applied both on the best position, pg,

as well as on some randomly selected locally
best positions, p;, i € {1,2,...,N}.

These schemes can be applied either at each iteration or
whenever a specific number of consecutive iterations has
been completed.

Of course, many other memetic strategies can be consid-
ered. For instance, a simple one would be the application of
LS on every particle. However, such an approach would be
costly in terms of function evaluations. In practice, only a
small number of particles are considered as starting points
for LS, as pointed out in [7]. The memetic strategies pro-
posed in [14] are also implemented in MEMPSODE for both
PSO- and DE-based MAs. The general procedure of the
memetic algorithms discussed in our study, is given with
the pseudocode of Algorithm 1. Notice that the pseudocode
uses the same vector notation for both UPSO and DE.

3. EXPERIMENTAL SETUP

We applied the memetic algorithms for a maximum of
10° x n function evaluations per run. Whenever MEMP-
SODE terminated before reaching the global minimum (e.g.,
when LS resulted in a local minimizer), we performed an in-
dependent restart until the maximum number of function
evaluations was reached.

The memetic Scheme 3 was applied with probability of
local search set to p; = 0.05. Both UPSO and DE used
a swarm size N = 25 particles. In UPSO the unification
factor u was set to 1 (gbest) and the initial velocity vector
was restraint by a factor of 0.01. For the DE experiments
we used the values F' = 0.5 and CR = 0.7. Each local search
assumed a maximum number of 2000 function evaluations.

255

Algorithm 1: Pseudocode of the implemented memetic
algorithms.

Input: Objective function, f: X C R" — R; algorithm: algo
(PSO/DE); swarm size: N; unification factor: UF;
probability for local search: p

Output: Best detected solution: z*, f (™).

// Initialization

fort=1,2,...,N do

Initialize x; and wu;
Set p; < x; // Initialize best position
fi < f(x;) // Evaluate particle
ff’ < fi // Best position value
end

D bh W N

// Main Iteration Loop

Set t < 0
while (termination criterion) do
9 Calculate global best index g1 and local best index g2

® N

// Update Swarm/Population

if algo = "PSO’ then

fori=1,2,...,N do
Calculate lbest velocity update, L;, using ga
Calculate gbest velocity update, G;, using g1
w; + UFL; + (1 — UF)G; // Unified PSO
x; = x; + u; // Update particle’s position

10
11
12
13
14
15
16 end

17 else if algo = 'DE’ then

18 fori=1,2,...,N do

19 ‘ x; < p; // Replicate best positions

20 end

21 fori=1,2,...,N do

22 | Calculate v; using Eq. (4) // Mutation

23 end

24 fori=1,2,...,N do

25 | Calculate u; using Eq. (5) // Recombination
26 end

27 fori=1,2,...,N do

28 | Calculate x; using Eq. (6)

29 end

30

end

// Evaluate Swarm/Population
fori=1,2,...,N do
fi = f (x4)

31
32 |
33 end
// Update Best Positions/Individuals
fori=1,2,...,N do
if f; < f(p;) then
Pi < T

12— fi

34
35
36
37
38
39

end
end

// Apply Memetic Strategy
Apply one of the memetic strategies with probability p

40

41 end

The employed LS algorithm was the BFGS method using
the default parameters provided by Merlin. For the first or-
der derivatives we applied an O(h) finite differences formula
where h was an adaptable step size (see [16] for details). The
experiments were conducted on an Intel 17-2600 3.4 GHz
machine with 8GB RAM using GNU compiler suite v.4.4.3.

4. CPU TIMING EXPERIMENT

For the timing experiment, according to [5], the exper-
imental procedure described above was run on f8 with at
most 1000 function evaluations in each call to MEMPSODE
and restarted until at least 30 seconds had passed. The tim-
ing experiment was performed on the same platform as the
experimental procedure. The results for the UPSO variant
were 2.8, 1.8, 1.2, 0.5, 0.26, and 0.24 times 10~ % seconds per
function evaluation and for the DE variant 3.1, 2.0, 1.2, 0.5,



0.27, and 0.22 times 10~* seconds per function evaluation,
for dimensions 2, 3, 5, 10, 20, and 40, respectively.

S. EXPERIMENTAL RESULTS

Results from experiments according to [5] on the bench-
mark functions given in [3, 6] are presented in Figs. 1, 2
and 3 and in Table 1. The ezpected running time (ERT),
reported in figures and tables, depends on a given target
function value, fi = fopt + Af, and it is computed over all
relevant trials as the number of function evaluations exe-
cuted during each trial while the best function value did not
reach fi, summed over all trials and divided by the number
of trials that actually reached f; [5].

A direct comparison between the memetic gbest variant
of UPSO and the DE variant implemented in MEMPSODE,
can be deduced by observing the scatter plots in Fig. 2 and
the starred records in Table 1. In the separable case, DE
variant outperforms gbest PSO, especially as dimensional-
ity increases. For the moderate category, DE seems to out-
perform the gbest PSO variant only on function 7 (step
ellipsoid) and scores marginally better in all other cases.
The same behaviour is repeated for the ill-conditioned cases
where DE variant is slightly superior. Finally, DE variant
outperforms gbest PSO in all multimodal functions but the
opposite is observed for the weak structured cases.

The DE variant’s superiority against gbest PSO is also
obvious by inspecting Fig. 3. In almost all cases (except
the weak structured functions) the ECDF of DE variant lies
higher than the corresponding ECDF of PSO variant and
this pattern is repeated in all levels of accuracy.

It is also worth mentioning that the DE variant scored the
best recorded ERT for some accuracy levels in the case of
ill-conditioned functions (functions 10-14). From the corre-
sponding lines of Table 1, we can see that for relatively low
levels of accuracy the achieved ERT scores are quite com-
petitive. Overall, the results suggest that the algorithms
implemented in MEMPSODE can be very competitive.

6. CONCLUSIONS

We presented an empirical evaluation between two imple-
mentations of the memetic algorithm introduced in [14]. The
original one uses gbest PSO for search space exploration, and
the variation applies DE. Both methods are included in the
MEMPSODE software that provides a versatile environment
for global optimization. The results from the comparison on
the noiseless testbed indicate that the DE variant has a rela-
tive advantage against the gbest PSO model. Both methods
attain competitive performance, scoring way above the aver-
age, against the majority of algorithms on the same noiseless
testbed, as suggested by the results.
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Figure 3: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-
D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D)
to reach a target value fo,. +Af with Af = 10*, where k € {1, —1, —4, —8} is given by the first value in the legend,
for pso-bfgs (o) and de-bfgs (V). Light beige lines show the ECDF of FEvals for target value Af = 107° of all
algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of pso-bfgs divided
by de-bfgs, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one
trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were
solved in at least one trial (pso-bfgs first).
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Table 1: ERT in number of function evaluations divided by the best ERT measured during BBOB-2009 given
in the respective first row and the half inter-80%ile in brackets for different A f values. #succ is the number of
trials that reached the final target fothrlO_s. 1:pso is pso-bfgs and 2:de is de-bfgs. Bold entries are statistically
significantly better compared to the other algorithm, with p = 0.05 or p = 107* where k € {2,3,4,...} is the
number following the * symbol, with Bonferroni correction of 48. A | indicates the same tested against the
best BBOB-2009.
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